- Skip to main content
- Skip to primary sidebar
- Skip to footer

## Additional menu

Khan Academy Blog

## Unlocking the Power of Math Learning: Strategies and Tools for Success

posted on September 20, 2023

Mathematics, the foundation of all sciences and technology, plays a fundamental role in our everyday lives. Yet many students find the subject challenging, causing them to shy away from it altogether. This reluctance is often due to a lack of confidence, a misunderstanding of unclear concepts, a move ahead to more advanced skills before they are ready, and ineffective learning methods. However, with the right approach, math learning can be both rewarding and empowering. This post will explore different approaches to learning math, strategies for success, and cutting-edge tools to help you achieve your goals.

## Math Learning

Math learning can take many forms, including traditional classroom instruction, online courses, and self-directed learning. A multifaceted approach to math learning can improve understanding, engage students, and promote subject mastery. A 2014 study by the National Council of Teachers of Mathematics found that the use of multiple representations, such as visual aids, graphs, and real-world examples, supports the development of mathematical connections, reasoning, and problem-solving skills.

Moreover, the importance of math learning goes beyond solving equations and formulas. Advanced math skills are essential for success in many fields, including science, engineering, finance, health care, and technology. In fact, a report by Burning Glass Technologies found that 71% of high-salary, entry-level positions require advanced math skills.

## Benefits of Math Learning

In today’s 21st-century world, having a broad knowledge base and strong reading and math skills is essential. Mathematical literacy plays a crucial role in this success. It empowers individuals to comprehend the world around them and make well-informed decisions based on data-driven understanding. More than just earning good grades in math, mathematical literacy is a vital life skill that can open doors to economic opportunities, improve financial management, and foster critical thinking. We’re not the only ones who say so:

- Math learning enhances problem-solving skills, critical thinking, and logical reasoning abilities. (Source: National Council of Teachers of Mathematics )
- It improves analytical skills that can be applied in various real-life situations, such as budgeting or analyzing data. (Source: Southern New Hampshire University )
- Math learning promotes creativity and innovation by fostering a deep understanding of patterns and relationships. (Source: Purdue University )
- It provides a strong foundation for careers in fields such as engineering, finance, computer science, and more. These careers generally correlate to high wages. (Source: U.S. Bureau of Labor Statistics )
- Math skills are transferable and can be applied across different academic disciplines. (Source: Sydney School of Education and Social Work )

## How to Know What Math You Need to Learn

Often students will find gaps in their math knowledge; this can occur at any age or skill level. As math learning is generally iterative, a solid foundation and understanding of the math skills that preceded current learning are key to success. The solution to these gaps is called mastery learning, the philosophy that underpins Khan Academy’s approach to education .

Mastery learning is an educational philosophy that emphasizes the importance of a student fully understanding a concept before moving on to the next one. Rather than rushing students through a curriculum, mastery learning asks educators to ensure that learners have “mastered” a topic or skill, showing a high level of proficiency and understanding, before progressing. This approach is rooted in the belief that all students can learn given the appropriate learning conditions and enough time, making it a markedly student-centered method. It promotes thoroughness over speed and encourages individualized learning paths, thus catering to the unique learning needs of each student.

Students will encounter mastery learning passively as they go through Khan Academy coursework, as our platform identifies gaps and systematically adjusts to support student learning outcomes. More details can be found in our Educators Hub .

## Try Our Free Confidence Boosters

How to learn math.

Learning at School

One of the most common methods of math instruction is classroom learning. In-class instruction provides students with real-time feedback, practical application, and a peer-learning environment. Teachers can personalize instruction by assessing students’ strengths and weaknesses, providing remediation when necessary, and offering advanced instruction to students who need it.

Learning at Home

Supplemental learning at home can complement traditional classroom instruction. For example, using online resources that provide additional practice opportunities, interactive games, and demonstrations, can help students consolidate learning outside of class. E-learning has become increasingly popular, with a wealth of online resources available to learners of all ages. The benefits of online learning include flexibility, customization, and the ability to work at one’s own pace. One excellent online learning platform is Khan Academy, which offers free video tutorials, interactive practice exercises, and a wealth of resources across a range of mathematical topics.

Moreover, parents can encourage and monitor progress, answer questions, and demonstrate practical applications of math in everyday life. For example, when at the grocery store, parents can ask their children to help calculate the price per ounce of two items to discover which one is the better deal. Cooking and baking with your children also provides a lot of opportunities to use math skills, like dividing a recipe in half or doubling the ingredients.

Learning Math with the Help of Artificial Intelligence (AI)

AI-powered tools are changing the way students learn math. Personalized feedback and adaptive practice help target individual needs. Virtual tutors offer real-time help with math concepts while AI algorithms identify areas for improvement. Custom math problems provide tailored practice, and natural language processing allows for instant question-and-answer sessions.

Using Khan Academy’s AI Tutor, Khanmigo

Transform your child’s grasp of mathematics with Khanmigo , the 24/7 AI-powered tutor that specializes in tailored, one-on-one math instruction. Available at any time, Khanmigo provides personalized support that goes beyond mere answers to nurture genuine mathematical understanding and critical thinking. Khanmigo can track progress, identify strengths and weaknesses, and offer real-time feedback to help students stay on the right track. Within a secure and ethical AI framework, your child can tackle everything from basic arithmetic to complex calculus, all while you maintain oversight using robust parental controls.

## Get Math Help with Khanmigo Right Now

You can learn anything .

Math learning is essential for success in the modern world, and with the right approach, it can also be enjoyable and rewarding. Learning math requires curiosity, diligence, and the ability to connect abstract concepts with real-world applications. Strategies for effective math learning include a multifaceted approach, including classroom instruction, online courses, homework, tutoring, and personalized AI support.

So, don’t let math anxiety hold you back; take advantage of available resources and technology to enhance your knowledge base and enjoy the benefits of math learning.

National Council of Teachers of Mathematics, “Principles to Actions: Ensuring Mathematical Success for All” , April 2014

Project Lead The Way Research Report, “The Power of Transportable Skills: Assessing the Demand and Value of the Skills of the Future” , 2020

Page. M, “Why Develop Quantitative and Qualitative Data Analysis Skills?” , 2016

Mann. EL, Creativity: The Essence of Mathematics, Journal for the Education of the Gifted. Vol. 30, No. 2, 2006, pp. 236–260, http://www.prufrock.com ’

Nakakoji Y, Wilson R.” Interdisciplinary Learning in Mathematics and Science: Transfer of Learning for 21st Century Problem Solving at University ”. J Intell. 2020 Sep 1;8(3):32. doi: 10.3390/jintelligence8030032. PMID: 32882908; PMCID: PMC7555771.

## Get Khanmigo

The best way to learn and teach with AI is here. Ace the school year with our AI-powered guide, Khanmigo.

For learners For teachers For parents

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

- Publications
- Account settings
- Advanced Search
- Journal List

## Does mathematics training lead to better logical thinking and reasoning? A cross-sectional assessment from students to professors

Clio cresswell.

1 School of Mathematics and Statistics, The University of Sydney, Sydney, Australia

## Craig P. Speelman

2 School of Arts and Humanities, Edith Cowan University, Joondalup, Australia

## Associated Data

All relevant data are within the paper and its Supporting Information files.

Mathematics is often promoted as endowing those who study it with transferable skills such as an ability to think logically and critically or to have improved investigative skills, resourcefulness and creativity in problem solving. However, there is scant evidence to back up such claims. This project tested participants with increasing levels of mathematics training on 11 well-studied rational and logical reasoning tasks aggregated from various psychological studies. These tasks, that included the Cognitive Reflection Test and the Wason Selection Task, are of particular interest as they have typically and reliably eluded participants in all studies, and results have been uncorrelated with general intelligence, education levels and other demographic information. The results in this study revealed that in general the greater the mathematics training of the participant, the more tasks were completed correctly, and that performance on some tasks was also associated with performance on others not traditionally associated. A ceiling effect also emerged. The work is deconstructed from the viewpoint of adding to the platform from which to approach the greater, and more scientifically elusive, question: are any skills associated with mathematics training innate or do they arise from skills transfer?

## Introduction

Mathematics is often promoted as endowing those who study it with a number of broad thinking skills such as: an ability to think logically, analytically, critically and abstractly; having capacity to weigh evidence with impartiality. This is a view of mathematics as providing transferable skills which can be found across educational institutions, governments and corporations worldwide. A view material to the place of mathematics in curricula.

Consider the UK government’s commissioned inquiry into mathematics education “Making Mathematics Count” ascertaining the justification that “mathematical training disciplines the mind, develops logical and critical reasoning, and develops analytical and problem-solving skills to a high degree” [ 1 p11]. The Australian Mathematical Sciences Institute very broadly states in its policy document “Vision for a Maths Nation” that “Not only is mathematics the enabling discipline, it has a vital productive role planning and protecting our well-being” (emphasis in original) [ 2 ]. In Canada, British Columbia’s New 2016 curriculum K-9 expressly mentions as part of its “Goals and Rationale”: “The Mathematics program of study is designed to develop deep mathematical understanding and fluency, logical reasoning, analytical thought, and creative thinking.” [ 3 ]. Universities, too, often make such specific claims with respect to their teaching programs. “Mathematics and statistics will help you to think logically and clearly, and apply a range of problem-solving strategies” is claimed by The School of Mathematical Sciences at Monash University, Australia [ 4 ]. The School of Mathematics and Statistics at The University of Sydney, Australia, directly attributes as part of particular course objectives and outcomes skills that include “enhance your problem-solving skills” as part of studies in first year [ 5 ], “develop logical thinking” as part of studies in second year, which was a statement drafted by the lead author in fact [ 6 ], and “be fluent in analysing and constructing logical arguments” as part of studies in third year [ 7 ]. The University of Cambridge’s Faculty of Mathematics, UK, provides a dedicated document “Transferable Skills in the Mathematical Tripos” as part of its undergraduate mathematics course information, which again lists “analytic ability; creativity; initiative; logical and methodical reasoning; persistence” [ 8 ].

In contrast, psychological research, which has been empirically investigating the concept of transferability of skills since the early 1900s, points quite oppositely to reasoning skills as being highly domain specific [ 9 ]. Therefore, support for claims that studying mathematics engenders more than specific mathematics knowledge is highly pertinent. And yet it is largely absent. The 2014 Centre for Curriculum Redesign (CCR) four part paper “Mathematics for the 21st Century: What Should Students Learn?” concludes in its fourth paper titled “Does mathematics education enhance higher-order thinking skills?” with a call to action “… there is not sufficient evidence to conclude that mathematics enhances higher order cognitive functions. The CCR calls for a much stronger cognitive psychology and neuroscience research base to be developed on the effects of studying mathematics” [ 10 ].

Inglis and Simpson [ 11 ], bringing up this very issue, examined the ability of first-year undergraduate students from a high-ranking UK university mathematics department, on the “Four Cards Problem” thinking task, also known as the Wason Selection Task. It is stated as follows.

Each of the following cards have a letter on one side and a number on the other.

Here is a rule: “if a card has a D on one side, then it has a 3 on the other”. Your task is to select all those cards, but only those cards, which you would have to turn over in order to find out whether the rule is true or false. Which cards would you select?

This task involves understanding conditional inference, namely understanding the rule “If P then Q” and with this, deducing the answer as “P and not Q” or “D and 7”. Such logical deduction indeed presents as a good candidate to test for a potential ability of the mathematically trained. This task has also been substantially investigated in the domain of the psychology of reasoning [ 12 p8] revealing across a wide range of publications that only around 10% of the general population reach the correct result. The predominant mistake being to pick “D and 3”; where in the original study by Wason [ 13 ] it is suggested that this was picked by 65% of people. This poor success rate along with a standard mistake has fuelled interest in the task as well as attempts to understand why it occurs. A prevailing theory being the so named matching bias effect; the effect of disproportionately concentrating on items specifically mentioned in the situation, as opposed to reasoning according to logical rules.

Inglis and Simpson’s results isolated mathematically trained individuals with respect to this task. The participants were under time constraint and 13% of the first-year undergraduate mathematics students sampled reached the correct response, compared to 4% of the non-mathematics (arts) students that was included. Of note also was the 24% of mathematics students as opposed to 45% of the non-mathematics students who chose the standard mistake. The study indeed unveiled that mathematically trained individuals were significantly less affected by the matching bias effect with this problem than the individuals without mathematics training. However, the achievement of the mathematically trained group was still far from masterful and the preponderance for a non-standard mistake compared with non-mathematically trained people is suggestive. Mathematical training appears to engender a different thinking style, but it remains unclear what the difference is.

Inglis, Simpson and colleagues proceeded to follow up their results with a number of studies concentrated on conditional inference in general [ 14 , 15 ]. A justification for this single investigatory pathway being that if transfer of knowledge is present, something subtle to test for in the first place, a key consideration should be the generalisation of learning rather than the application of skills learned in one context to another (where experimenter bias in the choice of contexts is more likely to be an issue). For this they typically used sixteen “if P then Q” comprehension tasks, where their samples across a number of studies have included 16-year-old pre-university mathematics students (from England and Cyprus), mathematics honours students in their first year of undergraduate university study, third year university mathematics students, and associated control groups. The studies have encompassed controls for general intelligence and thinking disposition prior to training, as well as follows ups of up to two years to address the issue of causation. The conclusive thinking pattern that has emerged is a tendency of the mathematical groups towards a greater likelihood of rejecting the invalid denial of the antecedent and affirmation of the consequent inferences. But with this, and this was validated by a second separate study, the English mathematics group actually became less likely to endorse the valid modus tollens inference. So again, mathematical training appears to engender a different thinking style, but there are subtleties and it remains unclear what the exact difference is.

This project was designed to broaden the search on the notion that mathematics training leads to increased reasoning skills. We focused on a range of reasoning problems considered in psychological research to be particularly insightful into decision making, critical thinking and logical deduction, with their distinction in that the general population generally struggles with answering them correctly. An Australian sample adds diversity to the current enquiries that have been European focussed. Furthermore, in an effort to identify the impact of mathematics training through a possible gradation effect, different levels of mathematically trained individuals were tested for performance.

Well-studied thinking tasks from a variety of psychological studies were chosen. Their descriptions, associated success rates and other pertinent details follows. They were all chosen as the correct answer is typically eluded for a standard mistake.

The three-item Cognitive Reflection Test (CRT) was used as introduced by Frederick [ 16 ]. This test was devised in line with the theory that there are two general types of cognitive activity: one that operates quickly and without reflection, and another that requires not only conscious thought and effort, but also an ability to reflect on one’s own cognition by including a step of suppression of the first to reach it. The three items in the test involve an incorrect “gut” response and further cognitive skill is deemed required to reach the correct answer (although see [ 17 ] for evidence that correct responses can result from “intuition”, which could be related to intelligence [ 18 ]).

In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days for the patch to cover the entire lake, how long would it take for the patch to cover half of the lake?

If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to make 100 widgets?

## Bat and ball

A bat and a ball cost $1.10 in total. The bat costs a dollar more than the ball. How much does the ball cost?

The solutions are: 47 days for the Lily Pads problem, 5 minutes for the Widgets problem and 5 cents for the Bat and Ball problem. The considered intuitive, but wrong, answers are 24 days, 100 minutes and 10 cents, respectively. These wrong answers are attributed to participants becoming over focused on the numbers so as to ignore the exponential growth pattern in the Lily Pads problem, merely complete a pattern in numbers in the Widgets problem, and neglect the relationship “more than” in the Bat and Ball problem [ 19 ]. The original study by Frederick [ 16 ] provides a composite measure of the performance on these three items, with only 17% of those studied (n = 3428) reaching the perfect score. The CRT has since been studied extensively [ 19 – 21 ]. Research using the CRT tends not to report performance on the individual items of the test, but rather a composite measure of performance. Attridge and Inglis [ 22 ] used the CRT as a test for thinking disposition of mathematics students as one way to attempt to disentangle the issue of filtering according to prior thinking styles rather than transference of knowledge in successful problem solving. They repeat tested 16-year old pre-university mathematics students and English literature students without mathematics subjects at a one-year interval and found no difference between groups.

Three problems were included that test the ability to reason about probability. All three problems were originally discussed by Kahneman and Tversky [ 23 ], with the typically poor performance on these problems explained by participants relying not on probability knowledge, but a short-cut method of thinking known as the representativeness heuristic. In the late 1980s, Richard Nisbett and colleagues showed that graduate level training in statistics, while not revealing any improvement in logical reasoning, did correlate with higher-quality statistical answers [ 24 ]. Their studies lead in particular to the conclusion that comprehension of, what is known as the law of large numbers, did show improvement with training. The first of our next three problems targeted this law directly.

A certain town is served by two hospitals. In the larger hospital, about 45 babies are born each day, and in the smaller hospital, about 15 babies are born each day. As you know, about 50 percent of all babies are boys. However, the exact percentage varies from day to day. Sometimes it may be higher than 50 percent, sometimes lower. For a period of one year, each hospital recorded the number of days on which more than 60 percent of the babies born were boys. Which hospital do you think recorded more such days? (Circle one letter.)

- (a) the larger hospital
- (b) the smaller hospital
- (c) about the same (that is, within 5 percent of each other)

Kahneman and Tversky [ 23 ] reported that, of 50 participants, 12 chose (a), 10 chose (b), and 28 chose (c). The correct answer is (b), for the reason that small samples are more likely to exhibit extreme events than large samples from the same population. The larger the sample, the more likely it will exhibit characteristics of the parent population, such as the proportion of boys to girls. However, people tend to discount or be unaware of this feature of sampling statistics, which Kahneman and Tversky refer to as the law of large numbers. Instead, according to Kahneman and Tversky, people tend to adhere to a fallacious law of small numbers, where even small samples are expected to exhibit properties of the parent population, as illustrated by the proportion of participants choosing the answer (c) in their 1972 study. Such thinking reflects use of the representativeness heuristic, whereby someone will judge the likelihood of an uncertain event based on how similar it is to characteristics of the parent population of events.

## Birth order

All families of six children in a city were surveyed. In 72 families the exact order of births of boys and girls was GBGBBG.

- (a) What is your estimate of the number of families surveyed in which the exact order of births was BGBBBB?
- (b) In the same survey set, which, if any, of the following two sequences would be more likely: BBBGGG or GBBGBG?

All of the events listed in the problem have an equal probability, so the correct answer to (a) is 72, and to (b) is “neither is more likely”. Kahneman and Tversky [ 23 ] reported that 75 of 92 participants judged the sequence in (a) as less likely than the given sequence. A similar number (unspecified by Kahneman and Tversky, but the statistical effect was reported to be of the same order as in (a)) reported that GBBGBG was the more likely sequence. Again, Kahneman and Tversky suggested that these results reflected use of the representativeness heuristic. In the context of this problem, the heuristic would have taken the following form: some birth orders appear less patterned than others, and less patterned is to be associated with the randomness of birth order, making them more likely.

## Coin tosses

In a sequence of coin tosses (the coin is fair) which of the following outcomes would be most likely (circle one letter):

- (a) H T H T H T H T
- (b) H H H H T T T T
- (c) T T H H T T H H
- (d) H T T H T H H T
- (e) all of the above are equally likely

The correct answer in this problem is (e). Kahneman and Tversky [ 23 ] reported that participants tend to choose less patterned looking sequences (e.g., H T T H T H H T) as more likely than more systematic looking sequences (e.g., H T H T H T H T). This reasoning again reflects the representativeness heuristic.

Three further questions from the literature were included to test problem solving skill.

## Two drivers

Two drivers set out on a 100-mile race that is marked off into two 50-mile sections. Driver A travels at exactly 50 miles per hour during the entire race. Driver B travels at exactly 45 mph during the first half of the race (up to the 50-mile marker) and travels at exactly 55 mph during the last half of the race (up to the finish line). Which of the two drivers would win the race? (Circle one letter.)

- (a) Driver A would win the race
- (b) Driver B would win the race
- (c) the two drivers would arrive at the same time (within a few seconds of one another)

This problem was developed by Pelham and Neter [ 25 ]. The correct answer is (a), which can be determined by calculations of driving times for each Driver, using time = distance/velocity. Pelham and Neter argue, however, that (c) is intuitively appealing, on the basis that both drivers appear to have the same overall average speed. Pelham and Neter reported that 67% of their sample gave this incorrect response to the problem, and a further 13% selected (b).

## Petrol station

Imagine that you are driving along the road and you notice that your car is running low on petrol. You see two petrol stations next to each other, both advertising their petrol prices. Station A’s price is 65c/litre; Station B’s price is 60c/litre. Station A’s sign also announces: “5c/litre discount for cash!” Station B’s sign announces “5c/litre surcharge for credit cards.” All other factors being equal (for example, cleanliness of the stations, number of cars waiting at each etc), to which station would you choose to go, and why?

This problem was adapted from one described by Galotti [ 26 ], and is inspired by research reported by Thaler [ 27 ]. According to Thaler’s research, most people prefer Station A, even though both stations are offering the same deal: 60c/litre for cash, and 65c/litre for credit. Tversky and Kahneman [ 28 ] explain this preference by invoking the concept of framing effects. In the context of this problem, such an effect would involve viewing the outcomes as changes from some initial point. The initial point frames the problem, and provides a context for viewing the outcome. Thus, depending on the starting point, outcomes in this problem can be viewed as either a gain (in Station A, you gain a discount if you use cash) or a loss (in Station B, you are charged more (a loss) for using credit). Given that people are apparently more concerned about a loss than a gain [ 29 ], the loss associated with Station B makes it the less attractive option, and hence the preference for Station A. The correct answer, though, is that the stations are offering the same deal and so no station should be preferred.

And finally, a question described by Stanovich [ 30 , 31 ] as testing our predisposition for cognitive operations that require the least computational effort.

## Jack looking at Anne

Jack is looking at Anne, but Anne is looking at George. Jack is married, but George is not. Is a married person looking at an unmarried person? (Circle one letter.)

- (c) Cannot be determined

Stanovich reported that over 80% of people choose the “lazy” answer (c). The correct answer is (a).

The above questions survey, in a clear problem solving setting, an ability to engage advanced cognitive processing in order to critically evaluate and possibly override initial gut reasoning, an ability to reason about probability within the framework of the law of large numbers and the relationship between randomness and patterning, an ability to isolate salient features of a problem and, with the last question in particular, an ability to map logical relations. It might be hypothesised that according to degrees of mathematical training, in line with the knowledge base provided and the claims of associated broad and enhanced problem-solving abilities in general, that participants with greater degrees of such training would outperform others on these questions. This hypothesis was investigated in this study. In addition, given that no previous study on this issue has examined the variety of problems used in this study, we also undertook an exploratory analysis to investigate whether there exist any associations between the problems in terms of their likelihood of correct solution. Similarities between problems might indicate which problem solving domains could be susceptible to the effects of mathematics training.

A questionnaire was constructed containing the problems described in the previous sections plus the Four Cards Problem as tested by Inglis and Simpson [ 11 ] for comparison. The order of the problems was as follows: 1) Lily Pads; 2) Hospitals; 3) Widgets; 4) Four Cards; 5) Bat and Ball; 6) Birth Order; 7) Petrol Station; 8) Coin Tosses; 9) Two Drivers; 10) Jack looking at Anne. It was administered to five groups distinctive in mathematics training levels chosen from a high-ranking Australian university, where the teaching year is separated into two teaching semesters and where being a successful university applicant requires having been highly ranked against peers in terms of intellectual achievement:

- Introductory—First year, second semester, university students with weak high school mathematical results, only enrolled in the current unit as a compulsory component for their chosen degree, a unit not enabling any future mathematical pathway, a typical student may be enrolled in a Biology or Geography major;
- Standard—First year, second semester, university students with fair to good high school mathematical results, enrolled in the current mathematics unit as a compulsory component for their chosen degree with the possibility of including some further mathematical units in their degree pathway, a typical student may be enrolled in an IT or Computer Science major;
- Advanced1—First year, second semester, university mathematics students with very strong interest as well as background in mathematics, all higher year mathematical units are included as possible future pathway, a typical student may be enrolled in a Mathematics or Physics major;
- Advanced2—Second year, second semester, university mathematics students with strong interest as well as background in mathematics, typically a direct follow on from the previously mentioned Advanced1 cohort;
- Academic—Research academics in the mathematical sciences.

## Participants

123 first year university students volunteered during “help on demand” tutorial times containing up to 30 students. These are course allocated times that are supervised yet self-directed by students. This minimised disruption and discouraged coercion. 44 second year university students completed the questionnaire during a weekly one-hour time slot dedicated to putting the latest mathematical concepts to practice with the lecturer (whereby contrast to what occurs in tutorial times the lecturer does most of the work and all students enrolled are invited). All these university students completed the questionnaire in normal classroom conditions; they were not placed under strict examination conditions. The lead author walked around to prevent discussion and coercion and there was minimum disruption. 30 research academics responded to local advertising and answered the questionnaire in their workplace while supervised.

The questionnaires were voluntary, anonymous and confidential. Participants were free to withdraw from the study at any time and without any penalty. No participant took this option however. The questionnaires gathered demographic information which included age, level of education attained and current qualification pursued, name of last qualification and years since obtaining it, and an option to note current speciality for research academics. Each problem task was placed on a separate page. Participants were not placed under time constraint, but while supervised, were asked to write their start and finish times on the front page of the survey to note approximate completion times. Speed of completion was not incentivised. Participants were not allowed to use calculators. A final “Comments Page” gave the option for feedback including specifically if the participants had previously seen any of the questions. Questionnaires were administered in person and supervised to avoid collusion or consulting of external sources.

The responses were coded four ways: A) correct; B) standard error (the errors discussed above in The Study); C) other error; D) left blank.

The ethical aspects of the study were approved by the Human Research Ethics Committee of the University of Sydney, protocol number [2016/647].

The first analysis examined the total number of correct responses provided by the participants as a function of group. Scores ranged from 1 to 11 out of a total possible of 11 (Problem 6 had 2 parts) ( Fig 1 ). An ANOVA of this data indicated a significant effect of group (F(4, 192) = 20.426, p < .001, partial η 2 = .299). Pairwise comparisons using Tukey’s HSD test indicated that the Introductory group performed significantly worse than the Advanced1, Advanced2 and Academic groups. There were no significant differences between the Advanced1, Advanced2 and Academic groups.

Error bars are one standard error of the mean.

Overall solution time, while recorded manually and approximately, was positively correlated with group, such that the more training someone had received, the longer were these solution times (r(180) = 0.247, p = .001). However, as can be seen in Fig 2 , this relationship is not strong.

A series of chi-squared analyses, and their Bayesian equivalents, were performed on each problem, to determine whether the distribution of response types differed as a function of group. To minimise the number of cells in which expected values in some of these analyses were less than 5, the Standard Error, Other Error and Blank response categories were collapsed into one category (Incorrect Response). For three of the questions, the expected values of some cells did fall below 5, and this was due to most people getting the problem wrong (Four Cards), or most people correctly responding to the problem (Bat and Ball, Coin Tosses). In these cases, the pattern of results was so clear that a statistical analysis was barely required. Significant chi-squared results were examined further with pairwise posthoc comparisons (see Table 1 ).

