What Is Intelligence In Psychology

Charlotte Ruhl

Research Assistant & Psychology Graduate

BA (Hons) Psychology, Harvard University

Charlotte Ruhl, a psychology graduate from Harvard College, boasts over six years of research experience in clinical and social psychology. During her tenure at Harvard, she contributed to the Decision Science Lab, administering numerous studies in behavioral economics and social psychology.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Intelligence in psychology refers to the mental capacity to learn from experiences, adapt to new situations, understand and handle abstract concepts, and use knowledge to manipulate one’s environment. It includes skills such as problem-solving, critical thinking, learning quickly, and understanding complex ideas.

Key Takeaways

  • Defining and classifying intelligence is extremely complicated. Theories of intelligence range from having one general intelligence (g) to certain primary mental abilities and multiple category-specific intelligences.
  • Following the creation of the Binet-Simon scale in the early 1900s, intelligence tests, now referred to as intelligence quotient (IQ) tests, are the most widely-known and used measure for determining an individual’s intelligence.
  • Although these tests are generally reliable and valid tools, they have flaws as they lack cultural specificity and can evoke stereotype threats and self-fulfilling prophecies.
  • IQ scores are normally distributed , meaning that 95% of the population has IQ scores between 70 and 130. However, some extreme examples exist of people with scores far exceeding 130 or far below 70.

Academic training with education and knowledge learning tiny person concept. School, college or university class course for cognitive process and smart professional skills program vector illustration

What Is Intelligence?

It might seem useless to define such a simple word. After all, we have all heard this word hundreds of times and probably have a general understanding of its meaning.

However, the concept of intelligence has been a widely debated topic among members of the psychology community for decades.

Intelligence has been defined in many ways: higher level abilities (such as abstract reasoning, mental representation, problem solving, and decision making), the ability to learn, emotional knowledge, creativity, and adaptation to meet the demands of the environment effectively.

Psychologist Robert Sternberg defined intelligence as “the mental abilities necessary for adaptation to, as well as shaping and selection of, any environmental context (1997, p. 1).

History of Intelligence

The study of human intelligence dates back to the late 1800s when Sir Francis Galton (the cousin of Charles Darwin) became one of the first to study intelligence.

Galton was interested in the concept of a gifted individual, so he created a lab to measure reaction times and other physical characteristics to test his hypothesis that intelligence is a general mental ability producing biological evolution (hello, Darwin!).

Galton theorized that because quickness and other physical attributes were evolutionarily advantageous, they would also provide a good indication of general mental ability (Jensen, 1982).

Thus, Galton operationalized intelligence as reaction time.

Operationalization is an important process in research that involves defining an unmeasurable phenomenon (such as intelligence) in measurable terms (such as reaction time), allowing the concept to be studied empirically (Crowthre-Heyck, 2005).

Galton’s study of intelligence in the laboratory setting and his theorization of the heritability of intelligence paved the way for decades of future research and debate in this field.

Theories of Intelligence

Some researchers argue that intelligence is a general ability, whereas others make the assertion that intelligence comprises specific skills and talents. Psychologists contend that intelligence is genetic, or inherited, and others claim that it is largely influenced by the surrounding environment.

As a result, psychologists have developed several contrasting theories of intelligence as well as individual tests that attempt to measure this very concept.

Spearman’s General Intelligence (g)

General intelligence, also known as g factor, refers to a general mental ability that, according to Spearman, underlies multiple specific skills, including verbal, spatial, numerical, and mechanical.

Charles Spearman, an English psychologist, established the two-factor theory of intelligence back in 1904 (Spearman, 1904). To arrive at this theory, Spearman used a technique known as factor analysis.

Factor analysis is a procedure through which the correlation of related variables is evaluated to find an underlying factor that explains this correlation.

In the case of intelligence, Spearman noticed that those who did well in one area of intelligence tests (for example, mathematics) also did well in other areas (such as distinguishing pitch; Kalat, 2014).

In other words, there was a strong correlation between performing well in math and music, and Spearman then attributed this relationship to a central factor, that of general intelligence (g).

Spearman concluded that there is a single g-factor that represents an individual’s general intelligence across multiple abilities and that a second factor, s, refers to an individual’s specific ability in one particular area (Spearman, as cited in Thomson, 1947).