Superscripts label the groups (e.g., Introductory = a). Within the table, these letters refer to which other group a particular group was significantly different to according to a series of pairwise post hoc chi squared analyses (Bonferroni corrected α = .005) (e.g., ‘d’ in the Introductory column indicates the Introductory and the Advanced2 (d) group were significantly different for a particular problem).

The three groups with the least amount of training in mathematics were far less likely than the other groups to give the correct solution (χ 2 (4) = 31.06, p < .001; BF 10 = 45,045) ( Table 1 ). People in the two most advanced groups (Advanced2 and Academic) were more likely to solve the card problem correctly, although it was still less than half of the people in these groups who did so. Further, these people were less likely to give the standard incorrect solution, so that most who were incorrect suggested some more cognitively elaborate answer, such as turning over all cards. The proportion of people in the Advanced2 and Academic groups (39 and 37%) who solved the problem correctly far exceeded the typical proportion observed with this problem (10%). Of note, also, is the relatively high proportion of those in the higher training groups who, when they made an error, did not make the standard error, a similar result to the one reported by Inglis and Simpson [ 11 ].

## The cognitive reflection test

In the Lily Pads problem, although most people in the Standard, Advanced1, Advanced2 and Academic groups were likely to select the correct solution, it was also the case that the less training someone had received in mathematics, the more likely they were to select an incorrect solution (χ 2 (4) = 27.28, p < .001; BF 10 = 15,554), with the standard incorrect answer being the next most prevalent response for the two lower ability mathematics groups ( Table 1 ).

Performance on the Widgets problem was similar to performance on the Lily Pads problem in that most people in the Standard, Advanced1, Advanced2 and Academic groups were likely to select the correct solution, but that the less training someone had received in mathematics, the more likely they were to select an incorrect solution (χ 2 (4) = 23.76, p< .001; BF 10 = 516) ( Table 1 ). As with the Lily Pads and Widget problems, people in the Standard, Advanced1, Advanced2 and Academic groups were highly likely to solve the Bat and Ball problem (χ 2 (4) = 35.37, p < .001; BF 10 = 208,667). Errors were more likely from the least mathematically trained people (Introductory, Standard) than the other groups ( Table 1 ).

To compare performance on the CRT with previously published results, performance on the three problems (Lily Pads, Widgets, Bat and Ball) were combined. The number of people in each condition that solved 0, 1, 2, or 3 problems correctly is presented in Table 2 . The Introductory group were evenly distributed amongst the four categories, with 26% solving all three problems correctly. Around 70% of the rest of the groups solved all 3 problems correctly, which is vastly superior to the 17% reported by Frederick [ 16 ].

Responses to the Hospitals problem were almost universally split between correct and standard errors in the Standard, Advanced1, Advanced2 and Academic groups. Although this pattern of responses was also evident in the Introductory group, this group also exhibited more non-standard errors and non-responses than the other groups. However, the differences between the groups were not significant (χ 2 (4) = 4.93, p = .295; BF 10 = .068) ( Table 1 ). Nonetheless, the performance of all groups exceeds the 20% correct response rate reported by Kahneman and Tversky [ 23 ].

The two versions of the Birth Order problem showed similar results, with correct responses being more likely in the groups with more training (i.e., Advanced1, Advanced2 and Academic), and responses being shared amongst the various categories in the Introductory and Standard groups (χ a 2 (4) = 24.54, p < .001; BF 10 = 1,303; χ b 2 (4) = 25.77, p < .001; BF 10 = 2,970) ( Table 1 ). Nonetheless, performance on both versions of the problem in this study was significantly better than the 82% error rate reported by Kahneman and Tversky [ 23 ].

The Coin Tosses problem was performed well by all groups, with very few people in any condition committing errors. There were no obvious differences between the groups (χ 2 (4) = 3.70, p = .448; BF 10 = .160) ( Table 1 ). Kahneman and Tversky [ 23 ] reported that people tend to make errors on this type of problem by choosing less patterned looking sequences, but they did not report relative proportions of people making errors versus giving correct responses. Clearly the sample in this study did not perform like those in Kahneman and Tversky’s study.

Responses on the Two Drivers problem were clearly distinguished by a high chance of error in the Introductory and Standard groups (over 80%), and a fairly good chance of being correct in the Advanced1, Advanced2 and Academic groups (χ 2 (4) = 46.16, p < .001; BF 10 = 1.32 x 10 8 ) ( Table 1 ). Academics were the standout performers on this problem, although over a quarter of this group produced an incorrect response. Thus, the first two groups performed similarly to the participants in the Pelham and Neter [ 25 ] study, 80% of whom gave an incorrect response.

Responses on the Petrol Station problem were marked by good performance by the Academic group (73% providing a correct response), and just over half of each of the other groups correctly solving the problem. This difference was not significant (χ 2 (4) = 4.68, p = .322: BF 10 = .059) ( Table 1 ). Errors were fairly evenly balanced between standard and other, except for the Academic group, who were more likely to provide a creative answer if they made an error. Thaler [ 27 ] reported that most people get this problem wrong. In this study, however, on average, most people got this problem correct, although this average was boosted by the Academic group.

Responses on the Jack looking at Anne problem generally were standard errors, except for the Advanced2 and Academic groups, which were evenly split between standard errors and correct responses (χ 2 (4) = 18.03, p = .001; BF 10 = 46) ( Table 1 ). Thus, apart from these two groups, the error rate in this study was similar to that reported by Stanovich [ 30 ], where 80% of participants were incorrect.

A series of logistic regression analyses were performed in order to examine whether the likelihood of solving a particular problem correctly could be predicted on the basis of whether other problems were solved correctly. Each analysis involved selecting performance (correct or error) on one problem as the outcome variable, and performance on the other problems as predictor variables. Training (amount of training) was also included as a predictor variable in each analysis. A further logistic regression was performed with training as the outcome variable, and performance on all of the problems as predictor variables. The results of these analyses are summarised in Table 3 . There were three multi-variable relationships observed in these analyses, which can be interpreted as the likelihood of solving one problem in each group being associated with solving the others in the set. These sets were: (1) Lily Pads, Widgets and Petrol Station; (2) Hospitals, Four Cards and Two Drivers; (3) Birth Order and Coin Tosses. Training also featured in each of these sets, moderating the relationships as per the results presented above for each problem.

P = Problem (1 = Four Cards; 2 = Lily Pads; 3 = Widgets; 4 = Bat & Ball; 5 = Hospitals; 6a = Birth Order (a); 6b = Birth Order (b); 7 = Coin Tosses; 8 = Two Drivers; 9 = Petrol Station; 10 = Jack looking at Anne).

training = Amount of training condition.

p = significance level of logistic regression model.

% = percentage of cases correctly classified by the logistic regression model.

✓ = significant predictor, α < .05.

* = logistic regression for the training outcome variable is multinomial, whereas all other logistic regressions are binomial.

The final “Comments Page” revealed the participants as overwhelmingly enjoying the questions. Any analysis of previous exposure to the tasks proved impossible as there was little to no alignment on participant’s degree of recall, if any, and even perceptions of what exposure entailed. For example, some participants confused being exposed to the particular tasks with being habitually exposed to puzzles, or even mathematics problems, more broadly.

In general, the amount of mathematics training a group had received predicted their performance on the overall set of problems. The greater the training, the more problems were answered correctly, and the slower the recorded response times. There was not an obvious difference between the Advanced1, Advanced2 and Academic groups on either of these measures, however there were clear differences between this group and the Introductory and Standard groups, with the former exhibiting clearly superior accuracy. While time records were taken approximately, so as to avoid adding time pressure as a variable, that the Advanced1, Advanced2 and Academic groups recorded more time in their consideration of the problems, may suggest a “pause and consider” approach to such problems is a characteristic of the advanced groups. This is in line with what was suggested by an eye-movement tracking study of mathematically trained students attempting the Four Cards Problem; where participants that had not chosen the standard error had spent longer considering the card linked to the matching bias effect [ 14 ]. It is important to note, however, that longer response times may reflect other cognitive processes than deliberation [ 32 ].

Performance on some problems was associated with performance on other problems. That is, if someone correctly answered a problem in one of these sets, they were also highly likely to correctly answer the other problems in the set. These sets were: (1) Lily Pads, Widgets and Petrol Station; (2) Hospitals, Four Cards and Two Drivers; (3) Birth Order and Coin Tosses. This is different with how these problems have been typically clustered a priori in the research literature: (I) Lily Pads, Widgets and Bat and Ball (CRT); (II) Hospitals and Two Drivers (explained below); (III) Hospitals, Birth Order and Coin Tosses (representativeness heuristic); (IV) Birth Order and Coin Tosses (probability theory). Consideration of these problem groupings follows.

Correctly answering all three problems in (I) entailed not being distracted by particular pieces of information in the problems so as to stay focused on uncovering the real underlying relationships. The Lily Pads and Widget problems can mislead if attention is over focused on the numbers, and conversely, the Petrol Station problem can mislead if there is too much focus on the idea of a discount. While the Lily Pads and Widget problems are traditionally paired with the Bat and Ball problem in the CRT, it may be that performance on the Bat and Ball problem did not appear as part of this set due to an added level of difficulty. With the problems in (I), avoiding being distracted by certain parts of the questions at the expense of others almost leads directly to the correct answer. However, with the Bat and Ball problem, further steps in mathematical reasoning still need to occur in answering which two numbers add together to give a result while also subtracting one from the other for another.

With the problems in (II) it is of interest that the Two Drivers problem was created specifically to be paired with the Hospitals problem to test for motivation in problem solving [ 23 ]. Within this framework further transparent versions of these problems were successfully devised to manipulate for difficulty. The Two Drivers problem was amended to have Driver B travelling at exactly 5 mph during the first half of the race and at exactly 95 mph during the last half of the race. The Hospitals problem was amended so the smaller hospital would have “only 2” babies born each day and where for a period of one year the hospitals recorded the number of days on which all of the babies born were boys. Could the association in (II) be pointing to how participants overcome initial fictitious mathematical rules? Maybe they reframe the question in simpler terms to see the pattern. The Four Cards Problem also elicited a high number of incorrect answers where, associated with mathematical training, the standard incorrect solution was avoided for more cognitively elaborate ones. Indeed, a gradation effect appeared across the groups where the standard error of the “D and 3” cards becomes “D only” ( Table 4 ). Adrian Simpson and Derrick Watson found a comparable result across their two groups [14 p61]. This could again be pointing to having avoided an initial fictitious rule of simply concentrating on items directly found in the question, participants then seek to reframe the question to unearth the logical rule to be deduced. An added level of difficulty with this question may be why participants become trapped in a false answer. The eye-movement tracking study mentioned above supports this theory.

The problems in (III) fit naturally together as part of basic probability theory, a topic participants would have assimilated, or not, as part of various education curricula. While the equal likelihood of all possible outcomes with respect to a coin toss may be culturally assimilated, the same may not be as straightforward for birth gender outcomes where such assumptions could be swayed by biological hypothesis or folk wisdom [ 33 ]. The gradation of the results in terms of mathematical training does not support this possibility.

The effect of training on performance accuracy was more obvious in some problems compared to others, and to some extent, this was related to the type of problem. For instance, most of the problems in which performance was related to training (Four Cards, CRT [Lily Pads, Widgets, Bat and Ball], Two Drivers, Jack looking at Anne) could be classed as relying on logical and/or critical thinking. The one exception was the Birth Order problems, which are probability related.

In contrast, two of the three problems in which training did not appear to have much impact on performance (Hospitals and Coin Tosses) require domain-specific knowledge. The Hospitals problem requires a degree of knowledge about sampling statistics. This is a topic of quite distinct flavour that not all mathematically trained individuals gain familiarity with. On the other hand, all groups having performed well on the Coin Tosses problem is in line with a level of familiarity with basic probability having been originally presented at high school. While the questioning of patterning as negatively correlated with randomness is similar to that appearing in the Birth Order question, in the Birth Order question this aspect is arguably more concealed. These results and problem grouping (III) could be pointing to an area for improvement in teaching where the small gap in knowledge required to go from answering the Coin Tosses problem correctly to achieving similarly with the Birth Order problem could be easily addressed. A more formal introduction to sampling statistics in mathematical training could potentially bridge this gap as well as further be extended towards improvement on the Hospitals problem.

The other problem where performance was unrelated to training, the Petrol Station problem, cannot be characterised similarly. It is more of a logical/critical thinking type problem, where there remains some suggestion that training may have impacted performance, as the Academic group seemed to perform better than the rest of the sample. An alternate interpretation of this result is therefore that this problem should not be isolated but grouped with the other problems where performance is affected by training.

Although several aspects of the data suggest mathematics training improves the chances that someone will solve problems of the sort examined here, differences in the performance of participants in the Advanced1, Advanced2 and Academic groups were not obvious. This is despite the fact that large differences exist in the amount of training in these three groups. The first two groups were undergraduate students and the Academic group all had PhDs and many were experienced academic staff. One interpretation of this result is current mathematics training can only take someone so far in terms of improving their abilities with these problems. There is a point of demarcation to consider in terms of mathematical knowledge between the Advanced1, Advanced2 and Academic groups as compared to the Introductory and Standard groups. In Australia students are able to drop mathematical study at ages 15–16 years, or choose between a number of increasingly involved levels of mathematics. For the university in this study, students are filtered upon entry into mathematics courses according to their current knowledge status. All our groups involved students who had opted for post-compulsory mathematics at high school. And since our testing occurred in second semester, some of the mathematical knowledge shortfalls that were there upon arrival were bridged in first semester. Students must pass a first semester course to be allowed entry into the second semester course. A breakdown of the mathematics background of each group is as follows:

- The Introductory group’s mathematics high school syllabus studied prior to first semester course entry covered: Functions, Trigonometric Functions, Calculus (Introduction to Differentiation, Applications of the Derivative, Antiderivatives, Areas and the Definite Integral), Financial Mathematics, Statistical Analysis. The Introductory group then explored concepts in mathematical modelling with emphasis on the importance of calculus in their first semester of mathematical studies.
- The Standard group’s mathematics high school syllabus studied prior to first semester course entry covered: Functions, Trigonometric Functions, Calculus (Rates of Change, Integration including the method of substitution, trigonometric identities and inverse trigonometric functions, Areas and Volumes of solids of revolution, some differential equations), Combinatorics, Proof (with particular focus on Proof by Mathematical Induction), Vectors (with application to projectile motion), Statistical Analysis. In first semester their mathematical studies then covered a number of topics the Advanced1 group studied prior to gaining entrance at university; further details on this are given below.
- The Advanced1 group’s mathematics high school syllabus studied prior to first semester course entry covered: the same course content the Standard group covered at high school plus extra topics on Proof (develop rigorous mathematical arguments and proofs, specifically in the context of number and algebra and further develop Proof by Mathematical Induction), Vectors (3 dimensional vectors, vector equations of lines), Complex Numbers, Calculus (Further Integration techniques with partial fractions and integration by parts), Mechanics (Application of Calculus to Mechanics with simple harmonic motion, modelling motion without and with resistance, projectiles and resisted motion). The Standard group cover these topics in their first semester university studies in mathematics with the exclusion of further concepts of Proof or Mechanics. In first semester the Advanced1 group have built on their knowledge with an emphasis on both theoretical and foundational aspects, as well as developing the skill of applying mathematical theory to solve practical problems. Theoretical topics include a host of theorems relevant to the study of Calculus.

In summary, at the point of our study, the Advanced1 group had more knowledge and practice on rigorous mathematical arguments and proofs in the context of number and algebra, and more in-depth experience with Proofs by Induction, but the bulk of extra knowledge rests with a much deeper knowledge of Calculus. They have had longer experience with a variety of integration techniques, and have worked with a variety of applications of calculus to solve practical problems, including a large section on mechanics at high school. In first semester at university there has been a greater focus on theoretical topics including a host of theorems and associated proofs relevant to the topics studied. As compared to the Introductory and Standard groups, the Advanced1 group have only widened the mathematics knowledge gap since their choice of post-compulsory mathematics at high school. The Advanced2 group come directly from an Advanced1 cohort. And the Academics group would have reached the Advanced1 group’s proficiency as part of their employment. So, are specific reasoning skills resulting from this level of abstract reasoning? Our findings suggest this should certainly be an area of investigation and links in interestingly with other research work. In studying one of the thinking tasks in particular (the Four Cards Problem) and its context of conditional inference more specifically, Inglis and Simpson [ 15 ] found a clear difference between undergraduates in mathematics and undergraduates in other university disciplines, yet also showed a lack of development over first-year university studies on conditional inference measures. A follow up study by Attridge and Inglis [ 22 ] then zeroed in on post-compulsory high school mathematical training and found that students with such training did develop their conditional reasoning to a greater extent than their control group over the course of a year, despite them having received no explicit tuition in conditional logic. The development though, whilst demonstrated as not being the result of a domain-general change in cognitive capacity or thinking disposition, and most likely associated with the domain-specific study of mathematics, revealed a complex pattern of endorsing more of some inferences and less of others. The study here focused on a much broader problem set associated with logical and critical thinking and it too is suggestive of a more complex picture in how mathematics training may be contributing to problem solving styles. A more intricate pattern to do with the impact of mathematical training on problem solving techniques is appearing as required for consideration.

There is also a final interpretation to consider: that people in the Advanced 1, Advanced2 and Academic groups did not gain anything from their mathematics training in terms of their ability to solve these problems. Instead, with studies denying any correlation of many of these problems with what is currently measured as intelligence [ 30 ], they might still be people of a particular intelligence or thinking disposition to start with, who have been able to use that intelligence to not only solve these problems, but also survive the challenges of their mathematics training.

That the CRT has been traditionally used as a measure of baseline thinking disposition and that performance has been found to be immutable across groups tested is of particular interest since our results show a clear possible training effect on these questions. CRT is tied with a willingness to engage in effortful thinking which presents as a suitable ability for training. It is beyond the scope of this study, but a thorough review of CRT testing is suggestive of a broader appreciation and better framework to understand thinking disposition, ability and potential ability.

Mathematical training appears associated with certain thinking skills, but there are clearly some subtleties that need to be extricated. The thinking tasks here add to the foundational results where the aim is for a firmer platform on which to eventually base more targeted and illustrative inquiry. If thinking skills can be fostered, could first year university mathematics teaching be improved so that all samples from that group reach the Advanced1 group level of reasoning? Do university mathematics courses become purely about domain-specific knowledge from this point on? Intensive training has been shown to impact the brain and cognition across a number of domains from music [ 34 ], to video gaming [ 35 ], to Braille reading [ 36 ]. The hypothesis that mathematics, with its highly specific practice, fits within this list remains legitimate, but simply unchartered. With our current level of understanding it is worth appreciating the careful wording of the NYU Courant Institute on ‘Why Study Math?’ where there is no assumption of causation: “Mathematicians need to have good reasoning ability in order to identify, analyze, and apply basic logical principles to technical problems.” [ 37 ].

## Limitations

One possible limitation of the current study is that the problems may have been too easy for the more advanced people, and so we observed a ceiling effect (i.e., some people obtained 100% correct on all problems). This was most obvious in the Advanced1, Advanced2 and Academic groups. It is possible that participants in these groups had developed logical and critical thinking skills throughout their mathematical training that were sufficient to cope with most of the problems used in this study, and so this would support the contention that training in mathematics leads to the development of logical and critical thinking skills useful in a range of domains. Another interpretation is that participants in these groups already possessed the necessary thinking skills for solving the problems in this study, which is why they are able to cope with the material in the advanced units they were enrolled in, or complete a PhD in mathematics and hold down an academic position in a mathematics department. This would then suggest that training in mathematics had no effect on abstract thinking skills—people in this study possessed them to varying extents prior to their studies. This issue might be settled in a future study that used a greater number of problems of varying difficulties to maximise the chances of finding a difference between the three groups with the most amount of training. Alternatively, a longitudinal study that followed people through their mathematics training could determine whether their logical and critical thinking abilities changed throughout their course.

A further limitation of the study may be that several of the reasoning biases examined in this study were measured by only one problem each (i.e., Four Cards Problem, Two Drivers, Petrol Station, Jack looking at Anne). A more reliable measure of these biases could be achieved by including more problems that tap into these biases. This would, however, increase the time required of participants during data collection, and in the context of this study, would mean a different mode of testing would likely be required.

Broad sweeping intuitive claims of the transferable skills endowed by a study of mathematics require evidence. Our study uniquely covers a wide range of participants, from limited mathematics training through to research academics in the mathematical sciences. It furthermore considered performance on 11 well-studied thinking tasks that typically elude participants in psychological studies and on which results have been uncorrelated with general intelligence, education levels and other demographic information [ 15 , 16 , 30 ]. We identified different performances on these tasks with respect to different groups, based on level of mathematical training. This included the CRT which has developed into a method of measuring baseline thinking disposition. We identified different distributions of types of errors for the mathematically trained. We furthermore identified a performance threshold that exists in first year university for those with high level mathematics training. This study then provides insight into possible changes and adjustments to mathematics courses in order for them to fulfil their advertised goal of reaching improved rational and logical reasoning for a higher number of students.

It is central to any education program to have a clear grasp of the nature of what it delivers and how, but arguably especially so for the core discipline that is mathematics. In 2014 the Office of The Chief Scientist of Australia released a report “Australia’s STEM workforce: a survey of employers” where transferable skills attributed to mathematics were also ones that employers deemed as part of the most valuable [ 38 ]. A better understanding of what mathematics delivers in this space is an opportunity to truly capitalise on this historical culture-crossing subject.

## Supporting information

Acknowledgments.

The authors would like to thank Jacqui Ramagge for her proof reading and input, as well as support towards data collection.

## Funding Statement

The authors received no specific funding for this work.

## Data Availability

- PLoS One. 2020; 15(7): e0236153.

## Decision Letter 0

17 Mar 2020

PONE-D-20-01159

Does mathematics training lead to better logical thinking and reasoning? A cross-sectional assessment from students to professors

Dear Professor Speelman,

Thank you for submitting your manuscript to PLOS ONE. I have sent it to two expert reviewers and have received their comments back. As you can see at the bottom of this email, both reviewers are positive about your manuscript but raise some issues that you would need to address before the manuscript can be considered for publication. Notably, reviewer #1 points out that the manuscript should include a discussion on the reasons why individuals with math training may have improved reasoning skills (e.g., logical intuitions versus deliberate thinking). The reviewer also rightly mentions that your sample sizes are limited, notably for the most advanced groups. This should be discussed and acknowledged. Reviewer #2 has a number of conceptual and methodological points that you will also have to address. The reviewer provides very thorough comments and I will not reiterate the points here. However, note that both reviewers suggest that you need to improve the figures and I agree with them.

We would appreciate receiving your revised manuscript by May 01 2020 11:59PM. When you are ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter.

To enhance the reproducibility of your results, we recommend that if applicable you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

Please include the following items when submitting your revised manuscript:

- A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). This letter should be uploaded as separate file and labeled 'Response to Reviewers'.
- A marked-up copy of your manuscript that highlights changes made to the original version. This file should be uploaded as separate file and labeled 'Revised Manuscript with Track Changes'.
- An unmarked version of your revised paper without tracked changes. This file should be uploaded as separate file and labeled 'Manuscript'.

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out.

We look forward to receiving your revised manuscript.

Kind regards,

Jérôme Prado

Academic Editor

Journal Requirements:

When submitting your revision, we need you to address these additional requirements:

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at http://www.plosone.org/attachments/PLOSOne_formatting_sample_main_body.pdf and http://www.plosone.org/attachments/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2. Please include additional information regarding the survey or questionnaire used in the study and ensure that you have provided sufficient details that others could replicate the analyses. For instance, if you developed a questionnaire as part of this study and it is not under a copyright more restrictive than CC-BY, please include a copy, in both the original language and English, as Supporting Information. Please also let us know if it would be possible to provide the anonymized data points necessary to replicate the statistical analyses, for instance, as shown in fig 1 and 2. If so, please deposit those to a suitable data repository or include them in the Supporting Information files.

3. Thank you for stating the following financial disclosure:

"The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript."

- Please provide an amended Funding Statement that declares *all* the funding or sources of support received during this specific study (whether external or internal to your organization) as detailed online in our guide for authors at http://journals.plos.org/plosone/s/submit-now .
- Please state what role the funders took in the study. If any authors received a salary from any of your funders, please state which authors and which funder. If the funders had no role, please state: "The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript."

Please include your amended statements within your cover letter; we will change the online submission form on your behalf.

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer #1: I think this is a very good and interesting manuscript trying to answer an important research question. I propose some changes that I believe should be applied before publication.

1. Each reasoning bias is measured with only one problem. In reasoning research, it is rather common to measure each type of reasoning problem with a series of structurally equivalent reasoning problems, so the results will be independent of contexts effects and will be generalizable to that type of problem. Here, the authors only measured each reasoning bias with one single problem and this might be problematic (see, for example: Fiedler & Hertel, 1994). I think this can be addressed by simply discussing it in the limitation section.

2. This is rather a minor issue, but the discussion on the CRT problems is not up-to-date (page 7). Most recent experiments on dual process theory suggest that people who are able to correctly solve these reasoning problems (including the CRT) do so intuitively, and not because they engaged in careful deliberation (Bago & De Neys, 2019). Intelligence made people have better intuitive responses (Thompson, Pennycook, Trippas & Evans, 2018). Similarly, this problems persists in the discussion about reaction times (page 25). Longer reaction times does not necessarily mean that people engaged in deliberation (see: Evans, Kyle, Dillon & Rand, 2015). Response time might be driven by decision conflict or response rationalization. These issues could be clarified with some changes in the wording or some footnotes on page 7 and 25. Furthermore, it would be interesting to have a discussion on how mathematical education helps people overcome their biases. Is it because it creates better intuition, or helps people engage in deliberation? An interesting question this manuscript does not discuss. It’s on the authors whether or not they discuss this latter point now, but the changes on page 7 and 25 should be made.

3. A more serious problem is the rather small sample size (especially in the more advanced groups). This small sample size makes the appearance of both false negatives and false positives more likely. Perhaps, the authors could compute the Bayes Factors for the chi-square or logistic regression test, so we can actually see how strong the evidence is for or against the null. This is especially important as the authors run a great number of explorative analysis (Table 3), and some of those results might need to be interpreted with great caution (depending on the Bayes Factor).

The graphs are not looking good, they should comply with APA formatting. At the very least, the axis titles should be meaningful and measure units should be written there.

The presentation order of the problems is quite unusual; why isn’t it random? Why did the authors decide on this order?

Reviewer #2: The study reported in this paper compared five groups of participants with varying levels of mathematical expertise on a set of reasoning tasks. The study is interesting and informative. It extends the current literature on this topic (which is reviewed very nicely in the introduction). However, there are some issues with the current analysis and interpretation that should be resolved prior to publication. I have therefore recommended major revisions. My comments are organised in the order in which they came up in the paper and they explain my responses to the questions above.

1. Line 114 – “general population” a bit misleading – they were also students but from other disciplines.

2. Line 124 onwards reads:

“The ultimate question to consider here is: are any skills associated with mathematics training innate or do they arise from skills transfer? Though to investigate how mathematical training affects reasoning skills, randomised sampling and randomised intervention to reveal causal relationships are clearly not viable. With so many possible confounding variables and logistical issues, it is even questionable what conclusions such studies might provide. Furthermore, a firm baseline from which to propose more substantive investigations is still missing.”

I find this paragraph slightly problematic because the current study doesn’t inform us on this ultimate question, so it makes the outline of the current study in the following paragraph feel unsatisfactory. I think the current study is important but prefacing it with this paragraph underplays that importance. And I think a randomised controlled study, although not viable, would give the answers we need because the random allocation to groups would allow us to rule out any confounding variables. Finally, the last sentence in this paragraph is unclear to me.

3. In the descriptions of the five participants groups the authors refer to the group’s level of interest in mathematics, but this seems like an overgeneralisation to me. Surely the introductory group could contain a biology student who also happens to be good at mathematics and very much enjoy it? I would be more comfortable with the descriptions if the parts about interest level were removed.

4. How many of the 123 first year students were in each of the three first year groups?

5. Line 313 – the standard group is referred to as “university mathematics students”, but they are not taking mathematics degreed.

6. Line 331 - what is a practice class?

7. Were the data collection settings quiet? From the description it sounds like groups of participants were completing the study at the same time in the same room, but the authors should make this explicit for the sake of the method being reproducible. E.g. how many students were in the room at the time?

8. Line 355-356 – the authors should not use the term “marginally worse” because this is statistically inappropriate – in a frequentist approach results are either significant or non-significant.

9. Line 340 – “approximate completion times were noted.”

This doesn’t sound rigorous enough to justify analysing them. Their analysis is interesting, but the authors should remind readers clearly whenever the response times are analysed or discussed that their recording was only manual and approximate.

10. I suggest replacing Figure 1 with a bar chart showing standard error of the mean on the error bars. A table with mean score out of 11 and the standard deviation for each group may also be useful. Figure 2 should be a scatterplot rather than a box and whisker plot.

11. Was the 0-11 total correct score approximately normally distributed across the full sample?

12. Chi square analysis requires at least 5 cases in each cell, was this met? It seems not since Table 1 shows lots of cells in the “no response” row having 0% of cases.

13. The chi-square analyses should be followed up with post hoc tests to see exactly where the differences between groups are. The descriptions as they stand aren’t that informative (as readers can just look at Table 1) without being backed up by post hoc tests.

14. For each chi square analysis in the text, I would find it easier to read if the test statistics came at the top of the paragraph, before the description.

15. Line 381-383 – “Of note, also, is the relatively low proportion of those in the higher training groups who, when they made an error, did not make the standard error, a similar result to the one reported by Inglis and Simpson [11]."

I think this is supposed to say that a low proportion did make the standard error or that a high proportion did not make the standard error.

16. Line 403 - p values this small should be reported as p < .001 rather than p = .000 since they aren’t actually 0.

17. Line 476 – “…if a particular outcome variable was predicted significantly by a particular predictor variable, the converse relationship was also observed”

Isn’t that necessarily the case with regression analyses, like with correlations?

18. I don’t think the logistic regression analyses add much to the paper and at the moment they come across as potential p-hacking since they don’t clearly relate to the research question. To me they make the paper feel less focused. Having said that, there is some interesting discussion of them in the Discussion section. I’d recommend adding some justification to the introduction for why it is interesting to look at the relationships among tasks (without pretending to have made any specific hypotheses about the relationships, of course).

19. Line 509 would be clearer if it read “between these groups and the introductory and standard groups”

20. Lines 597 – 620 - This is an interesting discussion, especially the suggestion that advanced calculus may be responsible for the development. No development in reasoning skills from the beginning of a mathematics degree onwards was also found by Inglis and Simpson (2009), who suggested that the initial difference between mathematics and non-mathematics undergraduates could have been due to pre-university study of mathematics. Attridge & Inglis (2013) found evidence that this was the case (they found no difference between mathematics and non-mathematics students at age 16 but a significant difference at the end of the academic year, where the mathematics students had improved and the non-mathematics students had not).

Could the authors add some discussion of whether something similar may have been the case with their Australian sample? E.g. do students in Australia choose whether, or to what extent, to study mathematics towards the end of high school? If not, the description of the groups suggests that there were at least differences in high school mathematics attainment between groups 1-3, even if they studied the same mathematics curriculum. Do the authors think that this difference in attainment could have led to the differences between groups in the current study?

21. Line 617 – “Intensive training has been shown to impact the brain and cognition across a number of domains from music, to video gaming, to Braille reading [31].”

Reference 31 appears to only relate to music. Please add references for video gaming and Braille reading.

22. I recommend editing the figures from SPSS’s default style or re-making them in Excel or DataGraph to look more attractive.

23. I cannot find the associated datafile anywhere in the submission. Apologies if this is my mistake.

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files to be viewed.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/ . PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email us at gro.solp@serugif . Please note that Supporting Information files do not need this step.

## Author response to Decision Letter 0

20 Apr 2020

All responses are detailed against the specific reviewers' comments in the Response to Reviewers document

Submitted filename: Response to Reviewers.docx

## Decision Letter 1

11 Jun 2020

PONE-D-20-01159R1

Does mathematics training lead to better logical thinking and reasoning? A cross-sectional assessment from students to professors.

Dear Dr. Speelman,

Thank you for submitting your revised manuscript to PLOS ONE. I have sent it to reviewer #2 and have now received the reviewer's comment. As you can see, the reviewer thinks that the manuscript is improved but has some outstanding issues that you would need to address in another round of revision. I notably agree with the reviewer that you should provide the raw data, allowing readers to replicate your analyses. Therefore, I invite you submit a revised version of your manuscript.

Please submit your revised manuscript by Jul 26 2020 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at gro.solp@enosolp . When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

- A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.
- A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.
- An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

Reviewer #2: The manuscript has improved but there are still a few issues that should be resolved prior to publication.

1. On lines 96, 97, 100 and 102, the references to “general population” should be changed to reflect the fact that these participants were non-mathematics (arts) students.

2. Line 306 – change “mathematics students” to “university students”.

3. The method section doesn’t specify the gender split and mean age of the sample.

4. Table 3 - values the p values listed as .000 should be changed to <.001.

5. Table 3 - I suggest repeating the list of problem numbers and names in the legend. It may make for a long legend but would make it much easier for the reader to interpret the table.

6. I am not sure what the new post hoc tests are comparing. What I expected was to see group 1 compared to groups 2, 3, 4 and 5, and so on. This would tell us which groups are statistically different from each other. At the moment we only know from the overall chi square tests whether there are any differences among the groups or not, we don’t know specifically which groups are statistically different from each other and which ones are not. We only have the authors’ interpretations based on the observed counts.

7. Line 584 - change “performance was correlated with training” to “performance was related to training” to avoid any confusion since a correlation analysis was not performed.

8. Data file – I had expected the data file to give the raw data rather than summary data, i.e. with each participant in a separate row, and a column indicating their group membership, a column giving their age, a column for sex etc (including all the demographics mentioned in the method), and a column for each reasoning question. This would allow other researchers to replicate the regression analyses and look at other relationships within the dataset. Without being able to replicate all analyses in the paper, the data file does not meet the minimal data set definition for publication in PLOS journals: https://journals.plos.org/plosone/s/data-availability .

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/ . PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at gro.solp@serugif . Please note that Supporting Information files do not need this step.

## Author response to Decision Letter 1

16 Jun 2020

Please see "Response to Reviewers" document

## Decision Letter 2

PONE-D-20-01159R2

We’re pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements.

Within one week, you’ll receive an e-mail detailing the required amendments. When these have been addressed, you’ll receive a formal acceptance letter and your manuscript will be scheduled for publication.

An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/ , click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at gro.solp@gnillibrohtua .

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they’ll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact gro.solp@sserpeno .

Additional Editor Comments (optional):

## Acceptance letter

Dear Dr. Speelman:

I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact gro.solp@sserpeno .

If we can help with anything else, please email us at gro.solp@enosolp .

Thank you for submitting your work to PLOS ONE and supporting open access.

PLOS ONE Editorial Office Staff

on behalf of

Dr. Jérôme Prado

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

## Does mathematics training lead to better logical thinking and reasoning? A cross-sectional assessment from students to professors

Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Writing – original draft, Writing – review & editing

Affiliation School of Mathematics and Statistics, The University of Sydney, Sydney, Australia

Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Affiliation School of Arts and Humanities, Edith Cowan University, Joondalup, Australia

- Clio Cresswell,
- Craig P. Speelman

- Published: July 29, 2020
- https://doi.org/10.1371/journal.pone.0236153
- Peer Review
- Reader Comments

Mathematics is often promoted as endowing those who study it with transferable skills such as an ability to think logically and critically or to have improved investigative skills, resourcefulness and creativity in problem solving. However, there is scant evidence to back up such claims. This project tested participants with increasing levels of mathematics training on 11 well-studied rational and logical reasoning tasks aggregated from various psychological studies. These tasks, that included the Cognitive Reflection Test and the Wason Selection Task, are of particular interest as they have typically and reliably eluded participants in all studies, and results have been uncorrelated with general intelligence, education levels and other demographic information. The results in this study revealed that in general the greater the mathematics training of the participant, the more tasks were completed correctly, and that performance on some tasks was also associated with performance on others not traditionally associated. A ceiling effect also emerged. The work is deconstructed from the viewpoint of adding to the platform from which to approach the greater, and more scientifically elusive, question: are any skills associated with mathematics training innate or do they arise from skills transfer?

Citation: Cresswell C, Speelman CP (2020) Does mathematics training lead to better logical thinking and reasoning? A cross-sectional assessment from students to professors. PLoS ONE 15(7): e0236153. https://doi.org/10.1371/journal.pone.0236153

Editor: Jérôme Prado, French National Center for Scientific Research (CNRS) & University of Lyon, FRANCE

Received: January 13, 2020; Accepted: June 30, 2020; Published: July 29, 2020

Copyright: © 2020 Cresswell, Speelman. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the paper and its Supporting Information files.

Funding: The authors received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

## Introduction

Mathematics is often promoted as endowing those who study it with a number of broad thinking skills such as: an ability to think logically, analytically, critically and abstractly; having capacity to weigh evidence with impartiality. This is a view of mathematics as providing transferable skills which can be found across educational institutions, governments and corporations worldwide. A view material to the place of mathematics in curricula.

Consider the UK government’s commissioned inquiry into mathematics education “Making Mathematics Count” ascertaining the justification that “mathematical training disciplines the mind, develops logical and critical reasoning, and develops analytical and problem-solving skills to a high degree” [ 1 p11]. The Australian Mathematical Sciences Institute very broadly states in its policy document “Vision for a Maths Nation” that “Not only is mathematics the enabling discipline, it has a vital productive role planning and protecting our well-being” (emphasis in original) [ 2 ]. In Canada, British Columbia’s New 2016 curriculum K-9 expressly mentions as part of its “Goals and Rationale”: “The Mathematics program of study is designed to develop deep mathematical understanding and fluency, logical reasoning, analytical thought, and creative thinking.” [ 3 ]. Universities, too, often make such specific claims with respect to their teaching programs. “Mathematics and statistics will help you to think logically and clearly, and apply a range of problem-solving strategies” is claimed by The School of Mathematical Sciences at Monash University, Australia [ 4 ]. The School of Mathematics and Statistics at The University of Sydney, Australia, directly attributes as part of particular course objectives and outcomes skills that include “enhance your problem-solving skills” as part of studies in first year [ 5 ], “develop logical thinking” as part of studies in second year, which was a statement drafted by the lead author in fact [ 6 ], and “be fluent in analysing and constructing logical arguments” as part of studies in third year [ 7 ]. The University of Cambridge’s Faculty of Mathematics, UK, provides a dedicated document “Transferable Skills in the Mathematical Tripos” as part of its undergraduate mathematics course information, which again lists “analytic ability; creativity; initiative; logical and methodical reasoning; persistence” [ 8 ].

In contrast, psychological research, which has been empirically investigating the concept of transferability of skills since the early 1900s, points quite oppositely to reasoning skills as being highly domain specific [ 9 ]. Therefore, support for claims that studying mathematics engenders more than specific mathematics knowledge is highly pertinent. And yet it is largely absent. The 2014 Centre for Curriculum Redesign (CCR) four part paper “Mathematics for the 21st Century: What Should Students Learn?” concludes in its fourth paper titled “Does mathematics education enhance higher-order thinking skills?” with a call to action “… there is not sufficient evidence to conclude that mathematics enhances higher order cognitive functions. The CCR calls for a much stronger cognitive psychology and neuroscience research base to be developed on the effects of studying mathematics” [ 10 ].

Inglis and Simpson [ 11 ], bringing up this very issue, examined the ability of first-year undergraduate students from a high-ranking UK university mathematics department, on the “Four Cards Problem” thinking task, also known as the Wason Selection Task. It is stated as follows.

Each of the following cards have a letter on one side and a number on the other.

Here is a rule: “if a card has a D on one side, then it has a 3 on the other”. Your task is to select all those cards, but only those cards, which you would have to turn over in order to find out whether the rule is true or false. Which cards would you select?

This task involves understanding conditional inference, namely understanding the rule “If P then Q” and with this, deducing the answer as “P and not Q” or “D and 7”. Such logical deduction indeed presents as a good candidate to test for a potential ability of the mathematically trained. This task has also been substantially investigated in the domain of the psychology of reasoning [ 12 p8] revealing across a wide range of publications that only around 10% of the general population reach the correct result. The predominant mistake being to pick “D and 3”; where in the original study by Wason [ 13 ] it is suggested that this was picked by 65% of people. This poor success rate along with a standard mistake has fuelled interest in the task as well as attempts to understand why it occurs. A prevailing theory being the so named matching bias effect; the effect of disproportionately concentrating on items specifically mentioned in the situation, as opposed to reasoning according to logical rules.

Inglis and Simpson’s results isolated mathematically trained individuals with respect to this task. The participants were under time constraint and 13% of the first-year undergraduate mathematics students sampled reached the correct response, compared to 4% of the non-mathematics (arts) students that was included. Of note also was the 24% of mathematics students as opposed to 45% of the non-mathematics students who chose the standard mistake. The study indeed unveiled that mathematically trained individuals were significantly less affected by the matching bias effect with this problem than the individuals without mathematics training. However, the achievement of the mathematically trained group was still far from masterful and the preponderance for a non-standard mistake compared with non-mathematically trained people is suggestive. Mathematical training appears to engender a different thinking style, but it remains unclear what the difference is.

Inglis, Simpson and colleagues proceeded to follow up their results with a number of studies concentrated on conditional inference in general [ 14 , 15 ]. A justification for this single investigatory pathway being that if transfer of knowledge is present, something subtle to test for in the first place, a key consideration should be the generalisation of learning rather than the application of skills learned in one context to another (where experimenter bias in the choice of contexts is more likely to be an issue). For this they typically used sixteen “if P then Q” comprehension tasks, where their samples across a number of studies have included 16-year-old pre-university mathematics students (from England and Cyprus), mathematics honours students in their first year of undergraduate university study, third year university mathematics students, and associated control groups. The studies have encompassed controls for general intelligence and thinking disposition prior to training, as well as follows ups of up to two years to address the issue of causation. The conclusive thinking pattern that has emerged is a tendency of the mathematical groups towards a greater likelihood of rejecting the invalid denial of the antecedent and affirmation of the consequent inferences. But with this, and this was validated by a second separate study, the English mathematics group actually became less likely to endorse the valid modus tollens inference. So again, mathematical training appears to engender a different thinking style, but there are subtleties and it remains unclear what the exact difference is.

This project was designed to broaden the search on the notion that mathematics training leads to increased reasoning skills. We focused on a range of reasoning problems considered in psychological research to be particularly insightful into decision making, critical thinking and logical deduction, with their distinction in that the general population generally struggles with answering them correctly. An Australian sample adds diversity to the current enquiries that have been European focussed. Furthermore, in an effort to identify the impact of mathematics training through a possible gradation effect, different levels of mathematically trained individuals were tested for performance.

Well-studied thinking tasks from a variety of psychological studies were chosen. Their descriptions, associated success rates and other pertinent details follows. They were all chosen as the correct answer is typically eluded for a standard mistake.

The three-item Cognitive Reflection Test (CRT) was used as introduced by Frederick [ 16 ]. This test was devised in line with the theory that there are two general types of cognitive activity: one that operates quickly and without reflection, and another that requires not only conscious thought and effort, but also an ability to reflect on one’s own cognition by including a step of suppression of the first to reach it. The three items in the test involve an incorrect “gut” response and further cognitive skill is deemed required to reach the correct answer (although see [ 17 ] for evidence that correct responses can result from “intuition”, which could be related to intelligence [ 18 ]).

In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days for the patch to cover the entire lake, how long would it take for the patch to cover half of the lake?

If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to make 100 widgets?

## Bat and ball

A bat and a ball cost $1.10 in total. The bat costs a dollar more than the ball. How much does the ball cost?

The solutions are: 47 days for the Lily Pads problem, 5 minutes for the Widgets problem and 5 cents for the Bat and Ball problem. The considered intuitive, but wrong, answers are 24 days, 100 minutes and 10 cents, respectively. These wrong answers are attributed to participants becoming over focused on the numbers so as to ignore the exponential growth pattern in the Lily Pads problem, merely complete a pattern in numbers in the Widgets problem, and neglect the relationship “more than” in the Bat and Ball problem [ 19 ]. The original study by Frederick [ 16 ] provides a composite measure of the performance on these three items, with only 17% of those studied (n = 3428) reaching the perfect score. The CRT has since been studied extensively [ 19 – 21 ]. Research using the CRT tends not to report performance on the individual items of the test, but rather a composite measure of performance. Attridge and Inglis [ 22 ] used the CRT as a test for thinking disposition of mathematics students as one way to attempt to disentangle the issue of filtering according to prior thinking styles rather than transference of knowledge in successful problem solving. They repeat tested 16-year old pre-university mathematics students and English literature students without mathematics subjects at a one-year interval and found no difference between groups.

Three problems were included that test the ability to reason about probability. All three problems were originally discussed by Kahneman and Tversky [ 23 ], with the typically poor performance on these problems explained by participants relying not on probability knowledge, but a short-cut method of thinking known as the representativeness heuristic. In the late 1980s, Richard Nisbett and colleagues showed that graduate level training in statistics, while not revealing any improvement in logical reasoning, did correlate with higher-quality statistical answers [ 24 ]. Their studies lead in particular to the conclusion that comprehension of, what is known as the law of large numbers, did show improvement with training. The first of our next three problems targeted this law directly.

- (a). the larger hospital
- (b). the smaller hospital
- (c). about the same (that is, within 5 percent of each other)

Kahneman and Tversky [ 23 ] reported that, of 50 participants, 12 chose (a), 10 chose (b), and 28 chose (c). The correct answer is (b), for the reason that small samples are more likely to exhibit extreme events than large samples from the same population. The larger the sample, the more likely it will exhibit characteristics of the parent population, such as the proportion of boys to girls. However, people tend to discount or be unaware of this feature of sampling statistics, which Kahneman and Tversky refer to as the law of large numbers. Instead, according to Kahneman and Tversky, people tend to adhere to a fallacious law of small numbers, where even small samples are expected to exhibit properties of the parent population, as illustrated by the proportion of participants choosing the answer (c) in their 1972 study. Such thinking reflects use of the representativeness heuristic, whereby someone will judge the likelihood of an uncertain event based on how similar it is to characteristics of the parent population of events.

## Birth order

- (a). What is your estimate of the number of families surveyed in which the exact order of births was BGBBBB?
- (b). In the same survey set, which, if any, of the following two sequences would be more likely: BBBGGG or GBBGBG?

All of the events listed in the problem have an equal probability, so the correct answer to (a) is 72, and to (b) is “neither is more likely”. Kahneman and Tversky [ 23 ] reported that 75 of 92 participants judged the sequence in (a) as less likely than the given sequence. A similar number (unspecified by Kahneman and Tversky, but the statistical effect was reported to be of the same order as in (a)) reported that GBBGBG was the more likely sequence. Again, Kahneman and Tversky suggested that these results reflected use of the representativeness heuristic. In the context of this problem, the heuristic would have taken the following form: some birth orders appear less patterned than others, and less patterned is to be associated with the randomness of birth order, making them more likely.

## Coin tosses

- (a). H T H T H T H T
- (b). H H H H T T T T
- (c). T T H H T T H H
- (d). H T T H T H H T
- (e). all of the above are equally likely

The correct answer in this problem is (e). Kahneman and Tversky [ 23 ] reported that participants tend to choose less patterned looking sequences (e.g., H T T H T H H T) as more likely than more systematic looking sequences (e.g., H T H T H T H T). This reasoning again reflects the representativeness heuristic.

Three further questions from the literature were included to test problem solving skill.

## Two drivers

- (a). Driver A would win the race
- (b). Driver B would win the race
- (c). the two drivers would arrive at the same time (within a few seconds of one another)

This problem was developed by Pelham and Neter [ 25 ]. The correct answer is (a), which can be determined by calculations of driving times for each Driver, using time = distance/velocity. Pelham and Neter argue, however, that (c) is intuitively appealing, on the basis that both drivers appear to have the same overall average speed. Pelham and Neter reported that 67% of their sample gave this incorrect response to the problem, and a further 13% selected (b).

## Petrol station

Imagine that you are driving along the road and you notice that your car is running low on petrol. You see two petrol stations next to each other, both advertising their petrol prices. Station A’s price is 65c/litre; Station B’s price is 60c/litre. Station A’s sign also announces: “5c/litre discount for cash!” Station B’s sign announces “5c/litre surcharge for credit cards.” All other factors being equal (for example, cleanliness of the stations, number of cars waiting at each etc), to which station would you choose to go, and why?

This problem was adapted from one described by Galotti [ 26 ], and is inspired by research reported by Thaler [ 27 ]. According to Thaler’s research, most people prefer Station A, even though both stations are offering the same deal: 60c/litre for cash, and 65c/litre for credit. Tversky and Kahneman [ 28 ] explain this preference by invoking the concept of framing effects. In the context of this problem, such an effect would involve viewing the outcomes as changes from some initial point. The initial point frames the problem, and provides a context for viewing the outcome. Thus, depending on the starting point, outcomes in this problem can be viewed as either a gain (in Station A, you gain a discount if you use cash) or a loss (in Station B, you are charged more (a loss) for using credit). Given that people are apparently more concerned about a loss than a gain [ 29 ], the loss associated with Station B makes it the less attractive option, and hence the preference for Station A. The correct answer, though, is that the stations are offering the same deal and so no station should be preferred.

And finally, a question described by Stanovich [ 30 , 31 ] as testing our predisposition for cognitive operations that require the least computational effort.

## Jack looking at Anne

- (c). Cannot be determined

Stanovich reported that over 80% of people choose the “lazy” answer (c). The correct answer is (a).

The above questions survey, in a clear problem solving setting, an ability to engage advanced cognitive processing in order to critically evaluate and possibly override initial gut reasoning, an ability to reason about probability within the framework of the law of large numbers and the relationship between randomness and patterning, an ability to isolate salient features of a problem and, with the last question in particular, an ability to map logical relations. It might be hypothesised that according to degrees of mathematical training, in line with the knowledge base provided and the claims of associated broad and enhanced problem-solving abilities in general, that participants with greater degrees of such training would outperform others on these questions. This hypothesis was investigated in this study. In addition, given that no previous study on this issue has examined the variety of problems used in this study, we also undertook an exploratory analysis to investigate whether there exist any associations between the problems in terms of their likelihood of correct solution. Similarities between problems might indicate which problem solving domains could be susceptible to the effects of mathematics training.

- Introductory—First year, second semester, university students with weak high school mathematical results, only enrolled in the current unit as a compulsory component for their chosen degree, a unit not enabling any future mathematical pathway, a typical student may be enrolled in a Biology or Geography major;
- Standard—First year, second semester, university students with fair to good high school mathematical results, enrolled in the current mathematics unit as a compulsory component for their chosen degree with the possibility of including some further mathematical units in their degree pathway, a typical student may be enrolled in an IT or Computer Science major;
- Advanced1—First year, second semester, university mathematics students with very strong interest as well as background in mathematics, all higher year mathematical units are included as possible future pathway, a typical student may be enrolled in a Mathematics or Physics major;
- Advanced2—Second year, second semester, university mathematics students with strong interest as well as background in mathematics, typically a direct follow on from the previously mentioned Advanced1 cohort;
- Academic—Research academics in the mathematical sciences.

## Participants

123 first year university students volunteered during “help on demand” tutorial times containing up to 30 students. These are course allocated times that are supervised yet self-directed by students. This minimised disruption and discouraged coercion. 44 second year university students completed the questionnaire during a weekly one-hour time slot dedicated to putting the latest mathematical concepts to practice with the lecturer (whereby contrast to what occurs in tutorial times the lecturer does most of the work and all students enrolled are invited). All these university students completed the questionnaire in normal classroom conditions; they were not placed under strict examination conditions. The lead author walked around to prevent discussion and coercion and there was minimum disruption. 30 research academics responded to local advertising and answered the questionnaire in their workplace while supervised.

The questionnaires were voluntary, anonymous and confidential. Participants were free to withdraw from the study at any time and without any penalty. No participant took this option however. The questionnaires gathered demographic information which included age, level of education attained and current qualification pursued, name of last qualification and years since obtaining it, and an option to note current speciality for research academics. Each problem task was placed on a separate page. Participants were not placed under time constraint, but while supervised, were asked to write their start and finish times on the front page of the survey to note approximate completion times. Speed of completion was not incentivised. Participants were not allowed to use calculators. A final “Comments Page” gave the option for feedback including specifically if the participants had previously seen any of the questions. Questionnaires were administered in person and supervised to avoid collusion or consulting of external sources.

The responses were coded four ways: A) correct; B) standard error (the errors discussed above in The Study); C) other error; D) left blank.

The ethical aspects of the study were approved by the Human Research Ethics Committee of the University of Sydney, protocol number [2016/647].

The first analysis examined the total number of correct responses provided by the participants as a function of group. Scores ranged from 1 to 11 out of a total possible of 11 (Problem 6 had 2 parts) ( Fig 1 ). An ANOVA of this data indicated a significant effect of group (F(4, 192) = 20.426, p < .001, partial η 2 = .299). Pairwise comparisons using Tukey’s HSD test indicated that the Introductory group performed significantly worse than the Advanced1, Advanced2 and Academic groups. There were no significant differences between the Advanced1, Advanced2 and Academic groups.