General Intelligence and Specific Abilities

Together, these two main factors compose Spearman’s two-factor theory.

Thurstone’s Primary Mental Abilities

Thurstone (1938) challenged the concept of a g-factor. After analyzing data from 56 different tests of mental abilities, he identified a number of primary mental abilities that comprise intelligence as opposed to one general factor.

The seven primary mental abilities in Thurstone’s model are verbal comprehension, verbal fluency, number facility, spatial visualization, perceptual speed, memory, and inductive reasoning (Thurstone, as cited in Sternberg, 2003).

Although Thurstone did not reject Spearman’s idea of general intelligence altogether, he instead theorized that intelligence consists of both general ability and a number of specific abilities, paving the way for future research that examined the different forms of intelligence.

Gardner’s Multiple Intelligences

Following the work of Thurstone, American psychologist Howard Gardner built off the idea that there are multiple forms of intelligence.

He proposed that there is no single intelligence, but rather distinct, independent multiple intelligences exist, each representing unique skills and talents relevant to a certain category.

Gardner (1983, 1987) initially proposed seven multiple intelligences : linguistic, logical-mathematical, spatial, musical, bodily-kinesthetic, interpersonal, and intrapersonal, and he has since added naturalist intelligence.

Multiple Intelligences

Gardner holds that most activities (such as dancing) will involve a combination of these multiple intelligences (such as spatial and bodily-kinesthetic intelligences). He also suggests that these multiple intelligences can help us understand concepts beyond intelligence, such as creativity and leadership .

And although this theory has widely captured the attention of the psychology community and the greater public, it does have its faults.

There have been few empirical studies that actually test this theory, and this theory does not account for other types of intelligence beyond the ones Gardner lists (Sternberg, 2003).

Triarchic Theory of Intelligence

Just two years later, in 1985, Robert Sternberg proposed a three-category theory of intelligence, integrating components that were lacking in Gardner’s theory. This theory is based on the definition of intelligence as the ability to achieve success based on your personal standards and your sociocultural context.

According to the triarchic theory, intelligence has three aspects: analytical, creative, and practical (Sternberg, 1985).

Analytical intelligence , also referred to as componential intelligence, refers to intelligence that is applied to analyze or evaluate problems and arrive at solutions. This is what a traditional IQ test measures.

Creative intelligence is the ability to go beyond what is given to create novel and interesting ideas. This type of intelligence involves imagination, innovation, and problem-solving.

Practical intelligence is the ability that individuals use to solve problems faced in daily life when a person finds the best fit between themselves and the demands of the environment.

Adapting to the demands of the environment involves either utilizing knowledge gained from experience to purposefully change oneself to suit the environment (adaptation), changing the environment to suit oneself (shaping), or finding a new environment in which to work (selection).

Other Types of Intelligence

After examining the popular competing theories of intelligence, it becomes clear that there are many different forms of this seemingly simple concept.

On the one hand, Spearman claims that intelligence is generalizable across many different areas of life, and on the other hand, psychologists such as Thurstone, Gardener, and Sternberg hold that intelligence is like a tree with many different branches, each representing a specific form of intelligence.

To make matters even more interesting, let’s throw a few more types of intelligence into the mix!

Emotional Intelligence

Emotional Intelligence is the “ability to monitor one’s own and other people’s emotions, to discriminate between different emotions and label them appropriately, and to use emotional information to guide thinking and behavior” (Salovey and Mayer, 1990).

Emotional intelligence is important in our everyday lives, seeing as we experience one emotion or another nearly every second of our lives. You may not associate emotions and intelligence with one another, but in reality, they are very related.

Emotional intelligence refers to the ability to recognize the meanings of emotions and to reason and problem-solve on the basis of them (Mayer, Caruso, & Salovey, 1999). The four key components of emotional Intelligence are (i) self-awareness, (ii) self-management, (iii) social awareness, and (iv) relationship management.

Emotional and Social Intelligence Leadership Competencies

In other words, if you are high in emotional intelligence, you can accurately perceive emotions in yourself and others (such as reading facial expressions), use emotions to help facilitate thinking, understand the meaning behind your emotions (why are you feeling this way?), and know how to manage your emotions (Salovey & Mayer, 1990).