- PPT PowerPoint slide
- PNG larger image
- TIFF original image

Error bars are one standard error of the mean.

https://doi.org/10.1371/journal.pone.0236153.g001

Overall solution time, while recorded manually and approximately, was positively correlated with group, such that the more training someone had received, the longer were these solution times (r(180) = 0.247, p = .001). However, as can be seen in Fig 2 , this relationship is not strong.

https://doi.org/10.1371/journal.pone.0236153.g002

A series of chi-squared analyses, and their Bayesian equivalents, were performed on each problem, to determine whether the distribution of response types differed as a function of group. To minimise the number of cells in which expected values in some of these analyses were less than 5, the Standard Error, Other Error and Blank response categories were collapsed into one category (Incorrect Response). For three of the questions, the expected values of some cells did fall below 5, and this was due to most people getting the problem wrong (Four Cards), or most people correctly responding to the problem (Bat and Ball, Coin Tosses). In these cases, the pattern of results was so clear that a statistical analysis was barely required. Significant chi-squared results were examined further with pairwise posthoc comparisons (see Table 1 ).

https://doi.org/10.1371/journal.pone.0236153.t001

The three groups with the least amount of training in mathematics were far less likely than the other groups to give the correct solution (χ 2 (4) = 31.06, p < .001; BF 10 = 45,045) ( Table 1 ). People in the two most advanced groups (Advanced2 and Academic) were more likely to solve the card problem correctly, although it was still less than half of the people in these groups who did so. Further, these people were less likely to give the standard incorrect solution, so that most who were incorrect suggested some more cognitively elaborate answer, such as turning over all cards. The proportion of people in the Advanced2 and Academic groups (39 and 37%) who solved the problem correctly far exceeded the typical proportion observed with this problem (10%). Of note, also, is the relatively high proportion of those in the higher training groups who, when they made an error, did not make the standard error, a similar result to the one reported by Inglis and Simpson [ 11 ].

## The cognitive reflection test

In the Lily Pads problem, although most people in the Standard, Advanced1, Advanced2 and Academic groups were likely to select the correct solution, it was also the case that the less training someone had received in mathematics, the more likely they were to select an incorrect solution (χ 2 (4) = 27.28, p < .001; BF 10 = 15,554), with the standard incorrect answer being the next most prevalent response for the two lower ability mathematics groups ( Table 1 ).

Performance on the Widgets problem was similar to performance on the Lily Pads problem in that most people in the Standard, Advanced1, Advanced2 and Academic groups were likely to select the correct solution, but that the less training someone had received in mathematics, the more likely they were to select an incorrect solution (χ 2 (4) = 23.76, p< .001; BF 10 = 516) ( Table 1 ). As with the Lily Pads and Widget problems, people in the Standard, Advanced1, Advanced2 and Academic groups were highly likely to solve the Bat and Ball problem (χ 2 (4) = 35.37, p < .001; BF 10 = 208,667). Errors were more likely from the least mathematically trained people (Introductory, Standard) than the other groups ( Table 1 ).

To compare performance on the CRT with previously published results, performance on the three problems (Lily Pads, Widgets, Bat and Ball) were combined. The number of people in each condition that solved 0, 1, 2, or 3 problems correctly is presented in Table 2 . The Introductory group were evenly distributed amongst the four categories, with 26% solving all three problems correctly. Around 70% of the rest of the groups solved all 3 problems correctly, which is vastly superior to the 17% reported by Frederick [ 16 ].

https://doi.org/10.1371/journal.pone.0236153.t002

Responses to the Hospitals problem were almost universally split between correct and standard errors in the Standard, Advanced1, Advanced2 and Academic groups. Although this pattern of responses was also evident in the Introductory group, this group also exhibited more non-standard errors and non-responses than the other groups. However, the differences between the groups were not significant (χ 2 (4) = 4.93, p = .295; BF 10 = .068) ( Table 1 ). Nonetheless, the performance of all groups exceeds the 20% correct response rate reported by Kahneman and Tversky [ 23 ].

The two versions of the Birth Order problem showed similar results, with correct responses being more likely in the groups with more training (i.e., Advanced1, Advanced2 and Academic), and responses being shared amongst the various categories in the Introductory and Standard groups (χ a 2 (4) = 24.54, p < .001; BF 10 = 1,303; χ b 2 (4) = 25.77, p < .001; BF 10 = 2,970) ( Table 1 ). Nonetheless, performance on both versions of the problem in this study was significantly better than the 82% error rate reported by Kahneman and Tversky [ 23 ].

The Coin Tosses problem was performed well by all groups, with very few people in any condition committing errors. There were no obvious differences between the groups (χ 2 (4) = 3.70, p = .448; BF 10 = .160) ( Table 1 ). Kahneman and Tversky [ 23 ] reported that people tend to make errors on this type of problem by choosing less patterned looking sequences, but they did not report relative proportions of people making errors versus giving correct responses. Clearly the sample in this study did not perform like those in Kahneman and Tversky’s study.

Responses on the Two Drivers problem were clearly distinguished by a high chance of error in the Introductory and Standard groups (over 80%), and a fairly good chance of being correct in the Advanced1, Advanced2 and Academic groups (χ 2 (4) = 46.16, p < .001; BF 10 = 1.32 x 10 8 ) ( Table 1 ). Academics were the standout performers on this problem, although over a quarter of this group produced an incorrect response. Thus, the first two groups performed similarly to the participants in the Pelham and Neter [ 25 ] study, 80% of whom gave an incorrect response.

Responses on the Petrol Station problem were marked by good performance by the Academic group (73% providing a correct response), and just over half of each of the other groups correctly solving the problem. This difference was not significant (χ 2 (4) = 4.68, p = .322: BF 10 = .059) ( Table 1 ). Errors were fairly evenly balanced between standard and other, except for the Academic group, who were more likely to provide a creative answer if they made an error. Thaler [ 27 ] reported that most people get this problem wrong. In this study, however, on average, most people got this problem correct, although this average was boosted by the Academic group.

Responses on the Jack looking at Anne problem generally were standard errors, except for the Advanced2 and Academic groups, which were evenly split between standard errors and correct responses (χ 2 (4) = 18.03, p = .001; BF 10 = 46) ( Table 1 ). Thus, apart from these two groups, the error rate in this study was similar to that reported by Stanovich [ 30 ], where 80% of participants were incorrect.

A series of logistic regression analyses were performed in order to examine whether the likelihood of solving a particular problem correctly could be predicted on the basis of whether other problems were solved correctly. Each analysis involved selecting performance (correct or error) on one problem as the outcome variable, and performance on the other problems as predictor variables. Training (amount of training) was also included as a predictor variable in each analysis. A further logistic regression was performed with training as the outcome variable, and performance on all of the problems as predictor variables. The results of these analyses are summarised in Table 3 . There were three multi-variable relationships observed in these analyses, which can be interpreted as the likelihood of solving one problem in each group being associated with solving the others in the set. These sets were: (1) Lily Pads, Widgets and Petrol Station; (2) Hospitals, Four Cards and Two Drivers; (3) Birth Order and Coin Tosses. Training also featured in each of these sets, moderating the relationships as per the results presented above for each problem.

https://doi.org/10.1371/journal.pone.0236153.t003

The final “Comments Page” revealed the participants as overwhelmingly enjoying the questions. Any analysis of previous exposure to the tasks proved impossible as there was little to no alignment on participant’s degree of recall, if any, and even perceptions of what exposure entailed. For example, some participants confused being exposed to the particular tasks with being habitually exposed to puzzles, or even mathematics problems, more broadly.

In general, the amount of mathematics training a group had received predicted their performance on the overall set of problems. The greater the training, the more problems were answered correctly, and the slower the recorded response times. There was not an obvious difference between the Advanced1, Advanced2 and Academic groups on either of these measures, however there were clear differences between this group and the Introductory and Standard groups, with the former exhibiting clearly superior accuracy. While time records were taken approximately, so as to avoid adding time pressure as a variable, that the Advanced1, Advanced2 and Academic groups recorded more time in their consideration of the problems, may suggest a “pause and consider” approach to such problems is a characteristic of the advanced groups. This is in line with what was suggested by an eye-movement tracking study of mathematically trained students attempting the Four Cards Problem; where participants that had not chosen the standard error had spent longer considering the card linked to the matching bias effect [ 14 ]. It is important to note, however, that longer response times may reflect other cognitive processes than deliberation [ 32 ].

Performance on some problems was associated with performance on other problems. That is, if someone correctly answered a problem in one of these sets, they were also highly likely to correctly answer the other problems in the set. These sets were: (1) Lily Pads, Widgets and Petrol Station; (2) Hospitals, Four Cards and Two Drivers; (3) Birth Order and Coin Tosses. This is different with how these problems have been typically clustered a priori in the research literature: (I) Lily Pads, Widgets and Bat and Ball (CRT); (II) Hospitals and Two Drivers (explained below); (III) Hospitals, Birth Order and Coin Tosses (representativeness heuristic); (IV) Birth Order and Coin Tosses (probability theory). Consideration of these problem groupings follows.

Correctly answering all three problems in (I) entailed not being distracted by particular pieces of information in the problems so as to stay focused on uncovering the real underlying relationships. The Lily Pads and Widget problems can mislead if attention is over focused on the numbers, and conversely, the Petrol Station problem can mislead if there is too much focus on the idea of a discount. While the Lily Pads and Widget problems are traditionally paired with the Bat and Ball problem in the CRT, it may be that performance on the Bat and Ball problem did not appear as part of this set due to an added level of difficulty. With the problems in (I), avoiding being distracted by certain parts of the questions at the expense of others almost leads directly to the correct answer. However, with the Bat and Ball problem, further steps in mathematical reasoning still need to occur in answering which two numbers add together to give a result while also subtracting one from the other for another.

With the problems in (II) it is of interest that the Two Drivers problem was created specifically to be paired with the Hospitals problem to test for motivation in problem solving [ 23 ]. Within this framework further transparent versions of these problems were successfully devised to manipulate for difficulty. The Two Drivers problem was amended to have Driver B travelling at exactly 5 mph during the first half of the race and at exactly 95 mph during the last half of the race. The Hospitals problem was amended so the smaller hospital would have “only 2” babies born each day and where for a period of one year the hospitals recorded the number of days on which all of the babies born were boys. Could the association in (II) be pointing to how participants overcome initial fictitious mathematical rules? Maybe they reframe the question in simpler terms to see the pattern. The Four Cards Problem also elicited a high number of incorrect answers where, associated with mathematical training, the standard incorrect solution was avoided for more cognitively elaborate ones. Indeed, a gradation effect appeared across the groups where the standard error of the “D and 3” cards becomes “D only” ( Table 4 ). Adrian Simpson and Derrick Watson found a comparable result across their two groups [14 p61]. This could again be pointing to having avoided an initial fictitious rule of simply concentrating on items directly found in the question, participants then seek to reframe the question to unearth the logical rule to be deduced. An added level of difficulty with this question may be why participants become trapped in a false answer. The eye-movement tracking study mentioned above supports this theory.

https://doi.org/10.1371/journal.pone.0236153.t004

The problems in (III) fit naturally together as part of basic probability theory, a topic participants would have assimilated, or not, as part of various education curricula. While the equal likelihood of all possible outcomes with respect to a coin toss may be culturally assimilated, the same may not be as straightforward for birth gender outcomes where such assumptions could be swayed by biological hypothesis or folk wisdom [ 33 ]. The gradation of the results in terms of mathematical training does not support this possibility.

The effect of training on performance accuracy was more obvious in some problems compared to others, and to some extent, this was related to the type of problem. For instance, most of the problems in which performance was related to training (Four Cards, CRT [Lily Pads, Widgets, Bat and Ball], Two Drivers, Jack looking at Anne) could be classed as relying on logical and/or critical thinking. The one exception was the Birth Order problems, which are probability related.

In contrast, two of the three problems in which training did not appear to have much impact on performance (Hospitals and Coin Tosses) require domain-specific knowledge. The Hospitals problem requires a degree of knowledge about sampling statistics. This is a topic of quite distinct flavour that not all mathematically trained individuals gain familiarity with. On the other hand, all groups having performed well on the Coin Tosses problem is in line with a level of familiarity with basic probability having been originally presented at high school. While the questioning of patterning as negatively correlated with randomness is similar to that appearing in the Birth Order question, in the Birth Order question this aspect is arguably more concealed. These results and problem grouping (III) could be pointing to an area for improvement in teaching where the small gap in knowledge required to go from answering the Coin Tosses problem correctly to achieving similarly with the Birth Order problem could be easily addressed. A more formal introduction to sampling statistics in mathematical training could potentially bridge this gap as well as further be extended towards improvement on the Hospitals problem.

The other problem where performance was unrelated to training, the Petrol Station problem, cannot be characterised similarly. It is more of a logical/critical thinking type problem, where there remains some suggestion that training may have impacted performance, as the Academic group seemed to perform better than the rest of the sample. An alternate interpretation of this result is therefore that this problem should not be isolated but grouped with the other problems where performance is affected by training.

- The Introductory group’s mathematics high school syllabus studied prior to first semester course entry covered: Functions, Trigonometric Functions, Calculus (Introduction to Differentiation, Applications of the Derivative, Antiderivatives, Areas and the Definite Integral), Financial Mathematics, Statistical Analysis. The Introductory group then explored concepts in mathematical modelling with emphasis on the importance of calculus in their first semester of mathematical studies.
- The Standard group’s mathematics high school syllabus studied prior to first semester course entry covered: Functions, Trigonometric Functions, Calculus (Rates of Change, Integration including the method of substitution, trigonometric identities and inverse trigonometric functions, Areas and Volumes of solids of revolution, some differential equations), Combinatorics, Proof (with particular focus on Proof by Mathematical Induction), Vectors (with application to projectile motion), Statistical Analysis. In first semester their mathematical studies then covered a number of topics the Advanced1 group studied prior to gaining entrance at university; further details on this are given below.
- The Advanced1 group’s mathematics high school syllabus studied prior to first semester course entry covered: the same course content the Standard group covered at high school plus extra topics on Proof (develop rigorous mathematical arguments and proofs, specifically in the context of number and algebra and further develop Proof by Mathematical Induction), Vectors (3 dimensional vectors, vector equations of lines), Complex Numbers, Calculus (Further Integration techniques with partial fractions and integration by parts), Mechanics (Application of Calculus to Mechanics with simple harmonic motion, modelling motion without and with resistance, projectiles and resisted motion). The Standard group cover these topics in their first semester university studies in mathematics with the exclusion of further concepts of Proof or Mechanics. In first semester the Advanced1 group have built on their knowledge with an emphasis on both theoretical and foundational aspects, as well as developing the skill of applying mathematical theory to solve practical problems. Theoretical topics include a host of theorems relevant to the study of Calculus.

In summary, at the point of our study, the Advanced1 group had more knowledge and practice on rigorous mathematical arguments and proofs in the context of number and algebra, and more in-depth experience with Proofs by Induction, but the bulk of extra knowledge rests with a much deeper knowledge of Calculus. They have had longer experience with a variety of integration techniques, and have worked with a variety of applications of calculus to solve practical problems, including a large section on mechanics at high school. In first semester at university there has been a greater focus on theoretical topics including a host of theorems and associated proofs relevant to the topics studied. As compared to the Introductory and Standard groups, the Advanced1 group have only widened the mathematics knowledge gap since their choice of post-compulsory mathematics at high school. The Advanced2 group come directly from an Advanced1 cohort. And the Academics group would have reached the Advanced1 group’s proficiency as part of their employment. So, are specific reasoning skills resulting from this level of abstract reasoning? Our findings suggest this should certainly be an area of investigation and links in interestingly with other research work. In studying one of the thinking tasks in particular (the Four Cards Problem) and its context of conditional inference more specifically, Inglis and Simpson [ 15 ] found a clear difference between undergraduates in mathematics and undergraduates in other university disciplines, yet also showed a lack of development over first-year university studies on conditional inference measures. A follow up study by Attridge and Inglis [ 22 ] then zeroed in on post-compulsory high school mathematical training and found that students with such training did develop their conditional reasoning to a greater extent than their control group over the course of a year, despite them having received no explicit tuition in conditional logic. The development though, whilst demonstrated as not being the result of a domain-general change in cognitive capacity or thinking disposition, and most likely associated with the domain-specific study of mathematics, revealed a complex pattern of endorsing more of some inferences and less of others. The study here focused on a much broader problem set associated with logical and critical thinking and it too is suggestive of a more complex picture in how mathematics training may be contributing to problem solving styles. A more intricate pattern to do with the impact of mathematical training on problem solving techniques is appearing as required for consideration.

There is also a final interpretation to consider: that people in the Advanced 1, Advanced2 and Academic groups did not gain anything from their mathematics training in terms of their ability to solve these problems. Instead, with studies denying any correlation of many of these problems with what is currently measured as intelligence [ 30 ], they might still be people of a particular intelligence or thinking disposition to start with, who have been able to use that intelligence to not only solve these problems, but also survive the challenges of their mathematics training.

That the CRT has been traditionally used as a measure of baseline thinking disposition and that performance has been found to be immutable across groups tested is of particular interest since our results show a clear possible training effect on these questions. CRT is tied with a willingness to engage in effortful thinking which presents as a suitable ability for training. It is beyond the scope of this study, but a thorough review of CRT testing is suggestive of a broader appreciation and better framework to understand thinking disposition, ability and potential ability.

Mathematical training appears associated with certain thinking skills, but there are clearly some subtleties that need to be extricated. The thinking tasks here add to the foundational results where the aim is for a firmer platform on which to eventually base more targeted and illustrative inquiry. If thinking skills can be fostered, could first year university mathematics teaching be improved so that all samples from that group reach the Advanced1 group level of reasoning? Do university mathematics courses become purely about domain-specific knowledge from this point on? Intensive training has been shown to impact the brain and cognition across a number of domains from music [ 34 ], to video gaming [ 35 ], to Braille reading [ 36 ]. The hypothesis that mathematics, with its highly specific practice, fits within this list remains legitimate, but simply unchartered. With our current level of understanding it is worth appreciating the careful wording of the NYU Courant Institute on ‘Why Study Math?’ where there is no assumption of causation: “Mathematicians need to have good reasoning ability in order to identify, analyze, and apply basic logical principles to technical problems.” [ 37 ].

## Limitations

One possible limitation of the current study is that the problems may have been too easy for the more advanced people, and so we observed a ceiling effect (i.e., some people obtained 100% correct on all problems). This was most obvious in the Advanced1, Advanced2 and Academic groups. It is possible that participants in these groups had developed logical and critical thinking skills throughout their mathematical training that were sufficient to cope with most of the problems used in this study, and so this would support the contention that training in mathematics leads to the development of logical and critical thinking skills useful in a range of domains. Another interpretation is that participants in these groups already possessed the necessary thinking skills for solving the problems in this study, which is why they are able to cope with the material in the advanced units they were enrolled in, or complete a PhD in mathematics and hold down an academic position in a mathematics department. This would then suggest that training in mathematics had no effect on abstract thinking skills—people in this study possessed them to varying extents prior to their studies. This issue might be settled in a future study that used a greater number of problems of varying difficulties to maximise the chances of finding a difference between the three groups with the most amount of training. Alternatively, a longitudinal study that followed people through their mathematics training could determine whether their logical and critical thinking abilities changed throughout their course.

A further limitation of the study may be that several of the reasoning biases examined in this study were measured by only one problem each (i.e., Four Cards Problem, Two Drivers, Petrol Station, Jack looking at Anne). A more reliable measure of these biases could be achieved by including more problems that tap into these biases. This would, however, increase the time required of participants during data collection, and in the context of this study, would mean a different mode of testing would likely be required.

Broad sweeping intuitive claims of the transferable skills endowed by a study of mathematics require evidence. Our study uniquely covers a wide range of participants, from limited mathematics training through to research academics in the mathematical sciences. It furthermore considered performance on 11 well-studied thinking tasks that typically elude participants in psychological studies and on which results have been uncorrelated with general intelligence, education levels and other demographic information [ 15 , 16 , 30 ]. We identified different performances on these tasks with respect to different groups, based on level of mathematical training. This included the CRT which has developed into a method of measuring baseline thinking disposition. We identified different distributions of types of errors for the mathematically trained. We furthermore identified a performance threshold that exists in first year university for those with high level mathematics training. This study then provides insight into possible changes and adjustments to mathematics courses in order for them to fulfil their advertised goal of reaching improved rational and logical reasoning for a higher number of students.

It is central to any education program to have a clear grasp of the nature of what it delivers and how, but arguably especially so for the core discipline that is mathematics. In 2014 the Office of The Chief Scientist of Australia released a report “Australia’s STEM workforce: a survey of employers” where transferable skills attributed to mathematics were also ones that employers deemed as part of the most valuable [ 38 ]. A better understanding of what mathematics delivers in this space is an opportunity to truly capitalise on this historical culture-crossing subject.

## Supporting information

https://doi.org/10.1371/journal.pone.0236153.s001

## Acknowledgments

The authors would like to thank Jacqui Ramagge for her proof reading and input, as well as support towards data collection.

- 1. Smith A. Making mathematics count: The report of Professor Adrian Smith’s inquiry into post-14 mathematics education. 2004. London: The Stationery Office.
- 2. AMSI, Vision for a Maths Nation. 2015. http://amsi.org.au/publications/a-vision-for-a-maths-nation/
- 3. British Columbia [Internet]. Mathematics; Goals and Rationale. 2016 [cited 2019 Dec 5]. https://curriculum.gov.bc.ca/curriculum/mathematics/core/goals-and-rationale
- 4. Monash University [Internet]. Mathematical Sciences. 2019 [cited 2019 Jul 30]. https://www.monash.edu/science/schools/mathematical-sciences/current .
- 5. The University of Sydney [Internet]. MATH1014. 2017 [cited 2019 Dec 5]. http://www.maths.usyd.edu.au/u/UG/TU/YR1ADMIN/r/MATH1014.pdf .
- 6. The University of Sydney [Internet]. MATH2965. 2016 [cited 2016 Dec 12]. http://www.maths.usyd.edu.au/u/UG/IM/MATH2965/
- 7. The University of Sydney [Internet]. MATH3066. 2017 [cited 2017 Dec 8]. http://www.maths.usyd.edu.au/u/UG/SM/MATH3066/r/2017info3066.pdf .
- 8. Cambridge University [Internet]. Mathematical Tripos. 2019 [cited 2019 Jul 30]. https://www.maths.cam.ac.uk/undergrad/course/transferable_skills .
- 9. Speelman CP, Kirsner K. Beyond the learning curve: The construction of mind. Oxford: Oxford University Press; 2005.
- 10. Fadel C. Mathematics for the 21 st Century: What Should Students Learn? Boston, Massachusetts: Center for Curriculum Redesign; 2014.
- 11. Inglis M, Simpson A. Heuristic biases in mathematical reasoning. In: Chick HL, Vincent JL, editors. Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education. Melbourne: PME; 2005. p. 177–84.
- 12. Manktelow KI. Reasoning and Thinking. UK: Psychology Press; 1999.
- View Article
- PubMed/NCBI
- Google Scholar
- 14. Inglis M, Attridge N. Does mathematical study develop logical thinking? Testing the theory of formal discipline. London: World Scientific Publishing Europe Ltd; 2016.
- 24. Nisbett RE. Can reasoning be taught? In: Callan E, Grotzer T, Kagan J, Nisbett RE, Perkins DN, Shulman LS, editors. Education and a Civic Society: Teaching Evidence-based Decision Making. Cambridge, MA: American Academy of Arts & Sciences; 2009.
- 26. Galotti KM. Cognitive psychology in and out of the laboratory. Belmont, CA: Brooks/Cole; 1994.
- 37. NYU [Internet]. Why Study Math? 2019 [cited 2019 Jul 30]. https://math.nyu.edu/dynamic/undergrad/overview/why-study-math/
- 38. Office of The Chief Scientist. Australia’s STEM workforce: a survey of employers. Barton ACT: Deloitte Access Economics; 2014.

- Open supplemental data
- Reference Manager
- Simple TEXT file

## People also looked at

Original research article, mathematical problem-solving through cooperative learning—the importance of peer acceptance and friendships.

- 1 Department of Education, Uppsala University, Uppsala, Sweden
- 2 Department of Education, Culture and Communication, Malardalen University, Vasteras, Sweden
- 3 School of Natural Sciences, Technology and Environmental Studies, Sodertorn University, Huddinge, Sweden
- 4 Faculty of Education, Gothenburg University, Gothenburg, Sweden

Mathematical problem-solving constitutes an important area of mathematics instruction, and there is a need for research on instructional approaches supporting student learning in this area. This study aims to contribute to previous research by studying the effects of an instructional approach of cooperative learning on students’ mathematical problem-solving in heterogeneous classrooms in grade five, in which students with special needs are educated alongside with their peers. The intervention combined a cooperative learning approach with instruction in problem-solving strategies including mathematical models of multiplication/division, proportionality, and geometry. The teachers in the experimental group received training in cooperative learning and mathematical problem-solving, and implemented the intervention for 15 weeks. The teachers in the control group received training in mathematical problem-solving and provided instruction as they would usually. Students (269 in the intervention and 312 in the control group) participated in tests of mathematical problem-solving in the areas of multiplication/division, proportionality, and geometry before and after the intervention. The results revealed significant effects of the intervention on student performance in overall problem-solving and problem-solving in geometry. The students who received higher scores on social acceptance and friendships for the pre-test also received higher scores on the selected tests of mathematical problem-solving. Thus, the cooperative learning approach may lead to gains in mathematical problem-solving in heterogeneous classrooms, but social acceptance and friendships may also greatly impact students’ results.

## Introduction

The research on instruction in mathematical problem-solving has progressed considerably during recent decades. Yet, there is still a need to advance our knowledge on how teachers can support their students in carrying out this complex activity ( Lester and Cai, 2016 ). Results from the Program for International Student Assessment (PISA) show that only 53% of students from the participating countries could solve problems requiring more than direct inference and using representations from different information sources ( OECD, 2019 ). In addition, OECD (2019) reported a large variation in achievement with regard to students’ diverse backgrounds. Thus, there is a need for instructional approaches to promote students’ problem-solving in mathematics, especially in heterogeneous classrooms in which students with diverse backgrounds and needs are educated together. Small group instructional approaches have been suggested as important to promote learning of low-achieving students and students with special needs ( Kunsch et al., 2007 ). One such approach is cooperative learning (CL), which involves structured collaboration in heterogeneous groups, guided by five principles to enhance group cohesion ( Johnson et al., 1993 ; Johnson et al., 2009 ; Gillies, 2016 ). While CL has been well-researched in whole classroom approaches ( Capar and Tarim, 2015 ), few studies of the approach exist with regard to students with special educational needs (SEN; McMaster and Fuchs, 2002 ). This study contributes to previous research by studying the effects of the CL approach on students’ mathematical problem-solving in heterogeneous classrooms, in which students with special needs are educated alongside with their peers.

Group collaboration through the CL approach is structured in accordance with five principles of collaboration: positive interdependence, individual accountability, explicit instruction in social skills, promotive interaction, and group processing ( Johnson et al., 1993 ). First, the group tasks need to be structured so that all group members feel dependent on each other in the completion of the task, thus promoting positive interdependence. Second, for individual accountability, the teacher needs to assure that each group member feels responsible for his or her share of work, by providing opportunities for individual reports or evaluations. Third, the students need explicit instruction in social skills that are necessary for collaboration. Fourth, the tasks and seat arrangements should be designed to promote interaction among group members. Fifth, time needs to be allocated to group processing, through which group members can evaluate their collaborative work to plan future actions. Using these principles for cooperation leads to gains in mathematics, according to Capar and Tarim (2015) , who conducted a meta-analysis on studies of cooperative learning and mathematics, and found an increase of .59 on students’ mathematics achievement scores in general. However, the number of reviewed studies was limited, and researchers suggested a need for more research. In the current study, we focused on the effect of CL approach in a specific area of mathematics: problem-solving.

Mathematical problem-solving is a central area of mathematics instruction, constituting an important part of preparing students to function in modern society ( Gravemeijer et al., 2017 ). In fact, problem-solving instruction creates opportunities for students to apply their knowledge of mathematical concepts, integrate and connect isolated pieces of mathematical knowledge, and attain a deeper conceptual understanding of mathematics as a subject ( Lester and Cai, 2016 ). Some researchers suggest that mathematics itself is a science of problem-solving and of developing theories and methods for problem-solving ( Hamilton, 2007 ; Davydov, 2008 ).

Problem-solving processes have been studied from different perspectives ( Lesh and Zawojewski, 2007 ). Problem-solving heuristics Pólya, (1948) has largely influenced our perceptions of problem-solving, including four principles: understanding the problem, devising a plan, carrying out the plan, and looking back and reflecting upon the suggested solution. Schoenfield, (2016) suggested the use of specific problem-solving strategies for different types of problems, which take into consideration metacognitive processes and students’ beliefs about problem-solving. Further, models and modelling perspectives on mathematics ( Lesh and Doerr, 2003 ; Lesh and Zawojewski, 2007 ) emphasize the importance of engaging students in model-eliciting activities in which problem situations are interpreted mathematically, as students make connections between problem information and knowledge of mathematical operations, patterns, and rules ( Mousoulides et al., 2010 ; Stohlmann and Albarracín, 2016 ).

Not all students, however, find it easy to solve complex mathematical problems. Students may experience difficulties in identifying solution-relevant elements in a problem or visualizing appropriate solution to a problem situation. Furthermore, students may need help recognizing the underlying model in problems. For example, in two studies by Degrande et al. (2016) , students in grades four to six were presented with mathematical problems in the context of proportional reasoning. The authors found that the students, when presented with a word problem, could not identify an underlying model, but rather focused on superficial characteristics of the problem. Although the students in the study showed more success when presented with a problem formulated in symbols, the authors pointed out a need for activities that help students distinguish between different proportional problem types. Furthermore, students exhibiting specific learning difficulties may need additional support in both general problem-solving strategies ( Lein et al., 2020 ; Montague et al., 2014 ) and specific strategies pertaining to underlying models in problems. The CL intervention in the present study focused on supporting students in problem-solving, through instruction in problem-solving principles ( Pólya, 1948 ), specifically applied to three models of mathematical problem-solving—multiplication/division, geometry, and proportionality.

Students’ problem-solving may be enhanced through participation in small group discussions. In a small group setting, all the students have the opportunity to explain their solutions, clarify their thinking, and enhance understanding of a problem at hand ( Yackel et al., 1991 ; Webb and Mastergeorge, 2003 ). In fact, small group instruction promotes students’ learning in mathematics by providing students with opportunities to use language for reasoning and conceptual understanding ( Mercer and Sams, 2006 ), to exchange different representations of the problem at hand ( Fujita et al., 2019 ), and to become aware of and understand groupmates’ perspectives in thinking ( Kazak et al., 2015 ). These opportunities for learning are created through dialogic spaces characterized by openness to each other’s perspectives and solutions to mathematical problems ( Wegerif, 2011 ).

However, group collaboration is not only associated with positive experiences. In fact, studies show that some students may not be given equal opportunities to voice their opinions, due to academic status differences ( Langer-Osuna, 2016 ). Indeed, problem-solvers struggling with complex tasks may experience negative emotions, leading to uncertainty of not knowing the definite answer, which places demands on peer support ( Jordan and McDaniel, 2014 ; Hannula, 2015 ). Thus, especially in heterogeneous groups, students may need additional support to promote group interaction. Therefore, in this study, we used a cooperative learning approach, which, in contrast to collaborative learning approaches, puts greater focus on supporting group cohesion through instruction in social skills and time for reflection on group work ( Davidson and Major, 2014 ).

Although cooperative learning approach is intended to promote cohesion and peer acceptance in heterogeneous groups ( Rzoska and Ward, 1991 ), previous studies indicate that challenges in group dynamics may lead to unequal participation ( Mulryan, 1992 ; Cohen, 1994 ). Peer-learning behaviours may impact students’ problem-solving ( Hwang and Hu, 2013 ) and working in groups with peers who are seen as friends may enhance students’ motivation to learn mathematics ( Deacon and Edwards, 2012 ). With the importance of peer support in mind, this study set out to investigate whether the results of the intervention using the CL approach are associated with students’ peer acceptance and friendships.

## The Present Study

In previous research, the CL approach has shown to be a promising approach in teaching and learning mathematics ( Capar and Tarim, 2015 ), but fewer studies have been conducted in whole-class approaches in general and students with SEN in particular ( McMaster and Fuchs, 2002 ). This study aims to contribute to previous research by investigating the effect of CL intervention on students’ mathematical problem-solving in grade 5. With regard to the complexity of mathematical problem-solving ( Lesh and Zawojewski, 2007 ; Degrande et al., 2016 ; Stohlmann and Albarracín, 2016 ), the CL approach in this study was combined with problem-solving principles pertaining to three underlying models of problem-solving—multiplication/division, geometry, and proportionality. Furthermore, considering the importance of peer support in problem-solving in small groups ( Mulryan, 1992 ; Cohen, 1994 ; Hwang and Hu, 2013 ), the study investigated how peer acceptance and friendships were associated with the effect of the CL approach on students’ problem-solving abilities. The study aimed to find answers to the following research questions:

a) What is the effect of CL approach on students’ problem-solving in mathematics?

b) Are social acceptance and friendship associated with the effect of CL on students’ problem-solving in mathematics?

## Participants

The participants were 958 students in grade 5 and their teachers. According to power analyses prior to the start of the study, 1,020 students and 51 classes were required, with an expected effect size of 0.30 and power of 80%, provided that there are 20 students per class and intraclass correlation is 0.10. An invitation to participate in the project was sent to teachers in five municipalities via e-mail. Furthermore, the information was posted on the website of Uppsala university and distributed via Facebook interest groups. As shown in Figure 1 , teachers of 1,165 students agreed to participate in the study, but informed consent was obtained only for 958 students (463 in the intervention and 495 in the control group). Further attrition occurred at pre- and post-measurement, resulting in 581 students’ tests as a basis for analyses (269 in the intervention and 312 in the control group). Fewer students (n = 493) were finally included in the analyses of the association of students’ social acceptance and friendships and the effect of CL on students’ mathematical problem-solving (219 in the intervention and 274 in the control group). The reasons for attrition included teacher drop out due to sick leave or personal circumstances (two teachers in the control group and five teachers in the intervention group). Furthermore, some students were sick on the day of data collection and some teachers did not send the test results to the researchers.

FIGURE 1 . Flow chart for participants included in data collection and data analysis.

As seen in Table 1 , classes in both intervention and control groups included 27 students on average. For 75% of the classes, there were 33–36% of students with SEN. In Sweden, no formal medical diagnosis is required for the identification of students with SEN. It is teachers and school welfare teams who decide students’ need for extra adaptations or special support ( Swedish National Educational Agency, 2014 ). The information on individual students’ type of SEN could not be obtained due to regulations on the protection of information about individuals ( SFS 2009 ). Therefore, the information on the number of students with SEN on class level was obtained through teacher reports.

TABLE 1 . Background characteristics of classes and teachers in intervention and control groups.

## Intervention

The intervention using the CL approach lasted for 15 weeks and the teachers worked with the CL approach three to four lessons per week. First, the teachers participated in two-days training on the CL approach, using an especially elaborated CL manual ( Klang et al., 2018 ). The training focused on the five principles of the CL approach (positive interdependence, individual accountability, explicit instruction in social skills, promotive interaction, and group processing). Following the training, the teachers introduced the CL approach in their classes and focused on group-building activities for 7 weeks. Then, 2 days of training were provided to teachers, in which the CL approach was embedded in activities in mathematical problem-solving and reading comprehension. Educational materials containing mathematical problems in the areas of multiplication and division, geometry, and proportionality were distributed to the teachers ( Karlsson and Kilborn, 2018a ). In addition to the specific problems, adapted for the CL approach, the educational materials contained guidance for the teachers, in which problem-solving principles ( Pólya, 1948 ) were presented as steps in problem-solving. Following the training, the teachers applied the CL approach in mathematical problem-solving lessons for 8 weeks.

Solving a problem is a matter of goal-oriented reasoning, starting from the understanding of the problem to devising its solution by using known mathematical models. This presupposes that the current problem is chosen from a known context ( Stillman et al., 2008 ; Zawojewski, 2010 ). This differs from the problem-solving of the textbooks, which is based on an aim to train already known formulas and procedures ( Hamilton, 2007 ). Moreover, it is important that students learn modelling according to their current abilities and conditions ( Russel, 1991 ).

In order to create similar conditions in the experiment group and the control group, the teachers were supposed to use the same educational material ( Karlsson and Kilborn, 2018a ; Karlsson and Kilborn, 2018b ), written in light of the specified view of problem-solving. The educational material is divided into three areas—multiplication/division, geometry, and proportionality—and begins with a short teachers’ guide, where a view of problem solving is presented, which is based on the work of Polya (1948) and Lester and Cai (2016) . The tasks are constructed in such a way that conceptual knowledge was in focus, not formulas and procedural knowledge.

## Implementation of the Intervention

To ensure the implementation of the intervention, the researchers visited each teachers’ classroom twice during the two phases of the intervention period, as described above. During each visit, the researchers observed the lesson, using a checklist comprising the five principles of the CL approach. After the lesson, the researchers gave written and oral feedback to each teacher. As seen in Table 1 , in 18 of the 23 classes, the teachers implemented the intervention in accordance with the principles of CL. In addition, the teachers were asked to report on the use of the CL approach in their teaching and the use of problem-solving activities embedding CL during the intervention period. As shown in Table 1 , teachers in only 11 of 23 classes reported using the CL approach and problem-solving activities embedded in the CL approach at least once a week.

## Control Group

The teachers in the control group received 2 days of instruction in enhancing students’ problem-solving and reading comprehension. The teachers were also supported with educational materials including mathematical problems Karlsson and Kilborn (2018b) and problem-solving principles ( Pólya, 1948 ). However, none of the activities during training or in educational materials included the CL approach. As seen in Table 1 , only 10 of 25 teachers reported devoting at least one lesson per week to mathematical problem-solving.

## Tests of Mathematical Problem-Solving

Tests of mathematical problem-solving were administered before and after the intervention, which lasted for 15 weeks. The tests were focused on the models of multiplication/division, geometry, and proportionality. The three models were chosen based on the syllabus of the subject of mathematics in grades 4 to 6 in the Swedish National Curriculum ( Swedish National Educational Agency, 2018 ). In addition, the intention was to create a variation of types of problems to solve. For each of these three models, there were two tests, a pre-test and a post-test. Each test contained three tasks with increasing difficulty ( Supplementary Appendix SA ).

The tests of multiplication and division (Ma1) were chosen from different contexts and began with a one-step problem, while the following two tasks were multi-step problems. Concerning multiplication, many students in grade 5 still understand multiplication as repeated addition, causing significant problems, as this conception is not applicable to multiplication beyond natural numbers ( Verschaffel et al., 2007 ). This might be a hindrance in developing multiplicative reasoning ( Barmby et al., 2009 ). The multi-step problems in this study were constructed to support the students in multiplicative reasoning.

Concerning the geometry tests (Ma2), it was important to consider a paradigm shift concerning geometry in education that occurred in the mid-20th century, when strict Euclidean geometry gave way to other aspects of geometry like symmetry, transformation, and patterns. van Hiele (1986) prepared a new taxonomy for geometry in five steps, from a visual to a logical level. Therefore, in the tests there was a focus on properties of quadrangles and triangles, and how to determine areas by reorganising figures into new patterns. This means that structure was more important than formulas.

The construction of tests of proportionality (M3) was more complicated. Firstly, tasks on proportionality can be found in many different contexts, such as prescriptions, scales, speeds, discounts, interest, etc. Secondly, the mathematical model is complex and requires good knowledge of rational numbers and ratios ( Lesh et al., 1988 ). It also requires a developed view of multiplication, useful in operations with real numbers, not only as repeated addition, an operation limited to natural numbers ( Lybeck, 1981 ; Degrande et al., 2016 ). A linear structure of multiplication as repeated addition leads to limitations in terms of generalization and development of the concept of multiplication. This became evident in a study carried out in a Swedish context ( Karlsson and Kilborn, 2018c ). Proportionality can be expressed as a/b = c/d or as a/b = k. The latter can also be expressed as a = b∙k, where k is a constant that determines the relationship between a and b. Common examples of k are speed (km/h), scale, and interest (%). An important pre-knowledge in order to deal with proportions is to master fractions as equivalence classes like 1/3 = 2/6 = 3/9 = 4/12 = 5/15 = 6/18 = 7/21 = 8/24 … ( Karlsson and Kilborn, 2020 ). It was important to take all these aspects into account when constructing and assessing the solutions of the tasks.

The tests were graded by an experienced teacher of mathematics (4 th author) and two students in their final year of teacher training. Prior to grading, acceptable levels of inter-rater reliability were achieved by independent rating of students’ solutions and discussions in which differences between the graders were resolved. Each student response was to be assigned one point when it contained a correct answer and two points when the student provided argumentation for the correct answer and elaborated on explanation of his or her solution. The assessment was thus based on quality aspects with a focus on conceptual knowledge. As each subtest contained three questions, it generated three student solutions. So, scores for each subtest ranged from 0 to 6 points and for the total scores from 0 to 18 points. To ascertain that pre- and post-tests were equivalent in degree of difficulty, the tests were administered to an additional sample of 169 students in grade 5. Test for each model was conducted separately, as students participated in pre- and post-test for each model during the same lesson. The order of tests was switched for half of the students in order to avoid the effect of the order in which the pre- and post-tests were presented. Correlation between students’ performance on pre- and post-test was .39 ( p < 0.000) for tests of multiplication/division; .48 ( p < 0.000) for tests of geometry; and .56 ( p < 0.000) for tests of proportionality. Thus, the degree of difficulty may have differed between pre- and post-test.

## Measures of Peer Acceptance and Friendships

To investigate students’ peer acceptance and friendships, peer nominations rated pre- and post-intervention were used. Students were asked to nominate peers who they preferred to work in groups with and who they preferred to be friends with. Negative peer nominations were avoided due to ethical considerations raised by teachers and parents ( Child and Nind, 2013 ). Unlimited nominations were used, as these are considered to have high ecological validity ( Cillessen and Marks, 2017 ). Peer nominations were used as a measure of social acceptance, and reciprocated nominations were used as a measure of friendship. The number of nominations for each student were aggregated and divided by the number of nominators to create a proportion of nominations for each student ( Velásquez et al., 2013 ).

## Statistical Analyses

Multilevel regression analyses were conducted in R, lme4 package Bates et al. (2015) to account for nestedness in the data. Students’ classroom belonging was considered as a level 2 variable. First, we used a model in which students’ results on tests of problem-solving were studied as a function of time (pre- and post) and group belonging (intervention and control group). Second, the same model was applied to subgroups of students who performed above and below median at pre-test, to explore whether the CL intervention had a differential effect on student performance. In this second model, the results for subgroups of students could not be obtained for geometry tests for subgroup below median and for tests of proportionality for subgroup above median. A possible reason for this must have been the skewed distribution of the students in these subgroups. Therefore, another model was applied that investigated students’ performances in math at both pre- and post-test as a function of group belonging. Third, the students’ scores on social acceptance and friendships were added as an interaction term to the first model. In our previous study, students’ social acceptance changed as a result of the same CL intervention ( Klang et al., 2020 ).

The assumptions for the multilevel regression were assured during the analyses ( Snijders and Bosker, 2012 ). The assumption of normality of residuals were met, as controlled by visual inspection of quantile-quantile plots. For subgroups, however, the plotted residuals deviated somewhat from the straight line. The number of outliers, which had a studentized residual value greater than ±3, varied from 0 to 5, but none of the outliers had a Cook’s distance value larger than 1. The assumption of multicollinearity was met, as the variance inflation factors (VIF) did not exceed a value of 10. Before the analyses, the cases with missing data were deleted listwise.

## What Is the Effect of the CL Approach on Students’ Problem-Solving in Mathematics?

As seen in the regression coefficients in Table 2 , the CL intervention had a significant effect on students’ mathematical problem-solving total scores and students’ scores in problem solving in geometry (Ma2). Judging by mean values, students in the intervention group appeared to have low scores on problem-solving in geometry but reached the levels of problem-solving of the control group by the end of the intervention. The intervention did not have a significant effect on students’ performance in problem-solving related to models of multiplication/division and proportionality.

TABLE 2 . Mean scores (standard deviation in parentheses) and unstandardized multilevel regression estimates for tests of mathematical problem-solving.

The question is, however, whether CL intervention affected students with different pre-test scores differently. Table 2 includes the regression coefficients for subgroups of students who performed below and above median at pre-test. As seen in the table, the CL approach did not have a significant effect on students’ problem-solving, when the sample was divided into these subgroups. A small negative effect was found for intervention group in comparison to control group, but confidence intervals (CI) for the effect indicate that it was not significant.

## Is Social Acceptance and Friendships Associated With the Effect of CL on Students’ Problem-Solving in Mathematics?

As seen in Table 3 , students’ peer acceptance and friendship at pre-test were significantly associated with the effect of the CL approach on students’ mathematical problem-solving scores. Changes in students’ peer acceptance and friendships were not significantly associated with the effect of the CL approach on students’ mathematical problem-solving. Consequently, it can be concluded that being nominated by one’s peers and having friends at the start of the intervention may be an important factor when participation in group work, structured in accordance with the CL approach, leads to gains in mathematical problem-solving.

TABLE 3 . Mean scores (standard deviation in parentheses) and unstandardized multilevel regression estimates for tests of mathematical problem-solving, including scores of social acceptance and friendship in the model.

In light of the limited number of studies on the effects of CL on students’ problem-solving in whole classrooms ( Capar and Tarim, 2015 ), and for students with SEN in particular ( McMaster and Fuchs, 2002 ), this study sought to investigate whether the CL approach embedded in problem-solving activities has an effect on students’ problem-solving in heterogeneous classrooms. The need for the study was justified by the challenge of providing equitable mathematics instruction to heterogeneous student populations ( OECD, 2019 ). Small group instructional approaches as CL are considered as promising approaches in this regard ( Kunsch et al., 2007 ). The results showed a significant effect of the CL approach on students’ problem-solving in geometry and total problem-solving scores. In addition, with regard to the importance of peer support in problem-solving ( Deacon and Edwards, 2012 ; Hwang and Hu, 2013 ), the study explored whether the effect of CL on students’ problem-solving was associated with students’ social acceptance and friendships. The results showed that students’ peer acceptance and friendships at pre-test were significantly associated with the effect of the CL approach, while change in students’ peer acceptance and friendships from pre- to post-test was not.

The results of the study confirm previous research on the effect of the CL approach on students’ mathematical achievement ( Capar and Tarim, 2015 ). The specific contribution of the study is that it was conducted in classrooms, 75% of which were composed of 33–36% of students with SEN. Thus, while a previous review revealed inconclusive findings on the effects of CL on student achievement ( McMaster and Fuchs, 2002 ), the current study adds to the evidence of the effect of the CL approach in heterogeneous classrooms, in which students with special needs are educated alongside with their peers. In a small group setting, the students have opportunities to discuss their ideas of solutions to the problem at hand, providing explanations and clarifications, thus enhancing their understanding of problem-solving ( Yackel et al., 1991 ; Webb and Mastergeorge, 2003 ).

In this study, in accordance with previous research on mathematical problem-solving ( Lesh and Zawojewski, 2007 ; Degrande et al., 2016 ; Stohlmann and Albarracín, 2016 ), the CL approach was combined with training in problem-solving principles Pólya (1948) and educational materials, providing support in instruction in underlying mathematical models. The intention of the study was to provide evidence for the effectiveness of the CL approach above instruction in problem-solving, as problem-solving materials were accessible to teachers of both the intervention and control groups. However, due to implementation challenges, not all teachers in the intervention and control groups reported using educational materials and training as expected. Thus, it is not possible to draw conclusions of the effectiveness of the CL approach alone. However, in everyday classroom instruction it may be difficult to separate the content of instruction from the activities that are used to mediate this content ( Doerr and Tripp, 1999 ; Gravemeijer, 1999 ).

Furthermore, for successful instruction in mathematical problem-solving, scaffolding for content needs to be combined with scaffolding for dialogue ( Kazak et al., 2015 ). From a dialogical perspective ( Wegerif, 2011 ), students may need scaffolding in new ways of thinking, involving questioning their understandings and providing arguments for their solutions, in order to create dialogic spaces in which different solutions are voiced and negotiated. In this study, small group instruction through CL approach aimed to support discussions in small groups, but the study relies solely on quantitative measures of students’ mathematical performance. Video-recordings of students’ discussions may have yielded important insights into the dialogic relationships that arose in group discussions.

Despite the positive findings of the CL approach on students’ problem-solving, it is important to note that the intervention did not have an effect on students’ problem-solving pertaining to models of multiplication/division and proportionality. Although CL is assumed to be a promising instructional approach, the number of studies on its effect on students’ mathematical achievement is still limited ( Capar and Tarim, 2015 ). Thus, further research is needed on how CL intervention can be designed to promote students’ problem-solving in other areas of mathematics.

The results of this study show that the effect of the CL intervention on students’ problem-solving was associated with students’ initial scores of social acceptance and friendships. Thus, it is possible to assume that students who were popular among their classmates and had friends at the start of the intervention also made greater gains in mathematical problem-solving as a result of the CL intervention. This finding is in line with Deacon and Edwards’ study of the importance of friendships for students’ motivation to learn mathematics in small groups ( Deacon and Edwards, 2012 ). However, the effect of the CL intervention was not associated with change in students’ social acceptance and friendship scores. These results indicate that students who were nominated by a greater number of students and who received a greater number of friends did not benefit to a great extent from the CL intervention. With regard to previously reported inequalities in cooperation in heterogeneous groups ( Cohen, 1994 ; Mulryan, 1992 ; Langer Osuna, 2016 ) and the importance of peer behaviours for problem-solving ( Hwang and Hu, 2013 ), teachers should consider creating inclusive norms and supportive peer relationships when using the CL approach. The demands of solving complex problems may create negative emotions and uncertainty ( Hannula, 2015 ; Jordan and McDaniel, 2014 ), and peer support may be essential in such situations.

## Limitations

The conclusions from the study must be interpreted with caution, due to a number of limitations. First, due to the regulation of protection of individuals ( SFS 2009 ), the researchers could not get information on type of SEN for individual students, which limited the possibilities of the study for investigating the effects of the CL approach for these students. Second, not all teachers in the intervention group implemented the CL approach embedded in problem-solving activities and not all teachers in the control group reported using educational materials on problem-solving. The insufficient levels of implementation pose a significant challenge to the internal validity of the study. Third, the additional investigation to explore the equivalence in difficulty between pre- and post-test, including 169 students, revealed weak to moderate correlation in students’ performance scores, which may indicate challenges to the internal validity of the study.

## Implications

The results of the study have some implications for practice. Based on the results of the significant effect of the CL intervention on students’ problem-solving, the CL approach appears to be a promising instructional approach in promoting students’ problem-solving. However, as the results of the CL approach were not significant for all subtests of problem-solving, and due to insufficient levels of implementation, it is not possible to conclude on the importance of the CL intervention for students’ problem-solving. Furthermore, it appears to be important to create opportunities for peer contacts and friendships when the CL approach is used in mathematical problem-solving activities.

## Data Availability Statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

## Ethics Statement

The studies involving human participants were reviewed and approved by the Uppsala Ethical Regional Committee, Dnr. 2017/372. Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.

## Author Contributions

NiK was responsible for the project, and participated in data collection and data analyses. NaK and WK were responsible for intervention with special focus on the educational materials and tests in mathematical problem-solving. PE participated in the planning of the study and the data analyses, including coordinating analyses of students’ tests. MK participated in the designing and planning the study as well as data collection and data analyses.

The project was funded by the Swedish Research Council under Grant 2016-04,679.

## Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

## Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

## Acknowledgments

We would like to express our gratitude to teachers who participated in the project.

## Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/feduc.2021.710296/full#supplementary-material

Barmby, P., Harries, T., Higgins, S., and Suggate, J. (2009). The array representation and primary children's understanding and reasoning in multiplication. Educ. Stud. Math. 70 (3), 217–241. doi:10.1007/s10649-008-914510.1007/s10649-008-9145-1

CrossRef Full Text | Google Scholar

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects Models Usinglme4. J. Stat. Soft. 67 (1), 1–48. doi:10.18637/jss.v067.i01

Capar, G., and Tarim, K. (2015). Efficacy of the cooperative learning method on mathematics achievement and attitude: A meta-analysis research. Educ. Sci-theor Pract. 15 (2), 553–559. doi:10.12738/estp.2015.2.2098

Child, S., and Nind, M. (2013). Sociometric methods and difference: A force for good - or yet more harm. Disabil. Soc. 28 (7), 1012–1023. doi:10.1080/09687599.2012.741517

Cillessen, A. H. N., and Marks, P. E. L. (2017). Methodological choices in peer nomination research. New Dir. Child Adolesc. Dev. 2017, 21–44. doi:10.1002/cad.20206

PubMed Abstract | CrossRef Full Text | Google Scholar

Clarke, B., Cheeseman, J., and Clarke, D. (2006). The mathematical knowledge and understanding young children bring to school. Math. Ed. Res. J. 18 (1), 78–102. doi:10.1007/bf03217430

Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. Rev. Educ. Res. 64 (1), 1–35. doi:10.3102/00346543064001001

Davidson, N., and Major, C. H. (2014). Boundary crossings: Cooperative learning, collaborative learning, and problem-based learning. J. Excell. Coll. Teach. 25 (3-4), 7.