Fluid vs. Crystallized Intelligence

Raymond Cattell (1963) first proposed the concepts of fluid and crystallized intelligence and further developed the theory with John Horn.

Fluid intelligence is the ability to problem solve in novel situations without referencing prior knowledge, but rather through the use of logic and abstract thinking. Fluid intelligence can be applied to any novel problem because no specific prior knowledge is required (Cattell, 1963). As you grow older fluid increases and then starts to decrease in the late 20s.
Crystallized intelligence refers to the use of previously-acquired knowledge, such as specific facts learned in school or specific motor skills or muscle memory (Cattell, 1963). As you grow older and accumulate knowledge, crystallized intelligence increases.

graph showing fluid and crystalized intelligence across the lifespan

The Cattell-Horn (1966) theory of fluid and crystallized intelligence suggests that intelligence is composed of a number of different abilities that interact and work together to produce overall individual intelligence.

For example, if you are taking a hard math test, you rely on your crystallized intelligence to process the numbers and meaning of the questions, but you may use fluid intelligence to work through the novel problem and arrive at the correct solution. It is also possible that fluid intelligence can become crystallized intelligence.

The novel solutions you create when relying on fluid intelligence can, over time, develop into crystallized intelligence after they are incorporated into long-term memory.

This illustrates some of the ways in which different forms of intelligence overlap and interact with one another, revealing its dynamic nature.

Intelligence Testing

Binet-simon scale.

During the early 1900s, the French government enlisted the help of psychologist Alfred Binet to understand which children were going to be slower learners and thus required more assistance in the classroom (Binet et al., 1912).

As a result, he and his colleague, Theodore Simon, began to develop a specific set of questions that focused on areas such as memory and problem-solving skills.

Binet-Simon Scale Item

They tested these questions on groups of students aged three to twelve to help standardize the measure (Binet et al., 1912). Binet realized that some children were able to answer advanced questions that their older peers were able to answer.

As a result, he created the concept of mental age, or how well an individual performs intellectually relative to the average performance at that age (Cherry, 2020).

Ultimately, Binet finalized the scale, known as the Binet-Simon scale, that became the basis for the intelligence tests still used today.

The Binet-Simon scale of 1905 comprised 30 items designed to measure judgment, comprehension, and reasoning, which Binet deemed the key characteristics of intelligence.

Stanford-Binet Intelligence Scale

When the Binet-Simon scale made its way over to the United States, Stanford psychologist Lewis Terman adapted the test for American students and published the Stanford-Binet Intelligence Scale in 1916 (Cherry, 2020).

The Stanford-Binet Scale is a contemporary assessment that measures intelligence according to five features of cognitive ability,

including fluid reasoning, knowledge, quantitative reasoning, visual-spatial processing, and working memory. Both verbal and nonverbal responses are measured.

IQ normal distribution bell curve

This test used a single number, referred to as the intelligence quotient (IQ), to indicate an individual’s score.

The average score for the test is 100, and any score from 90 to 109 is considered to be in the average intelligence range. Scores from 110 to 119 are considered to be High Average. Superior scores range from 120 to 129 and anything over 130 is considered Very Superior.

To calculate IQ, the student’s mental age is divided by his or her actual (or chronological) age, and this result is multiplied by 100. If your mental age is equal to your chronological age, you will have an IQ of 100, or average. If your mental age is 12, but your chronological age is only 10, you will have an above-average IQ of 120.

WISC and WAIS

Just as theories of intelligence build off one another, intelligence tests do too. After Terman created Stanford-Binet test, American psychologist David Wechsler developed a new tool due to his dissatisfaction with the limitations of the Stanford-Binet test (Cherry, 2020).

Like Thurstone, Gardner, and Sternberg, Wechsler believed intelligence involved many different mental abilities and felt that the Stanford-Binet scale too closely reflected the idea of one general intelligence.

Because of this, Wechsler created the Wechsler Intelligence Scale for Children (WISC) and the Wechsler Adult Intelligence Scale (WAIS) in 1955, with the most up-to-date version being the WAIS-IV (Cherry, 2020).

The Wechsler Intelligence Scale for Children (WISC), developed by David Wechsler, is an IQ test designed to measure intelligence and cognitive ability in children between the ages of 6 and 16. It is currently in its fourth edition (WISC-V) released in 2014 by Pearson.

the ability to solve problems and to adjust and learn from experiences is known as

Above Image: WISC-IV Sample Test Question

The Wechsler Adult Intelligence Scale (WAIS) is an IQ test designed to measure cognitive ability in adults and older adolescents, including

verbal comprehension, perceptual reasoning, working memory, and processing speed.

The latest version of the Wechsler Adult Intelligence Scale (WAIS-IV) was standardized on 2,200 healthy people between the ages of 16 and 90 years (Brooks et al., 2011).

The standardization of a test involves giving it to a large number of people of different ages to compute the average score on the test at each age level.

The overall IQ score combines the test takers’ performance in all four categories (Cherry, 2020). And rather than calculating this number based on mental and chronological age, the WAIS compares the individual’s score to the average score at that level, as calculated by the standardization process.

The Flynn Effect

It is important to regularly standardize an intelligence test because the overall level of intelligence in a population may change over time.

This phenomenon is known as the Flynn effect (named after its discoverer, New Zealand researcher James Flynn) which refers to the observation that scores on intelligence tests worldwide increase from decade to decade (Flynn, 1984).

Aptitude vs. Achievement Tests

Other tests, such as aptitude and achievement tests, are designed to measure intellectual capability. Achievement tests measure what content a student has already learned (such as a unit test in history or a final math exam), whereas an aptitude test measures a student’s potential or ability to learn (Anastasi, 1984).

Although this may sound similar to an IQ test, aptitude tests typically measure abilities in very specific areas.

Criticism of Intelligence Testing

Criticisms have ranged from the claim that IQ tests are biased in favor of white, middle-class people. Negative stereotypes about a person’s ethnicity, gender, or age may cause the person to suffer stereotype threat, a burden of doubt about his or her own abilities, which can create anxiety that result in lower scores.

Reliability and Construct Validity

Although you may be wondering if you take an intelligence test multiple times will you improve your score and whether these tests even measure intelligence in the first place, research provides reassurance that these tests are both very reliable and have high construct validity.

Reliability simply means that they are consistent over time. In other words, if you take a test at two different points in time, there will be very little change in performance or, in the case of intelligence tests, IQ scores.

Although this isn’t a perfect science, and your score might slightly fluctuate when taking the same test on different occasions or different tests at the same age, IQ tests demonstrate relatively high reliability (Tuma & Appelbaum, 1980).

Additionally, intelligence tests also reveal strong construct validity , meaning that they are, in fact, measuring intelligence rather than something else.

Researchers have spent hours on end developing, standardizing, and adapting these tests to best fit the current times. But that is also not to say that these tests are completely flawless.

Research documents errors with the specific scoring of tests and interpretation of the multiple scores (since typically, an individual will receive an overall IQ score accompanied by several category-specific scores), and some studies question the actual validity, reliability, and utility for individual clinical use of these tests (Canivez, 2013).

Additionally, intelligence scores are created to reflect different theories of intelligence, so the interpretations may be heavily based on the theory upon which the test is based (Canivez, 2013).

Cultural Specificity

There are issues with intelligence tests beyond looking at them in a vacuum.  These tests were created by Western psychologists who created such tools to measure euro-centric values.

However, it is important to recognize that the majority of the world’s population does not reside in Europe or North America, and as a result, the cultural specificity of these tests is crucial.

Different cultures hold different values and even have different perceptions of intelligence, so is it fair to have one universal marker of this increasingly complex concept?

For example, a 1992 study found that Kenyan parents defined intelligence as the ability to do without being told what needed to be done around the homestead (Harkness et al., 1992), and, given the American and European emphasis on speed, some Ugandans define intelligent people as being slow in thought and action (Wober, 1974).

Together, these examples illustrate the flexibility of defining intelligence, making capturing this concept in a single test, let alone a single number even more challenging.  And even within the U.S., do perceptions of intelligence differ?

An example is in San Jose, California, where Latino, Asian, and Anglo parents had varying definitions of intelligence.  The teachers’ understanding of intelligence was more similar to that of the Asian and Anglo communities, and this similarity predicted the child’s performance in school (Okagaki & Sternberg, 1993).