Google Scholar

Davydov, V. V. (2008). Problems of developmental instructions. A Theoretical and experimental psychological study . New York: Nova Science Publishers, Inc .

Deacon, D., and Edwards, J. (2012). Influences of friendship groupings on motivation for mathematics learning in secondary classrooms. Proc. Br. Soc. Res. into Learn. Math. 32 (2), 22–27.

Degrande, T., Verschaffel, L., and van Dooren, W. (2016). “Proportional word problem solving through a modeling lens: a half-empty or half-full glass?,” in Posing and Solving Mathematical Problems, Research in Mathematics Education . Editor P. Felmer.

Doerr, H. M., and Tripp, J. S. (1999). Understanding how students develop mathematical models. Math. Thinking Learn. 1 (3), 231–254. doi:10.1207/s15327833mtl0103_3

Fujita, T., Doney, J., and Wegerif, R. (2019). Students' collaborative decision-making processes in defining and classifying quadrilaterals: a semiotic/dialogic approach. Educ. Stud. Math. 101 (3), 341–356. doi:10.1007/s10649-019-09892-9

Gillies, R. (2016). Cooperative learning: Review of research and practice. Ajte 41 (3), 39–54. doi:10.14221/ajte.2016v41n3.3

Gravemeijer, K. (1999). How Emergent Models May Foster the Constitution of Formal Mathematics. Math. Thinking Learn. 1 (2), 155–177. doi:10.1207/s15327833mtl0102_4

Gravemeijer, K., Stephan, M., Julie, C., Lin, F.-L., and Ohtani, M. (2017). What mathematics education may prepare students for the society of the future? Int. J. Sci. Math. Educ. 15 (S1), 105–123. doi:10.1007/s10763-017-9814-6

Hamilton, E. (2007). “What changes are needed in the kind of problem-solving situations where mathematical thinking is needed beyond school?,” in Foundations for the Future in Mathematics Education . Editors R. Lesh, E. Hamilton, and Kaput (Mahwah, NJ: Lawrence Erlbaum ), 1–6.

Hannula, M. S. (2015). “Emotions in problem solving,” in Selected Regular Lectures from the 12 th International Congress on Mathematical Education . Editor S. J. Cho. doi:10.1007/978-3-319-17187-6_16

Hwang, W.-Y., and Hu, S.-S. (2013). Analysis of peer learning behaviors using multiple representations in virtual reality and their impacts on geometry problem solving. Comput. Edu. 62, 308–319. doi:10.1016/j.compedu.2012.10.005

Johnson, D. W., Johnson, R. T., and Johnson Holubec, E. (2009). Circle of Learning: Cooperation in the Classroom . Gurgaon: Interaction Book Company .

Johnson, D. W., Johnson, R. T., and Johnson Holubec, E. (1993). Cooperation in the Classroom . Gurgaon: Interaction Book Company .

Jordan, M. E., and McDaniel, R. R. (2014). Managing uncertainty during collaborative problem solving in elementary school teams: The role of peer influence in robotics engineering activity. J. Learn. Sci. 23 (4), 490–536. doi:10.1080/10508406.2014.896254

Karlsson, N., and Kilborn, W. (2018a). Inclusion through learning in group: tasks for problem-solving. [Inkludering genom lärande i grupp: uppgifter för problemlösning] . Uppsala: Uppsala University .

Karlsson, N., and Kilborn, W. (2018c). It's enough if they understand it. A study of teachers 'and students' perceptions of multiplication and the multiplication table [Det räcker om de förstår den. En studie av lärares och elevers uppfattningar om multiplikation och multiplikationstabellen]. Södertörn Stud. Higher Educ. , 175.

Karlsson, N., and Kilborn, W. (2018b). Tasks for problem-solving in mathematics. [Uppgifter för problemlösning i matematik] . Uppsala: Uppsala University .

Karlsson, N., and Kilborn, W. (2020). “Teacher’s and student’s perception of rational numbers,” in Interim Proceedings of the 44 th Conference of the International Group for the Psychology of Mathematics Education , Interim Vol., Research Reports . Editors M. Inprasitha, N. Changsri, and N. Boonsena (Khon Kaen, Thailand: PME ), 291–297.

Kazak, S., Wegerif, R., and Fujita, T. (2015). Combining scaffolding for content and scaffolding for dialogue to support conceptual breakthroughs in understanding probability. ZDM Math. Edu. 47 (7), 1269–1283. doi:10.1007/s11858-015-0720-5

Klang, N., Olsson, I., Wilder, J., Lindqvist, G., Fohlin, N., and Nilholm, C. (2020). A cooperative learning intervention to promote social inclusion in heterogeneous classrooms. Front. Psychol. 11, 586489. doi:10.3389/fpsyg.2020.586489

Klang, N., Fohlin, N., and Stoddard, M. (2018). Inclusion through learning in group: cooperative learning [Inkludering genom lärande i grupp: kooperativt lärande] . Uppsala: Uppsala University .

Kunsch, C. A., Jitendra, A. K., and Sood, S. (2007). The effects of peer-mediated instruction in mathematics for students with learning problems: A research synthesis. Learn. Disabil Res Pract 22 (1), 1–12. doi:10.1111/j.1540-5826.2007.00226.x

Langer-Osuna, J. M. (2016). The social construction of authority among peers and its implications for collaborative mathematics problem solving. Math. Thinking Learn. 18 (2), 107–124. doi:10.1080/10986065.2016.1148529

Lein, A. E., Jitendra, A. K., and Harwell, M. R. (2020). Effectiveness of mathematical word problem solving interventions for students with learning disabilities and/or mathematics difficulties: A meta-analysis. J. Educ. Psychol. 112 (7), 1388–1408. doi:10.1037/edu0000453

Lesh, R., and Doerr, H. (2003). Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning and Teaching . Mahwah, NJ: Erlbaum .

Lesh, R., Post, T., and Behr, M. (1988). “Proportional reasoning,” in Number Concepts and Operations in the Middle Grades . Editors J. Hiebert, and M. Behr (Hillsdale, N.J.: Lawrence Erlbaum Associates ), 93–118.

Lesh, R., and Zawojewski, (2007). “Problem solving and modeling,” in Second Handbook of Research on Mathematics Teaching and Learning: A Project of the National Council of Teachers of Mathematics . Editor L. F. K. Lester (Charlotte, NC: Information Age Pub ), vol. 2.

Lester, F. K., and Cai, J. (2016). “Can mathematical problem solving be taught? Preliminary answers from 30 years of research,” in Posing and Solving Mathematical Problems. Research in Mathematics Education .

Lybeck, L. (1981). “Archimedes in the classroom. [Arkimedes i klassen],” in Göteborg Studies in Educational Sciences (Göteborg: Acta Universitatis Gotoburgensis ), 37.

McMaster, K. N., and Fuchs, D. (2002). Effects of Cooperative Learning on the Academic Achievement of Students with Learning Disabilities: An Update of Tateyama-Sniezek's Review. Learn. Disabil Res Pract 17 (2), 107–117. doi:10.1111/1540-5826.00037

Mercer, N., and Sams, C. (2006). Teaching children how to use language to solve maths problems. Lang. Edu. 20 (6), 507–528. doi:10.2167/le678.0

Montague, M., Krawec, J., Enders, C., and Dietz, S. (2014). The effects of cognitive strategy instruction on math problem solving of middle-school students of varying ability. J. Educ. Psychol. 106 (2), 469–481. doi:10.1037/a0035176

Mousoulides, N., Pittalis, M., Christou, C., and Stiraman, B. (2010). “Tracing students’ modeling processes in school,” in Modeling Students’ Mathematical Modeling Competencies . Editor R. Lesh (Berlin, Germany: Springer Science+Business Media ). doi:10.1007/978-1-4419-0561-1_10

Mulryan, C. M. (1992). Student passivity during cooperative small groups in mathematics. J. Educ. Res. 85 (5), 261–273. doi:10.1080/00220671.1992.9941126

OECD (2019). PISA 2018 Results (Volume I): What Students Know and Can Do . Paris: OECD Publishing . doi:10.1787/5f07c754-en

CrossRef Full Text

Pólya, G. (1948). How to Solve it: A New Aspect of Mathematical Method . Princeton, N.J.: Princeton University Press .

Russel, S. J. (1991). “Counting noses and scary things: Children construct their ideas about data,” in Proceedings of the Third International Conference on the Teaching of Statistics . Editor I. D. Vere-Jones (Dunedin, NZ: University of Otago ), 141–164., s.

Rzoska, K. M., and Ward, C. (1991). The effects of cooperative and competitive learning methods on the mathematics achievement, attitudes toward school, self-concepts and friendship choices of Maori, Pakeha and Samoan Children. New Zealand J. Psychol. 20 (1), 17–24.

Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics (reprint). J. Edu. 196 (2), 1–38. doi:10.1177/002205741619600202

SFS 2009:400. Offentlighets- och sekretesslag. [Law on Publicity and confidentiality] . Retrieved from https://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/offentlighets--och-sekretesslag-2009400_sfs-2009-400 on the 14th of October .

Snijders, T. A. B., and Bosker, R. J. (2012). Multilevel Analysis. An Introduction to Basic and Advanced Multilevel Modeling . 2nd Ed. London: SAGE .

Stillman, G., Brown, J., and Galbraith, P. (2008). Research into the teaching and learning of applications and modelling in Australasia. In H. Forgasz, A. Barkatas, A. Bishop, B. Clarke, S. Keast, W. Seah, and P. Sullivan (red.), Research in Mathematics Education in Australasiae , 2004-2007 , p.141–164. Rotterdam: Sense Publishers .doi:10.1163/9789087905019_009

Stohlmann, M. S., and Albarracín, L. (2016). What is known about elementary grades mathematical modelling. Edu. Res. Int. 2016, 1–9. doi:10.1155/2016/5240683

Swedish National Educational Agency (2014). Support measures in education – on leadership and incentives, extra adaptations and special support [Stödinsatser I utbildningen – om ledning och stimulans, extra anpassningar och särskilt stöd] . Stockholm: Swedish National Agency of Education .

Swedish National Educational Agency (2018). Syllabus for the subject of mathematics in compulsory school . Retrieved from https://www.skolverket.se/undervisning/grundskolan/laroplan-och-kursplaner-for-grundskolan/laroplan-lgr11-for-grundskolan-samt-for-forskoleklassen-och-fritidshemmet?url=-996270488%2Fcompulsorycw%2Fjsp%2Fsubject.htm%3FsubjectCode%3DGRGRMAT01%26tos%3Dgr&sv.url=12.5dfee44715d35a5cdfa219f ( on the 32nd of July, 2021).

van Hiele, P. (1986). Structure and Insight. A Theory of Mathematics Education . London: Academic Press .

Velásquez, A. M., Bukowski, W. M., and Saldarriaga, L. M. (2013). Adjusting for Group Size Effects in Peer Nomination Data. Soc. Dev. 22 (4), a–n. doi:10.1111/sode.12029

Verschaffel, L., Greer, B., and De Corte, E. (2007). “Whole number concepts and operations,” in Second Handbook of Research on Mathematics Teaching and Learning: A Project of the National Council of Teachers of Mathematics . Editor F. K. Lester (Charlotte, NC: Information Age Pub ), 557–628.

Webb, N. M., and Mastergeorge, A. (2003). Promoting effective helping behavior in peer-directed groups. Int. J. Educ. Res. 39 (1), 73–97. doi:10.1016/S0883-0355(03)00074-0

Wegerif, R. (2011). “Theories of Learning and Studies of Instructional Practice,” in Theories of learning and studies of instructional Practice. Explorations in the learning sciences, instructional systems and Performance technologies . Editor T. Koschmann (Berlin, Germany: Springer ). doi:10.1007/978-1-4419-7582-9

Yackel, E., Cobb, P., and Wood, T. (1991). Small-group interactions as a source of learning opportunities in second-grade mathematics. J. Res. Math. Edu. 22 (5), 390–408. doi:10.2307/749187

Zawojewski, J. (2010). Problem Solving versus Modeling. In R. Lesch, P. Galbraith, C. R. Haines, and A. Hurford (red.), Modelling student’s mathematical modelling competencies: ICTMA , p. 237–243. New York, NY: Springer .doi:10.1007/978-1-4419-0561-1_20

Keywords: cooperative learning, mathematical problem-solving, intervention, heterogeneous classrooms, hierarchical linear regression analysis

Citation: Klang N, Karlsson N, Kilborn W, Eriksson P and Karlberg M (2021) Mathematical Problem-Solving Through Cooperative Learning—The Importance of Peer Acceptance and Friendships. Front. Educ. 6:710296. doi: 10.3389/feduc.2021.710296

Received: 15 May 2021; Accepted: 09 August 2021; Published: 24 August 2021.

Reviewed by:

Copyright © 2021 Klang, Karlsson, Kilborn, Eriksson and Karlberg. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Nina Klang, [email protected]

## To read this content please select one of the options below:

Please note you do not have access to teaching notes, developing problem-solving skills in mathematics: a lesson study.

International Journal for Lesson and Learning Studies

ISSN : 2046-8253

Article publication date: 3 January 2017

Problem solving is a skill in mathematics which although always relevant has heightened priority due to the changes in the new mathematics GCSE (Department for Education, 2013). It has previously been a skill which is deemed underdeveloped within mathematics and therefore is a theme which teachers are seeking to improve and nurture in order to align with the new changes. The GCSE is the formal qualification that students take at the end of Key Stage 4 (KS4) in the UK. The paper aims to discuss these issues.

## Design/methodology/approach

The focus of the enquiry was to explore, using lesson studies, the differences in students’ approaches to problem solving. Consequently, key themes relating to the mediation of gender, ability, and academic motivation surfaced. Considering these themes, the paper subsequently reflects upon pedagogical practices which might effectively develop students’ ability to problem solve. The study took part in a mixed gender comprehensive secondary school with students taking part in the observation lesson ranging in age from 11 to 12 years old. The authors are the teachers who took part in the lesson study. The teachers implemented observation techniques in the form of video and peer observation with the accompanying teacher. In addition, students provided feedback on how they approached the problem-solving tasks through a form of semi-structured interviews, conducted via the use of video diaries where no teachers were present to prevent power bias. Following this, a thematic analysis of both the observations and student video diaries generated conclusions regarding how said key themes shaped the students’ approaches to problem solving.

Students’ frustration and competitive need to find a specific answer inhibited their ability to thoroughly explore the problem posed thus overseeing vital aspects needed to solve the problem set. Many students expressed a passion for problem solving due to its freedom and un-rigid nature, which is something teachers should nurture.

## Originality/value

Generally, teachers are led by a culture in which attainment is the key. However, an atmosphere should be developed where the answer is not the key and students can explore the vibrant diversity mathematics and problem solving can offer.

- Lesson study
- Mathematics
- Problem-solving skills
- Video diaries

Bradshaw, Z. and Hazell, A. (2017), "Developing problem-solving skills in mathematics: a lesson study", International Journal for Lesson and Learning Studies , Vol. 6 No. 1, pp. 32-44. https://doi.org/10.1108/IJLLS-09-2016-0032

Emerald Publishing Limited

Copyright © 2017, Emerald Publishing Limited

## Related articles

We’re listening — tell us what you think, something didn’t work….

Report bugs here

## All feedback is valuable

Please share your general feedback

## Join us on our journey

Platform update page.

Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

## Questions & More Information

Answers to the most commonly asked questions here

- Social Anxiety Disorder
- Bipolar Disorder
- Kids Mental Health
- Therapy Center
- When To See a Therapist
- Types of Therapy
- Best Online Therapy
- Best Couples Therapy
- Best Family Therapy
- Managing Stress
- Sleep and Dreaming
- Understanding Emotions
- Self-Improvement
- Healthy Relationships
- Relationships in 2023
- Student Resources
- Personality Types
- Verywell Mind Insights
- 2023 Verywell Mind 25
- Mental Health in the Classroom
- Editorial Process
- Meet Our Review Board
- Crisis Support

## Problem-Solving Strategies and Obstacles

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Sean is a fact-checker and researcher with experience in sociology, field research, and data analytics.

JGI / Jamie Grill / Getty Images

- Application
- Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

## What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

- Discovery of the problem
- Deciding to tackle the issue
- Seeking to understand the problem more fully
- Researching available options or solutions
- Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

## Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

- Perceptually recognizing the problem
- Representing the problem in memory
- Considering relevant information that applies to the problem
- Identifying different aspects of the problem
- Labeling and describing the problem

## Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

## Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

## How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

- Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
- Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
- Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
- Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

## Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

- Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
- Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
- Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
- Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

## How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

- Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
- Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
- Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
- Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
- Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
- Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving . Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality . Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition . Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.

You are using an outdated browser. Please upgrade your browser to improve your experience.

## Math Problem Solving Strategies That Make Students Say “I Get It!”

Even students who are quick with math facts can get stuck when it comes to problem solving.

As soon as a concept is translated to a word problem, or a simple mathematical sentence contains an unknown, they’re stumped.

That’s because problem solving requires us to consciously choose the strategies most appropriate for the problem at hand . And not all students have this metacognitive ability.

But you can teach these strategies for problem solving. You just need to know what they are.

We’ve compiled them here divided into four categories:

## Strategies for understanding a problem

Strategies for solving the problem, strategies for working out, strategies for checking the solution.

Get to know these strategies and then model them explicitly to your students. Next time they dive into a rich problem, they’ll be filling up their working out paper faster than ever!

Before students can solve a problem, they need to know what it’s asking them. This is often the first hurdle with word problems that don’t specify a particular mathematical operation.

Encourage your students to:

## Read and reread the question

They say they’ve read it, but have they really ? Sometimes students will skip ahead as soon as they’ve noticed one familiar piece of information or give up trying to understand it if the problem doesn’t make sense at first glance.

Teach students to interpret a question by using self-monitoring strategies such as:

- Rereading a question more slowly if it doesn’t make sense the first time
- Asking for help
- Highlighting or underlining important pieces of information.

## Identify important and extraneous information

John is collecting money for his friend Ari’s birthday. He starts with $5 of his own, then Marcus gives him another $5. How much does he have now?

As adults looking at the above problem, we can instantly look past the names and the birthday scenario to see a simple addition problem. Students, however, can struggle to determine what’s relevant in the information that’s been given to them.

Teach students to sort and sift the information in a problem to find what’s relevant. A good way to do this is to have them swap out pieces of information to see if the solution changes. If changing names, items or scenarios has no impact on the end result, they’ll realize that it doesn’t need to be a point of focus while solving the problem.

## Schema approach

This is a math intervention strategy that can make problem solving easier for all students, regardless of ability.

Compare different word problems of the same type and construct a formula, or mathematical sentence stem, that applies to them all. For example, a simple subtraction problems could be expressed as:

[Number/Quantity A] with [Number/Quantity B] removed becomes [end result].

This is the underlying procedure or schema students are being asked to use. Once they have a list of schema for different mathematical operations (addition, multiplication and so on), they can take turns to apply them to an unfamiliar word problem and see which one fits.

Struggling students often believe math is something you either do automatically or don’t do at all. But that’s not true. Help your students understand that they have a choice of problem-solving strategies to use, and if one doesn’t work, they can try another.

Here are four common strategies students can use for problem solving.

## Visualizing

Visualizing an abstract problem often makes it easier to solve. Students could draw a picture or simply draw tally marks on a piece of working out paper.

Encourage visualization by modeling it on the whiteboard and providing graphic organizers that have space for students to draw before they write down the final number.

## Guess and check

Show students how to make an educated guess and then plug this answer back into the original problem. If it doesn’t work, they can adjust their initial guess higher or lower accordingly.

## Find a pattern

To find patterns, show students how to extract and list all the relevant facts in a problem so they can be easily compared. If they find a pattern, they’ll be able to locate the missing piece of information.

## Work backward

Working backward is useful if students are tasked with finding an unknown number in a problem or mathematical sentence. For example, if the problem is 8 + x = 12, students can find x by:

- Starting with 12
- Taking the 8 from the 12
- Being left with 4
- Checking that 4 works when used instead of x

Now students have understood the problem and formulated a strategy, it’s time to put it into practice. But if they just launch in and do it, they might make it harder for themselves. Show them how to work through a problem effectively by:

## Documenting working out

Model the process of writing down every step you take to complete a math problem and provide working out paper when students are solving a problem. This will allow students to keep track of their thoughts and pick up errors before they reach a final solution.

## Check along the way

Checking work as you go is another crucial self-monitoring strategy for math learners. Model it to them with think aloud questions such as:

- Does that last step look right?
- Does this follow on from the step I took before?
- Have I done any ‘smaller’ sums within the bigger problem that need checking?

Students often make the mistake of thinking that speed is everything in math — so they’ll rush to get an answer down and move on without checking.

But checking is important too. It allows them to pinpoint areas of difficulty as they come up, and it enables them to tackle more complex problems that require multiple checks before arriving at a final answer.

Here are some checking strategies you can promote:

## Check with a partner

Comparing answers with a peer leads is a more reflective process than just receiving a tick from the teacher. If students have two different answers, encourage them to talk about how they arrived at them and compare working out methods. They’ll figure out exactly where they went wrong, and what they got right.

## Reread the problem with your solution

Most of the time, students will be able to tell whether or not their answer is correct by putting it back into the initial problem. If it doesn’t work or it just ‘looks wrong’, it’s time to go back and fix it up.

## Fixing mistakes

Show students how to backtrack through their working out to find the exact point where they made a mistake. Emphasize that they can’t do this if they haven’t written down everything in the first place — so a single answer with no working out isn’t as impressive as they might think!

## Need more help developing problem solving skills?

Read up on how to set a problem solving and reasoning activity or explore Mathseeds and Mathletics, our award winning online math programs. They’ve got over 900 teacher tested problem solving activities between them!

## Get access to 900+ unique problem solving activities

You might like..., privacy overview.

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

- Prodigy Math
- Prodigy English

From our blog

- Is a Premium Membership Worth It?
- Promote a Growth Mindset
- Help Your Child Who's Struggling with Math
- Parent's Guide to Prodigy
- Assessments
- Math Curriculum Coverage
- English Curriculum Coverage
- Game Portal

## 9 Ways to Improve Math Skills Quickly & Effectively

Written by Ashley Crowe

Help your child improve their math skills with the game that makes learning an adventure!

- Parent Resources

## The importance of understanding basic math skills

- 9 Ways to improve math skills
- How to use technology to improve math skills

Math class can move pretty fast. There’s so much to cover in the course of a school year. And if your child doesn’t get a new math idea right away, they can quickly get left behind.

If your child is struggling with basic math problems every day, it doesn’t mean they’re destined to be bad at math. Some students need more time to develop the problem-solving skills that math requires. Others may need to revisit past concepts before moving on. Because of how math is structured, it’s best to take each year step-by-step, lesson by lesson.

This article has tips and tricks to improve your child’s math skills while minimizing frustrations and struggles. If your child is growing to hate math, read on for ways to improve their skills and confidence, and maybe even make math fun!

But first, the basics.

Math is a subject that builds on itself. It takes a solid understanding of past concepts to prepare for the next lesson.

That’s why math can become frustrating when you’re forced to move on before you’re ready. You’re either stuck trying to catch up or you end up falling further behind.

But with a strong understanding of basic math skills, your child can be set up for school success. If you’re unfamiliar with the idea of sets or whole numbers , this is a great place to start.

## What are considered basic math skills?

The basic math skills required to move on to higher levels of math learning are:

- Addition — Adding to a set.
- Subtraction — Taking away from a set.
- Multiplication — Adding equal sets together in groups (2 sets of 3 is the same as 2x3, or 6).
- Division — How many equal sets can be found in a number (12 has how many sets of two in it? 6 sets of 2).
- Percentages — A specific amount in relation to 100.
- Fractions & Decimals — Fractions are equal parts of a whole set. Decimals represent a number of parts of a whole in relation to 10. These both contrast with whole numbers.
- Spatial Reasoning — How numbers and shapes fit together.

## How to improve math skills

People aren’t bad at math — many just need more time and practice to gain a thorough understanding.

How can you help your child improve their math abilities? Use our top 9 tips for quickly and effectively improving math skills .

## 1. Wrap your head around the concepts

Repetition and practice are great, but if you don’t understand the concept , it will be difficult to move forward.

Luckily, there are many great ways to break down math concepts . The trick is finding the one that works best for your child.

Math manipulatives can be a game-changer for children who are struggling with big math ideas. Taking math off the page and putting it into their hands can bring ideas to life. Numbers become less abstract and more concrete when you’re counting toy cars or playing with blocks. Creating these “sets” of objects can bring clarity to basic math learning.

## 2. Try game-based learning

During math practice, repetition is important — but it can get old in a hurry. No one enjoys copying their times tables over and over and over again. If learning math has become a chore, it’s time to bring back the fun!

Game-based learning is a great way to practice new concepts and solidify past lessons. It can even make repetition fun and engaging.

Game-based learning can look like a family board game on Friday night or an educational app , like Prodigy Math .

Take math from frustrating to fun with the right game, then watch the learning happen easily!

## 3. Bring math into daily life

You use basic math every day.

As you go about your day, help your child see the math that’s all around them:

- Tell them how fast you’re driving on the way to school
- Calculate the discount you’ll receive on your next Target trip
- Count out the number of apples you need to buy at the grocery store
- While baking, explain how 6 quarter cups is the same amount of flour as a cup and a half — then enjoy some cookies!

Relate math back to what your child loves and show them how it’s used every day. Math doesn’t have to be mysterious or abstract. Instead, use math to race monster trucks or arrange tea parties. Break it down, take away the fear, and watch their interest in math grow.

## 4. Implement daily practice

Math practice is important. Once you understand the concept, you have to nail down the mechanics. And often, it’s the practice that finally helps the concept click. Either way, math requires more than just reading formulas on a page.

Daily practice can be tough to implement, especially with a math-averse child. This is a great time to bring out the game-based learning mentioned above. Or find an activity that lines up with their current lesson. Are they learning about squares? Break out the math link cubes and create them. Whenever possible, step away from the worksheets and flashcards and find practice elsewhere.

## 5. Sketch word problems

Nothing causes a panic quite like an unexpected word problem. Something about the combination of numbers and words can cause the brain of a struggling math learner to shut down. But it doesn’t have to be that way.

Many word problems just need to be broken down, step by step . One great way to do this is to sketch it out. If Doug has five apples and four oranges, then eats two of each, how many does he have left? Draw it, talk it out, cross them off, then count.

If you’ve been talking your child through the various math challenges you encounter every day, many word problems will start to feel familiar.

## 6. Set realistic goals

If your child has fallen behind in math, then more study time is the answer. But forcing them to cram an extra hour of math in their day is not likely to produce better results. To see a positive change, first identify their biggest struggles . Then set realistic goals addressing these issues .

Two more hours of practicing a concept they don’t understand is only going to cause more frustration. Even if they can work through the mechanics of a problem, the next lesson will leave them feeling just as lost.