That is, students whose families had more similar understandings of intelligence were doing better in the classroom.

Intelligence takes many forms, ranging from country to country and culture to culture.  Although IQ tests might have high reliability and validity, understanding the role of culture is as, if not more, important in forming the bigger picture of an individual’s intelligence.

IQ tests may accurately measure academic intelligence, but more research must be done to discern whether they truly measure practical intelligence or even just general intelligence in all cultures.

Social and Environmental Factors

Another important part of the puzzle to consider is the social and environmental context in which an individual lives and the IQ test-related biases that develop as a result.

These might help explain why some individuals have lower scores than others. For example, the threat of social exclusion can greatly decrease the expression of intelligence.

A 2002 study gave participants an IQ test and a personality inventory, and some were randomly chosen to receive feedback from the inventory indicating that they were “the sort of people who would end up alone in life” (Baumeister et al., 2002).

After a second test, those who were told they would be loveless and friendless in the future answered significantly fewer questions than they did on the earlier test.

These findings can translate into the real world where not only the threat of social exclusion can decrease the expression of intelligence but also a perceived threat to physical safety.

In other words, a child’s poor academic performance can be attributed to the disadvantaged, potentially unsafe communities in which they grow up.

Stereotype Threat

Stereotype threat is a phenomenon in which people feel at risk of conforming to stereotypes about their social group. Negative stereotypes can also create anxiety that results in lower scores.

In one study, Black and White college students were given part of the verbal section from the Graduate Record Exam (GRE), but in the stereotype threat condition, they told students the test diagnosed intellectual ability, thus potentially making the stereotype that Blacks are less intelligent than Whites salient.

The results of this study revealed that in the stereotype threat condition, Blacks performed worse than Whites, but in the no stereotype threat condition, Blacks and Whites performed equally well (Steele & Aronson, 1995).

And even just recording your race can also result in worsened performance. Stereotype threat is a real threat and can be detrimental to an individual’s performance on these tests.

Self-Fulfilling Prophecy

Stereotype threat is closely related to the concept of a self-fulfilling prophecy in which an individual’s expectations about another person can result in the other person acting in ways that conform to that very expectation.

In one experiment, students in a California elementary school were given an IQ test, after which their teachers were given the names of students who would become “intellectual bloomers” that year based on the results of the test (Rosenthal & Jacobson, 1968).

At the end of the study, the students were tested again with the same IQ test, and those labeled as “intellectual bloomers” significantly increased their scores.

This illustrates that teachers may subconsciously behave in ways that encourage the success of certain students, thus influencing their achievement (Rosenthal & Jacobson, 1968), and provides another example of small variables that can play a role in an individual’s intelligence score and the development of their intelligence.

This is all to say that it is important to consider the less visible factors that play a role in determining someone’s intelligence. While an IQ score has many benefits in measuring intelligence, it is critical to consider that just because someone has a lower score does not necessarily mean they are lower in intelligence.

There are many factors that can worsen performance on these tests, and the tests themselves might not even be accurately measuring the very concept they are intended to.

Extremes of Intelligence

IQ scores are generally normally distributed (Moore et al., 2013). That is, roughly 95% of the population has IQ scores between 70 and 130. But what about the other 5%?

Individuals who fall outside this range represent the extremes of intelligence.

Those who have an IQ above 130 are considered to be gifted (Lally & French, 2018), such as Christopher Langan, an American horse rancher, who has an IQ score around 200 (Gladwell, 2008).

Those individuals who have scores below 70 do so because of an intellectual disability marked by substantial developmental delays, including motor, cognitive, and speech delays (De Light, 2012).

Some of the time, these disabilities are the product of genetic mutations.

Down syndrome, for example, resulting from extra genetic material from or a complete extra copy of the 21st chromosome, is a common genetic cause of an intellectual disability (Breslin, 2014). As such, many individuals with Down Syndrome have below-average IQ scores (Breslin, 2014).

Savant syndrome is another example of extreme intelligence. Despite having significant mental disabilities, these individuals demonstrate certain abilities in some fields that are far above average, such as incredible memorization, rapid mathematical or calendar calculation ability, or advanced musical talent (Treffert, 2009).

The fact that these individuals who may be lacking in certain areas such as social interaction and communication make up for it in other remarkable areas further illustrates the complexity of intelligence and what this concept means today, as well as how we must consider all individuals when determining how to perceive, measure, and recognize intelligence in our society.

Intelligence Today

Today, intelligence is generally understood as the ability to understand and adapt to the environment by using inherited abilities and learned knowledge.

Many new intelligence tests have arisen, such as the University of California Matrix Reasoning Task (Pahor et al., 2019), that can be taken online and in very little time, and new methods of scoring these tests have been developed too (Sansone et al., 2014).

Admission into university and graduate schools relies on specific aptitude and achievement tests, such as the SAT, ACT, and the LSAT – these tests have become a huge part of our lives.

Humans are incredibly intelligent beings and rely on our intellectual abilities daily. Although intelligence can be defined and measured in countless ways, our overall intelligence as a species makes us incredibly unique and has allowed us to thrive for generations on end.

Anastasi, A. (1984). 7. Aptitude and Achievement Tests: The Curious Case of the Indestructible Strawperson.

Baumeister, R. F., Twenge, J. M., & Nuss, C. K. (2002). Effects of social exclusion on cognitive processes: anticipated aloneness reduces intelligent thought . Journal of personality and social psychology, 83 (4), 817.

Binet, A., Simon, T., & Simon, T. (1912). A method of measuring the development of the intelligence of young children . Chicago medical book Company.

Breslin, J., Spanò, G., Bootzin, R., Anand, P., Nadel, L., & Edgin, J. (2014). Obstructive sleep apnea syndrome and cognition in Down syndrome . Developmental Medicine & Child Neurology, 56 (7), 657-664.

Brooks, B. L., Holdnack, J. A., & Iverson, G. L. (2011). Advanced clinical interpretation of the WAIS-IV and WMS-IV: Prevalence of low scores varies by level of intelligence and years of education . Assessment, 18 (2), 156-167.

Canivez, G. L. (2013). Psychometric versus actuarial interpretation of intelligence and related aptitude batteries.

Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of educational psychology, 54 (1), 1.

Cherry, K. (2020). Why Alfred Binet Developed IQ Testing for Students. Retrieved from https://www.verywellmind.com/history-of-intelligence-testing-2795581

Crowther-Heyck, H. (2005). Herbert  A. Simon: The bounds of reason in modern America . JHU Press.

De Ligt, J., Willemsen, M. H., Van Bon, B. W., Kleefstra, T., Yntema, H. G., Kroes, T., … & del Rosario, M. (2012). Diagnostic exome sequencing in persons with severe intellectual disability . New England Journal of Medicine, 367 (20), 1921-1929.

Flynn, J. R. (1984). The mean IQ of Americans: Massive gains 1932 to 1978. Psychological Bulletin, 95 (1), 29.

Gardner, H. (1983). Frames of Mind . New York: Basic Books.

Gardner, H. (1987). The theory of multiple intelligence . Annals Of Dyslexia , 37, 19-35

Gignac, G. E., & Watkins, M. W. (2013). Bifactor modeling and the estimation of model-based reliability in the WAIS-IV . Multivariate Behavioral Research, 48 (5), 639-662.

Gladwell, M. (2008). Outliers: The story of success. Little, Brown. Harkness, S., Super, C., & Keefer, C. (1992). Culture and ethnicity: In M. Levine, W. Carey & A. Crocker (Eds.), Developmental-behavioral pediatrics (pp. 103-108).

Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57 , 253-270.

Jensen, A. R. (1982). Reaction time and psychometric g. In A model for intelligence (pp. 93-132). Springer, Berlin, Heidelberg.

Heidelber Kalat, J.W. (2014). Introduction to Psychology , 10th Edition. Cengage Learning.

Lally, M., & French, S. V. (2018). Introduction  to Psychology . Canada: College of Lake County Foundation, 176-212.

Mayer, J. D., Caruso, D. R., & Salovey, P. (1999). Emotional intelligence meets traditional standards for an intelligence . Intelligence, 27(4), 267-298.