Instead, try mini practice sessions and enlist some extra help. Approach the problem in a new way, reach out to their teacher or try an online math lesson . Make sure the extra time is troubleshooting the actual problem, not just reinforcing the idea that math is hard and no fun.

## Set Goals and Rewards in Prodigy Math

Did you know that parents can set learning goals for their child in Prodigy Math? And once they achieve them, they'll unlock in-game rewards of your choice!

## 7. Engage with a math tutor

If your child is struggling with big picture concepts, look into finding a math tutor . Everyone learns differently, and you and your child’s teacher may be missing that “aha” moment that a little extra time and the right tutor can provide.

It’s amazing when a piece of the math puzzle finally clicks for your child. If you’re ready to get that extra help, try a free 1:1 online session from Prodigy Math Tutoring. Prodigy’s tutors are real teachers who know how to connect kids to math. With the right approach, your child can become confident in math — and who knows, they may even begin to enjoy it.

## 8. Focus on one concept at a time

Math builds on itself. If your child is struggling through their current lesson, they can’t skip it and come back to it later. This is the time to practice and repeat — re-examining and reinforcing the current concept until it makes sense.

Look for other ways to approach new math ideas. Use math manipulatives to bring numbers off the page. Or try a learning app with exciting rewards and positive reinforcement to encourage extra practice.

Take a step back when frustrations get high — but resist the temptation to just let it go. Once the concept clicks, they’ll be excited to forge ahead.

## 9. Teach others math you already know

Even if your child is struggling in math, they’ve still learned so much since last year. Focus on the improvements they’ve made and let them showcase their knowledge. If they have younger siblings, your older child can demonstrate addition or show them how to use a number line. This is a great way to build their confidence and encourage them to keep going.

Or let them teach you how they solve new problems. Have your child talk you through the process while you solve a long division problem . You’re likely to find yourself a little rusty on the details. Play it up and get a little silly. They’ll love teaching you the ropes of this “new math.”

## Embracing technology to improve math skills

Though much of your math learning was done with pencil to paper, there are many more ways to build number skills in today’s tech world.

Your child can take live, online math courses to work through tough concepts. Or play a variety of online games, solving math puzzles and getting consistent practice while having fun.

These technical advances can help every child learn math, no matter their preferred learning or study style. If your child is a visual learner, there’s an app for that. Do they process best while working in groups? Jump online and find one. Don’t keep repeating the same lessons from their math class over and over. Branch out, try something new and watch the learning click.

## Look online for more math help

There are so many online resources, it can be hard to know where to start.

At Prodigy, we’re happy to help you get the ball rolling on your child’s math learning, from kindergarten through 8th grade. It’s free to sign up, fun to play and exciting to watch as your child’s math understanding grows.

Sign up for a free parent account and get instant data on your child’s progress as they build more math skills with Prodigy Math Game . It’s time to take the math struggle out of your home and enjoy learning together!

- PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
- EDIT Edit this Article
- EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
- Browse Articles
- Learn Something New
- Quizzes Hot
- This Or That Game New
- Train Your Brain
- Explore More
- Support wikiHow
- About wikiHow
- Log in / Sign up
- Education and Communications
- Mathematics

## How to Improve Math Skills

Last Updated: January 12, 2023 Approved

This article was co-authored by Daron Cam and by wikiHow staff writer, Hannah Madden . Daron Cam is an Academic Tutor and the Founder of Bay Area Tutors, Inc., a San Francisco Bay Area-based tutoring service that provides tutoring in mathematics, science, and overall academic confidence building. Daron has over eight years of teaching math in classrooms and over nine years of one-on-one tutoring experience. He teaches all levels of math including calculus, pre-algebra, algebra I, geometry, and SAT/ACT math prep. Daron holds a BA from the University of California, Berkeley and a math teaching credential from St. Mary's College. wikiHow marks an article as reader-approved once it receives enough positive feedback. This article received 28 testimonials and 84% of readers who voted found it helpful, earning it our reader-approved status. This article has been viewed 396,935 times.

There’s no doubt about it: math is tough. As a result, a lot of kids (and adults!) struggle with math at some point in their lives. By building up your skills and practicing every day, you can make math a little less frustrating and have a higher chance of success. Use these tips and tricks during school, while you’re studying, and when you’re out and about to break down and complete math problems easily.

## Play math games.

- DragonBox 5+ which lets you gradually build your algebra skills until you’re able to master more and more advanced equations.
- Prodigy, a game targeted at elementary-school students, that integrates math practice into a role-playing game that allows players to use math to make their way through an appealing fantasy world.
- Polyup, a calculator-based math game for more advanced high school and college students.

## Practice math in everyday scenarios.

- Or, if you plan to hike a new trail that’s 7 miles long and it takes you 20 minutes to walk a mile, how long should you plan for your hike to take? (2 hours and 36 minutes).

## Use mental math if you can.

- If you’re worried about your mental math skills, you can always double check your answer on your phone or computer.

## Review math concepts every day.

- Make note cards. Write out important concepts and formulas on note cards so that you can easily refer to them while doing problems and use them for study guides before exams.
- Study in a quiet place. Distractions, whether aural or visual, will detract both from your ability to pay attention and to retain information.
- Study when you’re alert and rested. Don’t try to force yourself to study late at night or when you’re sleep-deprived.

## Show your work, not just your answers.

- Showing your work can also help you check your answers on homework and test problems.
- Don’t solve math problems with a pen! Use a pencil so you can erase and correct mistakes if they happen.

## Sketch out word problems to give yourself a visual.

- For example, a problem might say, “If you have 4 pieces of candy split evenly into 2 bags, how many pieces of candy are in each bag?” You could draw 2 squares to represent the bags, then fill in 4 circles split between them to represent the candy.

## Practice with example problems.

- Your teacher might also be able to give you some extra example problems if you ask for them.
- Using example problems is a great way to practice for a test.

## Look up lessons online.

- PatrickJMT on YouTube, a college math professor
- Khan Academy, a website with video lessons and interactive study guides
- Breaking Math, a podcast for math concepts

## Master one concept before moving onto the next.

## Teach math problem or concept to someone else.

- Have your friend or family member ask you questions, too. Try to answer them as best you can to really practice.

## Expert Q&A

## Video . By using this service, some information may be shared with YouTube.

- Try not to fall behind in your homework or schoolwork. The more you keep up in class, the easier it will be. Thanks Helpful 4 Not Helpful 0

## You Might Also Like

- ↑ Daron Cam. Academic Tutor. Expert Interview. 29 May 2020.
- ↑ http://www.schoolfamily.com/school-family-articles/article/10785-mastering-math
- ↑ https://www.edutopia.org/article/5-tips-improving-students-success-math
- ↑ https://math.osu.edu/undergrad/non-majors/resources/study-math-college
- ↑ https://www.youtube.com/watch?t=96&v=aIRh_15O2S0&feature=youtu.be
- ↑ https://www.mathgoodies.com/articles/improve_your_grades

## About This Article

To improve your math skills, start by taking good notes in class and asking lots of questions to understand the material. Then, schedule time each day to study from your notes and do your homework. When you study, do practice problems to cement your comprehension of the math. In addition to studying, try playing math games online, such as DragonBox 5+ or Prodigy, which will help hone your math skills in a fun way. For ways to incorporate math into your everyday life, read on! Did this summary help you? Yes No

- Send fan mail to authors

## Reader Success Stories

Bobbie Jackson

Oct 14, 2017

## Did this article help you?

K. P. Ankith

Mar 15, 2017

Saeed Bhura

Sep 19, 2020

Bhavana Reddy

Sep 3, 2016

Rahul Jaiswal

Jul 23, 2016

## Featured Articles

## Trending Articles

## Watch Articles

- Terms of Use
- Privacy Policy
- Do Not Sell or Share My Info
- Not Selling Info

Don’t miss out! Sign up for

wikiHow’s newsletter

- Our Mission

## How Students Can Rethink Problem Solving

Finding, shaping, and solving problems puts high school students in charge of their learning and bolsters critical-thinking skills.

As an educator for over 20 years, I’ve heard a lot about critical thinking , problem-solving , and inquiry and how they foster student engagement. However, I’ve also seen students draw a blank when they’re given a problem to solve. This happens when the problem is too vast for them to develop a solution or they don’t think the situation is problematic.

As I’ve tried, failed, and tried again to engage my students in critical thinking, problem-solving, and inquiry, I’ve experienced greater engagement when I allow them to problem-find, problem-shape, and problem-solve. This shift in perspective has helped my students take direct ownership over their learning.

## Encourage Students to Find the Problem

When students ask a question that prompts their curiosity, it motivates them to seek out an answer. This answer often highlights a problem.

For example, I gave my grade 11 students a list of topics to explore, and they signed up for a topic that they were interested in. From that, they had to develop a research question. This allowed them to narrow the topic down to what they were specifically curious about.

Developing a research question initiated the research process. Students launched into reading information from reliable sources including Britannica , Newsela , and EBSCOhost . Through the reading process, they were able to access information so that they could attempt to find an answer to their question.

The nature of a good question is that there isn’t an “answer.” Instead, there are a variety of answers. This allowed students to feel safe in sharing their answers because they couldn’t be “wrong.” If they had reliable, peer-reviewed academic research to support their answer, they were “right.”

## Shaping a Problem Makes Overcoming It More Feasible

When students identify a problem, they’re compelled to do something about it; however, if the problem is too large, it can be overwhelming for them. When they’re overwhelmed, they might shut down and stop learning. For that reason, it’s important for them to shape the problem by taking on a piece they can handle.

To help guide students, provide a list of topics and allow them to choose one. In my experience, choosing their own topic prompts students’ curiosity—which drives them to persevere through a challenging task. Additionally, I have students maintain their scope at a school, regional, or national level. Keeping the focus away from an international scope allows them to filter down the number of results when they begin researching. Shaping the problem this way allowed students to address it in a manageable way.

## Students Can Problem-Solve with Purpose

Once students identified a slice of a larger problem that they could manage, they started to read and think about it, collaborate together, and figure out how to solve it. To further support them in taking on a manageable piece of the problem, the parameters of the solution were that it had to be something they could implement immediately. For example, raising $3 million to build a shelter for those experiencing homelessness in the community isn’t something that students can do tomorrow. Focusing on a solution that could be implemented immediately made it easier for them to come up with viable options.

With the problem shaped down to a manageable piece, students were better able to come up with a solution that would have a big impact. This problem-solving process also invites ingenuity and innovation because it allows teens to critically look at their day-to-day lives and experiences to consider what actions they could take to make a difference in the world. It prompts them to look at their world through a different lens.

When the conditions for inquiry are created by allowing students to problem-find, problem-shape and problem-solve, it allows students to do the following:

- Critically examine their world to identify problems that exist
- Feel empowered because they realize that they can be part of a solution
- Innovate by developing new solutions to old problems

## Put it All Together to Promote Change

Here are two examples of what my grade 11 students came up with when tasked with examining the national news to problem-find, problem-shape, and problem-solve.

Topic: Indigenous Issues in Canada

Question: How are Indigenous peoples impacted by racism?

Problem-find: The continued racism against Indigenous peoples has led to the families of murdered women not attaining justice, Indigenous peoples not being able to gain employment, and Indigenous communities not being able to access basic necessities like healthcare and clean water.

Problem-shape: A lot of the issues that Indigenous peoples face require government intervention. What can high school teens do to combat these issues?

Problem-solve: Teens need to stop supporting professional sports teams that tokenize Indigenous peoples, and if they see a peer wearing something from such a sports team, we need to educate them about how the team’s logo perpetuates racism.

Topic: People With Disabilities in Canada

Question: What leads students with a hearing impairment to feel excluded?

Problem-find: Students with a hearing impairment struggle to engage with course texts like films and videos.

Problem-shape: A lot of the issues that students with a hearing impairment face in schools require teachers to take action. What can high school teens do to help their hearing-impaired peers feel included?

Problem-solve: When teens share a video on social media, they should turn the closed-captioning on, so that all students can consume the media being shared.

Once my students came up with solutions, they wanted to do something about it and use their voices to engage in global citizenship. This led them to create TikTok and Snapchat videos and Instagram posts that they shared and re-shared among their peer group.

The learning that students engaged in led to their wanting to teach others—which allowed a greater number of students to learn. This whole process engendered conversations about our world and helped them realize that they aren’t powerless; they can do things to initiate change in areas that they’re interested in and passionate about. It allowed them to use their voices to educate others and promote change.

## 11 Ways How To Improve Mathematical Problem Solving Skills

- Published August 31, 2022

## Introduction

It is crucial to teach individuals how to improve mathematical problem solving skills and for them to take ownership of this skill as they master the subject. There are several reasons why problem-solving is crucial and develops into one of a person’s fundamental talents while addressing math difficulties.

The capacity to solve problems can be utilized to offer solutions or answers to difficulties addressed more analytically so that someone can be a problem solver. Problem-solving cannot be isolated from daily living.

To put it another way, when individuals are taught to solve problems, they will be able to make decisions because they have learned how to gather pertinent information, analyze it, and recognize the need to re-examine the outcomes that have been obtained.

## Why are Mathematical Problem Solving Skills Important?

Our students must be able to think critically about complex issues because they live in a society that is heavily reliant on information and technology. They must also be able to “analyze and think logically about new situations, devise unspecified solution procedures, and communicate their solution clearly and convincingly to others.” The importance of mathematics education goes beyond the “gatekeeping role that mathematics plays in students’ access to educational and economic possibilities,” as it also prepares pupils for life after school through problem-solving skills and the acquisition of problem-solving strategies.

The idea that mathematics is essentially about reasoning, not memorizing, leads to the significance of problem-solving in math education. Instead of just recalling and using a set of instructions, problem-solving enables students to understand and articulate the steps taken to reach solutions. Students get a deeper comprehension of mathematical ideas, increase their engagement, and recognize the relevance and utility of mathematics through problem-solving.

Mathematical problem-solving stimulates the development of:

- The capacity for rational, analytical, and innovative thought
- Information processing skills
- The capacity to order and organize
- Intellectual challenge enjoyment
- The capacity to solve issues that aid in world exploration and comprehension

To show students the value of mathematics in the world around them, problem-solving should be at the core of all mathematics instruction. With the aid of this approach, students can develop, assess, and improve both their own and other people’s theories about mathematics.

## How To Improve Mathematical Problem Solving Skills

The majority of people just require more time and practice to fully learn the subject; they aren’t horrible at math.

What can you do to assist your student to become more skilled at solving mathematical problems? Use our top 11 suggestions to enhance your ability to solve mathematical problems quickly and effectively.

- Read Carefully, Comprehend, And Determine The Nature Of The Problem .

Check the nature of the problem when you first begin studying math to see if it is a word problem, a problem involving fractions, a problem involving quadratic equations, or any other form.

It is crucial to read the problem carefully and make sure you have mastered it before moving on to the next stage.

- Be Able To Comprehend The Ideas

Although repetition and practice are beneficial, it will be challenging to advance if you don’t comprehend the concept.

Fortunately, there are several effective techniques to simplify mathematical ideas. Finding the one that works best for your child is the secret.

For students who are having trouble understanding complex mathematical concepts, arithmetic manipulatives can be a game-changer. Ideas can come to life when arithmetic is taken off the paper and placed in the student’s hands. When you count toy cars or play with blocks, numbers become less ethereal and more tangible. Learning basic math can become more understandable by creating these “sets” of objects.

- Consider Using Games To Learn .

Repetition is crucial for arithmetic preparation, but it may quickly grow tiresome. Nobody likes having to repeatedly copy their times tables. Bring back the excitement if math class has turned into a chore!

An excellent approach to putting new ideas into practice and reinforcing prior knowledge is through game-based learning. Even better, it may add interest and enjoyment to repetition.

Game-based education can take the form of a Friday night family game night or an educational program.

- Include Math In Your Daily Lives.

Every day, you use simple math. Help your student see the math that is there all around them as you go about your day. Determine the savings you’ll experience at your upcoming Target visit.

Determine how many apples you’ll need to purchase at the supermarket.

While baking, clarify that 6 1/4 cups of flour equals 1 cup and a half. Then, enjoy some cookies!

Show your student how math is utilized every day and connect it to something they enjoy doing. It’s not necessary for math to be enigmatic or abstract. Instead, organize tea parties or race monster trucks using math. Dissect it, dispel their apprehension, and watch their interest in arithmetic rise.

- Put Math Into Daily Practice

Math practice is crucial. You must master the mechanics after grasping the notion. And frequently, it’s a practice that makes the idea ultimately make sense. In either case, learning arithmetic involves more than merely memorizing formulas.

It might be challenging to implement the daily practice, especially with a child who dislikes arithmetic. The above-mentioned game-based learning is ideal at this moment. Or choose a game that complements their current lesson. Are they learning about squares? Create them using the math link cubes. Avoid using worksheets and flashcards as much as you can and seek out practice elsewhere.

- Draw Word Puzzles.

Nothing incites anxiety like an unanticipated word puzzle. A math learner who is having trouble can experience a mental breakdown when faced with words and numbers. However, things don’t have to be that way.

Many word puzzles only require step-by-step dissection. Drawing it out is a fantastic technique to accomplish this. How many does Doug have left after eating two of each after having five apples and four oranges? Draw it, discuss it, mark them off, then add up the results.

Many word problems will start to feel familiar if you’ve been walking your student through the numerous math difficulties you run into daily.

- Set Realistic Goals.

Adding more study time will help your student catch up if they are falling behind in math. However, pressuring students to squeeze an extra hour of math into their day is unlikely to result in improved outcomes. Determine their major challenges before expecting any positive changes. Then make practical goals that solve these difficulties.

They will only become more frustrated if they practice a concept for two more hours. Even if they can solve a problem mechanically, the subsequent lesson will leave them feeling just as lost.

Try short practice sessions instead, and enlist some extra assistance. Try a different approach, talk to their teacher, or use an online math tutor. Make sure the additional time is spent on the actual issue and not merely reinforcing the notion that math is difficult and boring.

- Create A Strategy To Address Math Problems.

To create a solution strategy, there are only four easy procedures that must be followed. The procedures are as follows:

Firstly, the formula which will be used to solve the problem must be determined. Here you need to spend some time examining the principles in your textbooks that will help you solve the problem.

- To get the solution to your issue, you must put your needs in writing. To do this, you must create a step-by-step list of the materials you will need to address the issue and maintain organization.
- Tackle the simple problem first. Sometimes the formulas used to solve both problems are redundant.
- Before solving, try to estimate the solution by making an educated guess about the solution.
- Review the estimate once more to make sure you didn’t forget anything.
- Consult A Math Tutor

Look into hiring a math tutor if your student is having trouble with big-picture ideas. Because every learner processes information differently, you and your child’s teacher might be missing the “aha” moment that a little extra time and the right tutor can bring.

It’s fantastic when your student finally understands a mathematical concept. Your student can develop math confidence with the appropriate technique, and who knows, they might even start to enjoy it.

- Concentrate On One Concept At A Time.

Math reinforces itself. Your student cannot skip a lesson and return to it later if they are having difficulty with it at the moment. This is the moment to examine and reinforce the existing thought once more until it makes sense.

Find alternative approaches to new mathematical concepts. Utilize math tools to make numbers visible on a page. Alternatively, try a learning app with enticing prizes and encouraging feedback to promote more practice.

When frustration levels are high, take a step back, but resist the urge to just let it go. Once the idea sinks in, they’ll be eager to move forward.

Teachers need to understand how to develop students’ abilities to improve mathematical problem-solving skills as well as how these abilities grow over time and are considerably enhanced by good teaching methods.

What teachers know and believe about mathematics and what they comprehend about mathematics teaching and learning greatly influences how they set up classroom instruction. The first step in the teacher’s job is to choose challenging problems that require students to apply their math knowledge.

In addition to helping students develop their thinking skills, a problem-solving technique offers a framework in which they can master mathematical ideas.

## Frequently Asked Questions (FAQs)

Which math teaching model is the most effective.

The “ Problem-solving methodology ” is therefore suggested as the best method for teaching upper primary kids math. It’s a teaching technique where students see a teacher demonstrate things and then build on their understanding through visual analysis.

## How Will You Motivate Your Students To Participate In The Math Class Discussion?

Encourage students to take on a difficult assignment by offering positive feedback, plaudits, and compliments. It’s always great to see children have “aha” moments when they notice problems and understand how to solve them.

## What Does Mathematical Proof And Motivation Mean?

Motivation, which is Latin for “ check ,” is used to ascertain the veracity of a claim or the accuracy of certain information (in for example an already given proof).

You must independently confirm the validity of the allegation to demonstrate something.

You can also read Best ways on how to improve math skills for Adults.

## Table of Contents

## More Related Post

## How To Apply For Scholarship In USA

## Starting College At 23: A Journey of Possibilities and Growth

## Starting College at 20: Embracing the Journey of Higher Education

## Starting College At 19: A Guide to a Successful Transition

## How To Transfer High Schools: 10 Process Guide

## What Grade is Prom: Everything You Need to Know

Top categories, useful links, help & support.

© 2022 / Alright Reserved.

Designed by Dotn’More.

Table of Contents

26 January 2021

## Reading Time: 2 minutes

Do your children have trouble solving their Maths homework?

Or, do they struggle to maintain friendships at school?

If your answer is ‘Yes,’ the issue might be related to your child’s problem-solving abilities. Whether your child often forgets his/her lunch at school or is lagging in his/her class, good problem-solving skills can be a major tool to help them manage their lives better.

Children need to learn to solve problems on their own. Whether it is about dealing with academic difficulties or peer issues when children are equipped with necessary problem-solving skills they gain confidence and learn to make healthy decisions for themselves. So let us look at what is problem-solving, its benefits, and how to encourage your child to inculcate problem-solving abilities

Problem-solving skills can be defined as the ability to identify a problem, determine its cause, and figure out all possible solutions to solve the problem.

- Trigonometric Problems

## Problem Solving Skills: Meaning, Examples & Techniques

What is problem-solving, then? Problem-solving is the ability to use appropriate methods to tackle unexpected challenges in an organized manner. The ability to solve problems is considered a soft skill, meaning that it’s more of a personality trait than a skill you’ve learned at school, on-the-job, or through technical training. While your natural ability to tackle problems and solve them is something you were born with or began to hone early on, it doesn’t mean that you can’t work on it. This is a skill that can be cultivated and nurtured so you can become better at dealing with problems over time.

Problem Solving Skills: Meaning, Examples & Techniques are mentioned below in the Downloadable PDF.

## Benefits of learning problem-solving skills

Promotes creative thinking and thinking outside the box.

Improves decision-making abilities.

Builds solid communication skills.

Develop the ability to learn from mistakes and avoid the repetition of mistakes.

Problem Solving as an ability is a life skill desired by everyone, as it is essential to manage our day-to-day lives. Whether you are at home, school, or work, life throws us curve balls at every single step of the way. And how do we resolve those? You guessed it right – Problem Solving.

Strengthening and nurturing problem-solving skills helps children cope with challenges and obstacles as they come. They can face and resolve a wide variety of problems efficiently and effectively without having a breakdown. Nurturing good problem-solving skills develop your child’s independence, allowing them to grow into confident, responsible adults.

Children enjoy experimenting with a wide variety of situations as they develop their problem-solving skills through trial and error. A child’s action of sprinkling and pouring sand on their hands while playing in the ground, then finally mixing it all to eliminate the stickiness shows how fast their little minds work.

Sometimes children become frustrated when an idea doesn't work according to their expectations, they may even walk away from their project. They often become focused on one particular solution, which may or may not work.

However, they can be encouraged to try other methods of problem-solving when given support by an adult. The adult may give hints or ask questions in ways that help the kids to formulate their solutions.

## Encouraging Problem-Solving Skills in Kids

Practice problem solving through games.

Exposing kids to various riddles, mysteries, and treasure hunts, puzzles, and games not only enhances their critical thinking but is also an excellent bonding experience to create a lifetime of memories.

## Create a safe environment for brainstorming

Welcome, all the ideas your child brings up to you. Children learn how to work together to solve a problem collectively when given the freedom and flexibility to come up with their solutions. This bout of encouragement instills in them the confidence to face obstacles bravely.

## Invite children to expand their Learning capabilities

Whenever children experiment with an idea or problem, they test out their solutions in different settings. They apply their teachings to new situations and effectively receive and communicate ideas. They learn the ability to think abstractly and can learn to tackle any obstacle whether it is finding solutions to a math problem or navigating social interactions.

Problem-solving is the act of finding answers and solutions to complicated problems.

Developing problem-solving skills from an early age helps kids to navigate their life problems, whether academic or social more effectively and avoid mental and emotional turmoil.

Children learn to develop a future-oriented approach and view problems as challenges that can be easily overcome by exploring solutions.

## About Cuemath

Cuemath, a student-friendly mathematics and coding platform, conducts regular Online Classes for academics and skill-development, and their Mental Math App, on both iOS and Android , is a one-stop solution for kids to develop multiple skills. Understand the Cuemath Fee structure and sign up for a free trial.

## Frequently Asked Questions (FAQs)

How do you teach problem-solving skills.

Model a useful problem-solving method. Problem solving can be difficult and sometimes tedious. ... 1. Teach within a specific context. ... 2. Help students understand the problem. ... 3. Take enough time. ... 4. Ask questions and make suggestions. ... 5. Link errors to misconceptions.

## What makes a good problem solver?

Excellent problem solvers build networks and know how to collaborate with other people and teams. They are skilled in bringing people together and sharing knowledge and information. A key skill for great problem solvers is that they are trusted by others.

## Problem solving skills and how to improve them (with examples)

What’s life without its challenges? All of us will at some point encounter professional and personal hurdles. That might mean resolving a conflict with coworkers or making a big life decision. With effective problem solving skills, you’ll find tricky situations easier to navigate, and welcome challenges as opportunities to learn, grow and thrive.

In this guide, we dive into the importance of problem solving skills and look at examples that show how relevant they are to different areas of your life. We cover how to find creative solutions and implement them, as well as ways to refine your skills in communication and critical thinking. Ready to start solving problems? Read on.

## What is problem solving?

Before we cover strategies for improving problem solving skills, it's important to first have a clear understanding of the problem solving process. Here are the steps in solving a problem:

- Recognise the issue you are facing
- Take a look at all the information to gain insights
- Come up with solutions
- Look at the pros and cons of each solution and how it might play out
- Plan, organise and implement your solution
- Continuously assess the effectiveness of the solution and make adjustments as needed

## Problem solving skills

There’s more to problem solving than coming up with a quick fix. Effective problem solving requires wide range of skills and abilities, such as:

- Critical thinking: the ability to think logically, analyse information and look at situations from different perspectives.
- Creativity: being able to come up with innovative, out-of-the-box solutions.
- Decision-making: making informed choices by considering all the available information.
- Communication: being able to express ideas clearly and effectively.
- Analytical skills: breaking down complex problems into smaller parts and examining each one.
- Time management: allocating time and resources effectively to address problems.
- Adaptability: being open to change and willing to adjust strategies.
- Conflict resolution: skillfully managing conflicts and finding solutions that work for all.

## Examples of problem solving skills

Problem solving skills in the workplace are invaluable, whether you need them for managing a team, dealing with clients or juggling deadlines. To get a better understanding of how you might use these skills in real-life scenarios, here are some problem solving examples that are common in the workplace.

- Analytical thinking

Analytical thinking is something that comes naturally to some, while others have to work a little harder. It involves being able to look at problem solving from a logical perspective, breaking down the issues into manageable parts.

## Example scenarios of analytical thinking

Quality control: in a manufacturing facility, analytical thinking helps identify the causes of product defects in order to pinpoint solutions.

Market research: marketing teams rely on analytical thinking to examine consumer data, identify market trends and make informed decisions on ad campaigns.

- Critical thinking

Critical thinkers are able to approach problems objectively, looking at different viewpoints without rushing to a decision. Critical thinking is an important aspect of problem solving, helping to uncover biases and assumptions and weigh up the quality of the information before making any decisions.

## Example scenarios of critical thinking

- Strategic planning: in the boardroom, critical thinking is important for assessing economic trends, competitor threats and more. It guides leaders in making informed decisions about long-term company goals and growth strategies.
- Conflict resolution: HR professionals often use critical thinking when dealing with workplace conflicts. They objectively analyse the issues at hand and find an appropriate solution.

## Decision-making

Making decisions is often the hardest part of problem solving. How do you know which solution is the right one? It involves evaluating information, considering potential outcomes and choosing the most suitable option. Effective problem solving relies on making well-informed decisions.

## Example scenarios of decision-making

- Budget allocation: financial managers must decide how to allocate resources to various projects or departments.
- Negotiation: salespeople and procurement professionals negotiate terms, pricing and agreements with clients, suppliers and partners.

## Research skills

Research skills are pivotal when it comes to problem solving, to ensure you have all the information you need to make an informed decision. These skills involve searching for relevant data, critically evaluating information sources, and drawing meaningful conclusions.

## Example scenarios of research skills

- Product development: a tech startup uses research skills to conduct market research to identify gaps and opportunities in the market.
- Employee engagement: an HR manager uses research skills to conduct employee surveys and focus groups.

A little creative flair goes a long way. By thinking outside the box, you can approach problems from different angles. Creative thinking involves combining existing knowledge, experiences and perspectives in new and innovative ways to come up with inventive solutions.

## Example scenarios of creativity

- Cost reduction: creative problem solvers within a manufacturing company might look at new ways to reduce production costs by using waste materials.
- Customer experience: a retail chain might look at implementing interactive displays and engaging store layouts to increase customer satisfaction and sales.

## Collaboration

It’s not always easy to work with other people, but collaboration is a key element in problem solving, allowing you to make use of different perspectives and areas of expertise to find solutions.

## Example scenarios

- Healthcare diagnosis: in a hospital setting, medical professionals collaborate to diagnose complex medical cases.
- Project management: project managers coordinate efforts, allocate resources and address issues that may arise during a project's lifecycle.

## Conflict Resolution

Being able to mediate conflicts is a great skill to have. It involves facilitating open communication, understanding different perspectives and finding solutions that work for everyone. Conflict resolution is essential for managing any differences in opinion that arise.

## Example scenarios of conflict resolution

- Client dispute: a customer might be dissatisfied with a product or service and demand a refund. The customer service representative addresses the issue through active listening and negotiation to reach a solution.
- Project delay: a project manager might face resistance from team members about a change in project scope and will need to find a middle ground before the project can continue.

## Risk management

Risk management is essential across many workplaces. It involves analysing potential threats and opportunities, evaluating their impact and implementing strategies to minimise negative consequences. Risk management is closely tied to problem solving, as it addresses potential obstacles and challenges that may arise during the problem solving process.

## Example scenarios of risk management

- Project risk management: in a construction project, risk management involves identifying potential delays, cost overruns and safety hazards. Risk mitigation strategies are developed, such as scheduling buffers and establishing safety protocols.
- Financial risk management: in financial institutions, risk management assesses and manages risks associated with investments and lending.

## Communication

Effective communication is a skill that will get you far in all areas of life. When it comes to problem solving, communication plays an important role in facilitating collaboration, sharing insights and ensuring that all stakeholders have the same expectations.

## Example scenarios of communication

- Customer service improvement: in a retail environment, open communication channels result in higher customer satisfaction scores.
- Safety enhancement: in a manufacturing facility, a robust communication strategy that includes safety briefings, incident reporting and employee training helps minimise accidents and injuries.

## How to improve problem solving skills

Ready to improve your problem solving skills? In this section we explore strategies and techniques that will give you a head start in developing better problem solving skills.

## Adopt the problem solving mindset

Developing a problem solving mindset will help you tackle challenges effectively . Start by accepting problems as opportunities for growth and learning, rather than as obstacles or setbacks. This will allow you to approach every challenge with a can-do attitude.

Patience is also essential, because it will allow you to work through the problem and its various solutions mindfully. Persistence is also important, so you can keep adapting your approach until you find the right solution.

Finally, don’t forget to ask questions. What do you need to know? What assumptions are you making? What can you learn from previous attempts? Approach problem solving as an opportunity to acquire new skills . Stay curious, seek out solutions, explore new possibilities and remain open to different problem solving approaches.

## Understand the problem

There’s no point trying to solve a problem you don’t understand. To analyse a problem effectively, you need to be able to define it. This allows you to break it down into smaller parts, making it easier to find causes and potential solutions. Start with a well-defined problem statement that is precise and specific. This will help you focus your efforts on the core issue, so you don’t waste time and resources on the wrong concerns.

## Strategies for problem analysis

- Start with the problem statement and ask ‘Why?’ multiple times to dig deeper.
- Gather relevant data and information related to the problem.
- Include those affected by the problem in the analysis process.
- Compare the current problem with similar situations or cases to gain valuable insights.
- Use simulations to explore potential outcomes of different solutions.
- Continuously gather feedback during the problem solving process.

## Develop critical thinking and creativity skills

Critical thinking and creativity are both important when it comes to looking at the problem objectively and thinking outside the box. Critical thinking encourages you to question assumptions, recognise biases and seek evidence to support your conclusions. Creative thinking allows you to look at the problem from different angles to reveal new insights and opportunities.

## Enhance research and decision-making skills

Research and decision-making skills are pivotal in problem solving as they enable you to gather relevant information, analyse options and choose the best course of action. Research provides the information and data needed, and ensures that you have a comprehensive understanding of the problem and its context. Effective decision-making is about selecting the solution that best addresses the problem.

## Strategies to improve research and decision-making skills

- Clearly define what you want to achieve through research.
- Use a variety of sources, including books, articles, research papers, interviews, surveys and online databases.
- Evaluate the credibility and reliability of your information sources.
- Incorporate risk assessment into your decision-making process.
- Seek input from experts, colleagues and mentors when making important decisions.
- After making decisions, reflect on the outcomes and lessons learned. Use this to improve your decision-making skills over time.

## Strengthen collaboration skills

Being able to work with others is one of the most important skills to have at work. Collaboration skills enable everyone to work effectively as a team, share their perspectives and collectively find solutions.

## Tips for improving teamwork and collaboration

- Define people’s roles and responsibilities within the team.
- Encourage an environment of open communication where team members feel comfortable sharing ideas.
- Practise active listening by giving full attention to others when they speak.
- Hold regular check-in sessions to monitor progress, discuss challenges and make adjustments as needed.
- Use collaboration tools and platforms to facilitate communication and document progress.
- Acknowledge and celebrate team achievements and milestones.

## Learn from past experiences

Once you’ve overcome a challenge, take the time to look back with a critical eye. How effective was the outcome? Could you have tweaked anything in your process? Learning from past experiences is important when it comes to problem solving. It involves reflecting on both successes and failures to gain insights, refine strategies and make more informed decisions in the future.

## Strategies for learning from past mistakes

- After completing a problem solving effort, gather your team for a debriefing session. Discuss what went well and what could have been better.
- Conduct a SWOT analysis (Strengths, Weaknesses, Opportunities, Threats) of resolved problems.
- Evaluate the outcomes of past solutions. Did they achieve the desired results?
- Commit to continuous learning and improvement.

## Leverage problem solving tools and resources

Problem-solving tools and resources are a great help when it comes to navigating complex challenges. These tools offer structured approaches, methodologies and resources that can streamline the process.

## Tools and resources for problem solving

- Mind mapping: mind maps visually organise ideas, concepts and their relationships.
- SWOT (Strengths, Weaknesses, Opportunities, Threats) Analysis: helps in strategic planning and decision-making.
- Fishbone diagram (Ishikawa Diagram): this tool visually represents the potential root causes of a problem, helping you identify underlying factors contributing to an issue.
- Decision matrices: these assist in evaluating options by assigning weights and scores to criteria and alternatives.
- Process flowcharts: these allow you to see the steps of a process in sequence, helping identify where the problem is occuring.
- Decision support software: software applications and tools, such as data analytics platforms, can help in data-driven decision-making and problem solving.
- Online courses and training: allow you to acquire new skills and knowledge.

## Regular practice

Practice makes perfect! Using your skills in real life allows you to refine them, adapt to new challenges and build confidence in your problem solving capabilities. Make sure to try out these skills whenever you can.

## Practical problem solving exercises

- Do puzzles, riddles and brainteasers regularly.
- Identify real-life challenges or dilemmas you encounter and practice applying problem solving techniques to these situations.
- Analyse case studies or scenarios relevant to your field or industry.
- Regularly review past problem solving experiences and consider what you learned from them.
- Attend workshops, webinars or training sessions focused on problem solving.

## How to highlight problem solving skills on a resumé

Effectively showcasing your problem solving skills on your resumé is a great way to demonstrate your ability to address challenges and add value to a workplace. We'll explore how to demonstrate problem solving skills on your resumé, so you stand out from the crowd.

## Incorporating problem solving skills in the resumé summary

A resumé summary is your introduction to potential employers and provides an opportunity to succinctly showcase your skills. The resumé summary is often the first section employers read. It offers a snapshot of your qualifications and sets the tone for the rest of your resumé.

Your resumé summary should be customised for different job applications, ensuring that you highlight the specific problem solving skills relevant to the position you’re applying for.

Example 1: Project manager with a proven track record of solving complex operational challenges. Skilled in identifying root causes, developing innovative solutions and leading teams to successful project completion.

Example 2: Detail-oriented data analyst with strong problem solving skills. Proficient in data-driven decision-making, quantitative analysis and using statistical tools to solve business problems.

## Highlighting problem solving skills in the experience section

The experience section of your resumé presents the perfect opportunity to demonstrate your problem solving skills in action.

- Start with action verbs: begin each bullet point in your job descriptions with strong action verbs such as, analysed, implemented, resolved and optimised.
- Quantify achievements: use numbers and percentages to illustrate the impact of your solutions. For example: Increased efficiency by 25% by implementing a new workflow process.
- Emphasise challenges: describe the specific challenges or problems you faced in your roles.
- Solution-oriented language: mention the steps you took to find solutions and the outcomes achieved.

## Including problem solving skills in the skills section

The skills section of your resumé should showcase your top abilities, including problem solving skills. Here are some tips for including these skills.

- Use a subsection: within your skills section, you could create a subsection specifically dedicated to problem solving skills – especially if the role calls for these skills.
- Be specific: when listing problem solving skills, be specific about the types of role-related problems you can address.
- Prioritise relevant skills: tailor the list of problem solving skills to match the requirements of the job you're applying for.

## Examples of problem solving skills to include:

- Creative problem solving
- Decision making
- Root cause analysis
- Strategic problem solving
- Data-driven problem solving
- Interpersonal conflict resolution
- Adaptability
- Communication skills
- Problem solving tools
- Negotiation skills

## Demonstrating problem solving skills in project sections or case studies

Including a dedicated section for projects or case studies in your resumé allows you to provide specific examples of your problem solving skills in action. It goes beyond simply listing skills, to demonstrate how you are able to apply those skills to real-world challenges.

Example – Data Analysis

Case Study: Market Expansion Strategy

- Challenge: the company was looking to expand into new markets but lacked data on consumer preferences and market dynamics.
- Solution: conducted comprehensive market research, including surveys and competitor analysis. Applied this research to identify target customer segments and developed a data-driven market-entry strategy.
- Result: successfully launched in two new markets, reaching our target of 30% market share within the first year.

## Using problem solving skills in cover letters

A well-crafted cover letter is your first impression on any potential employer. Integrating problem solving skills can support your job application by showcasing your ability to address challenges and contribute effectively to their team. Here’s a quick run-down on what to include:

- Begin your cover letter by briefly mentioning the position you're applying for and your enthusiasm for it.
- Identify a specific challenge or issue that the company may be facing, to demonstrate your research and understanding of their needs.
- Include a brief story or scenario from your past experiences where you successfully applied problem solving skills to address a similar challenge.
- Highlight the positive outcomes or results achieved through your problem solving efforts.
- Explain how your skills make you the ideal person to address their specific challenges.

Problem solving skills are essential in all areas of life, enabling you to overcome challenges, make informed decisions, settle conflicts and drive innovation. We've explored the significance of problem solving skills and how to improve, demonstrate and leverage them effectively. It’s an ever-evolving skill set that can be refined over time.

By actively incorporating problem solving skills into your day-to-day, you can become a more effective problem solver at work and in your personal life as well.

## What are some common problem solving techniques?

Common problem solving techniques include brainstorming, root cause analysis, SWOT analysis, decision matrices, the scientific method and the PDCA (Plan-Do-Check-Act) cycle. These techniques offer structured approaches to identify, analyse and address problems effectively.

## How can I improve my critical thinking skills?

Improving critical thinking involves practising skills such as analysis, evaluation and problem solving. It helps to engage in activities like reading, solving puzzles, debating and self-reflection.

## What are some common obstacles to problem solving?

Common obstacles to problem solving include biases, lack of information or resources, and resistance to change. Recognising and addressing these obstacles is essential for effective problem solving.

## How can I overcome resistance to change when implementing a solution?

To overcome resistance to change, it's essential to communicate the benefits of the proposed solution clearly, involve stakeholders in the decision-making process, address concerns and monitor the implementation's progress to demonstrate its effectiveness.

## How can problem solving skills benefit my career?

Browse top search terms, popular on seek, ready for a pay rise these in-demand jobs are paying more, industries where the jobs are right now, a guide to salaries in your industry , free resume template , explore related topics, subscribe to career advice.

## Education > Math > How to Improve Problem Solving Skills in Maths?

Published at 4 august, 2020 by sidq ahmad, how to improve problem solving skills in maths.

Have you anytime given your kids a cash word problem where someone buys a thing from a store, yet your kids come up with an answer where the person that bought the thing ends up with more money than the individual came in with? How to Improve Problem Solving Skills in Maths?

Problem-solving skill is an exceptional small something that countless our children fight with. Right when used enough, tending to and execution can be helpful resources for our understudies to use when dealing with such issues.

Children frequently get puzzled when they face a math issue! Be it a class conversation or in a test. First of all, we have to promise the children that they can fathom it! The appropriate response is in the inquiry proclamation. Keep up the position that on the off chance that they read hard enough! They will comprehend that the appropriate response is in the announcement. This is the way to math Problem-solving skills!

## 1. It’s anything but a problem!

It helps on the off chance that you could relate the issue with a troublesome level in a game. Cause your kids or children to understand this is only a troublesome level! Definitely in the event that they work it out! There will be a prize! Or then again a level up!! Such estimates assist kids with remaining energized and inquisitive. They will endeavor to fathom it until the finish of the class.

## 2. Cooperation.

In a class of energetic preschoolers. We can not give them a critical thinking exercise an anticipate that they should unravel it! No. They will be confounded and frightened and the majority of them will build up an outlook accepting that they don’t have it in them to handle the circumstance. On the off chance that you wish to teach problem-solving skills in your children. It is savvy to assume it is difficult you are stuck in and you need their assistance. Urge everybody to take an interest!

## 3. Make an Arrangement

Devise an arrangement with your children towards how to handle this issue. Give Suggestions. Problem-solving skills ordinarily takes the pace of the forerunner who educates them. At the point when the opportunity arrives and they begin having math issues in class. They will consistently move toward it in the way you instructed them.

## 4. Disregard the numbers toward the beginning!

At the point when you present fix with a math issue. Start by taking out the number. Talk about what the inquiry is really proposing. What the article is doing. Drive your children and understudies to the edge of an answer. Help them to remember what they have done. does this expansion or deduction?

## 5. Tackle the numbers in the end!

Ultimately! Assault all the numbers at long last. give them what the inquiry was really stowing away. Also, how they have just done this. it was simply in the manner math springs up, all things considered. Give them models from exercises wear in the homeroom.

## A little gift to assist you with How to Improve Problem Solving Skills in Maths?

Available for free on IOS and Android !

## Recommended by Age Group

## Things that might interest you

MD- Health Blogger.

Child Education and Psychological Development Enthusiast

On a mission to carve children with best personalities, receptive minds, and the strongest coping mechanisms.

An official website of the United States government

Here's how you know

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

## Older Adults and Balance Problems

Have you ever felt dizzy, lightheaded, or as if the room were spinning around you? These can be troublesome sensations. If the feeling happens often, it could be a sign of a balance problem.

On this page:

## Causes of balance problems

Symptoms of balance disorders, treatments for balance problems and disorders, coping with a balance disorder.

Many older adults experience problems with balance and dizziness. Problems can be caused by certain medications, balance disorders, or other medical conditions. Balance problems are one reason older people fall. Maintaining good balance as you age and learning about fall prevention can help you get around, stay independent, and carry out daily activities.

People are more likely to have problems with balance as they grow older. In some cases, you can help reduce your risk for certain balance problems, but problems often can start suddenly and without obvious cause.

Balance problems can be caused by certain medications or medical conditions. The list below covers some common causes of balance problems.

- Medications. Check with your doctor if you notice balance problems while taking certain medications. Ask if other medications can be used instead, if the dosage can be safely reduced, or if there are other ways to reduce unwanted side effects.
- Inner ear problems. A part of the inner ear called the labyrinth is responsible for balance. When the labyrinth becomes inflamed, a condition called labyrinthitis occurs, causing vertigo and imbalance. Certain ear diseases and infections can lead to labyrinthitis.
- Alcohol. Alcohol in the blood can also cause dizziness and balance problems by affecting how the inner ear works.
- Other medical conditions. Certain conditions, such as diabetes, heart disease, stroke , or problems with your vision, thyroid, nerves, or blood vessels can cause dizziness and other balance problems.

Visit the NIH National Institute on Deafness and Other Communication Disorders website for more information on specific balance disorders .

If you have a balance disorder, you might experience symptoms such as:

- Dizziness or vertigo (a spinning sensation)
- Falling or feeling as if you are going to fall
- Staggering when you try to walk
- Lightheadedness, faintness, or a floating sensation
- Blurred vision
- Confusion or disorientation

Other symptoms might include nausea and vomiting; diarrhea; changes in heart rate and blood pressure and feelings of fear, anxiety, or panic. Symptoms may come and go over short periods or last for a long time and can lead to fatigue and depression.

Exercises that involve moving the head and body in certain ways can help treat some balance disorders. Patient-specific exercises are developed by a physical therapist or other professional who understands balance and its relationship with other systems in the body.

Balance problems due to high blood pressure may be managed by eating less salt (sodium), maintaining a healthy weight , and exercising . Balance problems due to low blood pressure may be managed by drinking plenty of fluids such as water; avoiding alcohol ; and being cautious regarding your body’s posture and movement, such as never standing up too quickly. Consult with your doctor about making any changes in your diet or activity level.

Some people with a balance disorder may not be able to fully relieve their dizziness and will need to find ways to cope with it. A vestibular rehabilitation therapist can help develop an individualized treatment plan.

Chronic balance problems can affect all aspects of your life, including your relationships, work performance, and your ability to carry out daily activities. Support groups provide the opportunity to learn from other people with similar experiences and challenges.

If you have trouble with your balance, talk to your doctor about whether it’s safe to drive, and about ways to lower your risk of falling during daily activities, such as walking up or down stairs, using the bathroom, or exercising. To reduce your risk of injury from dizziness, do not walk in the dark. Avoid high heels and, instead, wear nonskid, rubber-soled, low-heeled shoes. Don’t walk on stairs or floors in socks or in shoes and slippers with smooth soles. If necessary, use a cane or walker. Make changes to add safety features at your home and workplace, such as adding handrails.

Read about this topic in Spanish . Lea sobre este tema en español .

## You may also be interested in

- Learning more about falls and falls prevention
- Find out more about ways to prevent falls in certain rooms
- Watching a video on balance exercises

## Sign up for email updates on healthy aging

For more information on balance problems.

MedlinePlus National Library of Medicine www.medlineplus.gov

Mayo Clinic www.mayoclinic.org/patient-care-and-health-information

National Institute on Deafness and Other Communication Disorders 800-241-1044 800-241-1055 (TTY) [email protected] www.nidcd.nih.gov

This content is provided by the NIH National Institute on Aging (NIA). NIA scientists and other experts review this content to ensure it is accurate and up to date.

Content reviewed: September 12, 2022

nia.nih.gov

An official website of the National Institutes of Health

## IMAGES

## VIDEO

## COMMENTS

The study of math helps to develop analytical skills, logical reasoning, and problem-solving abilities that can be applied to many areas of life.

The problem-solving skills in this question can be interpreted broadly as the skill or intuition to solve mathematical problems in general, or they can mean the skills in a particular field such as analysis, algebra, combinatorics, etc. However, it should not be interpreted narrowly as one's familiarity with a specific subject.

Math learning enhances problem-solving skills, critical thinking, and logical reasoning abilities. (Source: National Council of Teachers of Mathematics) It improves analytical skills that can be applied in various real-life situations, such as budgeting or analyzing data. (Source: Southern New Hampshire University)

Mathematics is often promoted as endowing those who study it with transferable skills such as an ability to think logically and critically or to have improved investigative skills, resourcefulness and creativity in problem solving. However, there is scant evidence to back up such claims.

The skills the problem solvers developed in math transferred, and these students flourished. We use math to teach problem solving because it is the most fundamental logical discipline. Not only is it the foundation upon which sciences are built, it is the clearest way to learn and understand how to develop a rigorous logical argument.

Mathematics is often promoted as endowing those who study it with transferable skills such as an ability to think logically and critically or to have improved investigative skills, resourcefulness and creativity in problem solving. However, there is scant evidence to back up such claims.

1. Link problem-solving to reading When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem.

Math requires students to pay attention to details, plan, and self-monitor. Students also have to keep track of steps — and maybe even change direction while they work. Evidence-based math instruction helps these students because it breaks problems into multiple steps and reduces distractions.

1 Define the problem clearly. Download Article This is an outwardly simple but vital step. If you don't properly understand the problem, your solutions may be ineffective or fail entirely. To define the problem you will have to ask questions and look at different angles. For example, is there one problem or actually several?

Mathematical problem-solving constitutes an important area of mathematics instruction, and there is a need for research on instructional approaches supporting student learning in this area. This study aims to contribute to previous research by studying the effects of an instructional approach of cooperative learning on students' mathematical problem-solving in heterogeneous classrooms in ...

A strong foundation in math can translate into increased understanding and regulation of your emotions, improved memory and better problem-solving skills. The importance of math: 9 benefits of a great math education Math offers more opportunities beyond grade school, middle school and high school. Its applications to real-life scenarios are vast.

Purpose. Problem solving is a skill in mathematics which although always relevant has heightened priority due to the changes in the new mathematics GCSE (Department for Education, 2013). It has previously been a skill which is deemed underdeveloped within mathematics and therefore is a theme which teachers are seeking to improve and nurture in ...

procedural skills, and problem solving. Students are intellectually engaged in learning by reasoning, predicting, evaluating, concluding, and solving problems, skills that are fundamental for life-long learning. Other key strategies include: • A relentless focus on the California mathematics content standards.

Several mental processes are at work during problem-solving. Among them are: Perceptually recognizing the problem. Representing the problem in memory. Considering relevant information that applies to the problem. Identifying different aspects of the problem. Labeling and describing the problem.

Written by MasterClass Last updated: Jun 7, 2021 • 4 min read Learning problem-solving techniques is a must for working professionals in any field. No matter your title or job description, the ability to find the root cause of a difficult problem and formulate viable solutions is a skill that employers value.

Schema approach. This is a math intervention strategy that can make problem solving easier for all students, regardless of ability. Compare different word problems of the same type and construct a formula, or mathematical sentence stem, that applies to them all. For example, a simple subtraction problems could be expressed as:

Addition — Adding to a set. Subtraction — Taking away from a set. Multiplication — Adding equal sets together in groups (2 sets of 3 is the same as 2x3, or 6). Division — How many equal sets can be found in a number (12 has how many sets of two in it? 6 sets of 2). Percentages — A specific amount in relation to 100.

Go Over New Concepts and Practice Problems. Jumping directly into solving problems can lead to frustration and confusion. Try to study your textbooks and pay attention in class. You should also ...

1 Play math games. Download Article Build up your skills while having some fun! Look for online games that match your age and education level for the best experience. You can get computer games online or download apps on your phone to play games on the go. Try sites like: [1]

$\begingroup$ I think that how we perceive ourselves, specifically how we perceive ourselves in terms of "what I'm good at" or "what I'm bad at" can be self-fulfilling. I think one's attitude when encountering novel situations, in general, like new problems, has a lot to do with how successful one is in handling the situation: if one develops confidence in one's competence, one is more likely ...

Finding, shaping, and solving problems puts high school students in charge of their learning and bolsters critical-thinking skills. As an educator for over 20 years, I've heard a lot about critical thinking, problem-solving, and inquiry and how they foster student engagement. However, I've also seen students draw a blank when they're ...

Students get a deeper comprehension of mathematical ideas, increase their engagement, and recognize the relevance and utility of mathematics through problem-solving. Mathematical problem-solving stimulates the development of: The capacity for rational, analytical, and innovative thought Information processing skills

Problem-solving is the ability to use appropriate methods to tackle unexpected challenges in an organized manner. The ability to solve problems is considered a soft skill, meaning that it's more of a personality trait than a skill you've learned at school, on-the-job, or through technical training. While your natural ability to tackle ...

Communication: being able to express ideas clearly and effectively. Analytical skills: breaking down complex problems into smaller parts and examining each one. Time management: allocating time and resources effectively to address problems. Adaptability: being open to change and willing to adjust strategies.

Urge everybody to take an interest! 3. Make an Arrangement. Devise an arrangement with your children towards how to handle this issue. Give Suggestions. Problem-solving skills ordinarily takes the pace of the forerunner who educates them. At the point when the opportunity arrives and they begin having math issues in class.

Many older adults experience problems with balance and dizziness. Problems can be caused by certain medications, balance disorders, or other medical conditions. Balance problems are one reason older people fall. Maintaining good balance as you age and learning about fall prevention can help you get around, stay independent, and carry out daily ...