Moore, D. S., Notz, W. I, & Flinger, M. A. (2013). The basic practice of statistics (6th ed.). New York, NY: W. H. Freeman and Company.

Okagaki, L., & Sternberg, R. J. (1993). Parental beliefs and children’s school performance . Child Development, 64 (1), 36-56.

Pahor, A., Stavropoulos, T., Jaeggi, S. M., & Seitz, A. R. (2019). Validation of a matrix reasoning task for mobile devices. Behavior Research Methods, 51 (5), 2256-2267.

Rosenthal, R., & Jacobson, L. (1968). Pygmalion in the classroom . The urban review, 3 (1), 16-20.

Salovey, P., & Mayer, J. D. (1990). Emotional intelligence . Imagination, Cognition and Personality, 9 (3), 185-211.

Sansone, S. M., Schneider, A., Bickel, E., Berry-Kravis, E., Prescott, C., & Hessl, D. (2014). Improving IQ measurement in intellectual disabilities using true deviation from population norms. Journal of Neurodevelopmental Disorders, 6 (1), 16.

Spearmen, C. (1904). General intelligence objectively determined and measured. American Journal of Psychology, 15 , 107-197.

Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance of African-Americans. Journal of Personality and Social Psychology, 69 , 797-811.

Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence . CUP Archive.

Sternberg, R. J. (1997). The concept of intelligence and its role in lifelong learning and success . American psychologist, 52 (10), 1030.

Sternberg, R. J. (2003). Contemporary theories of intelligence. Handbook of psychology , 21-45.

Treffert, D. A. (2009). The savant syndrome: an extraordinary condition. A synopsis: past, present, future . Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (1522), 1351-1357.

Thomson, G. (1947). Charles Spearman, 1863-1945.

Tuma, J. M., & Appelbaum, A. S. (1980). Reliability and practice effects of WISC-R IQ estimates in a normal population . Educational and Psychological Measurement, 40 (3), 671-678.

Wober, J. M. (1971). Towards an understanding of the Kiganda concept of intelligence. Social Psychology Section, Department of Sociology, Makerere University.

Print Friendly, PDF & Email

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support
  • Piaget's Theory
  • Sensorimotor Stage
  • Preoperational Stage
  • Concrete Operational Stage
  • Formal Operational Stage
  • Support and Criticism

Piaget's 4 Stages of Cognitive Development Explained

Background and Key Concepts of Piaget's Theory

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

the ability to solve problems and to adjust and learn from experiences is known as

Important Cognitive Development Concepts

  • Next in Stages of Cognitive Development Guide The Sensorimotor Stage of Cognitive Development

Jean Piaget's theory of cognitive development suggests that children move through four different stages of learning. His theory focuses not only on understanding how children acquire knowledge, but also on understanding the nature of intelligence. Piaget's stages are:

  • Sensorimotor stage : Birth to 2 years
  • Preoperational stage : Ages 2 to 7
  • Concrete operational stage : Ages 7 to 11
  • Formal operational stage : Ages 12 and up

Piaget believed that children take an active role in the learning process, acting much like little scientists as they perform experiments, make observations, and learn about the world. As kids interact with the world around them, they continually add new knowledge, build upon existing knowledge, and adapt previously held ideas to accommodate new information.

History of Piaget's Theory of Cognitive Development

Piaget was born in Switzerland in the late 1800s and was a precocious student, publishing his first scientific paper when he was just 11 years old. His early exposure to the intellectual development of children came when he worked as an assistant to Alfred Binet and Theodore Simon as they worked to standardize their famous IQ test .

Piaget vs. Vygotsky

Piaget's theory differs in important ways from those of Lev Vygotsky , another influential figure in the field of child development. Vygotsky acknowledged the roles that curiosity and active involvement play in learning, but placed greater emphasis on society and culture.

Piaget felt that development is largely fueled from within, while Vygotsky believed that external factors (such as culture) and people (such as parents, caregivers, and peers) play a more significant role.

Much of Piaget's interest in the cognitive development of children was inspired by his observations of his own nephew and daughter. These observations reinforced his budding hypothesis that children's minds were not merely smaller versions of adult minds.

Until this point in history, children were largely treated simply as smaller versions of adults. Piaget was one of the first to identify that the way that children think is different from the way adults think.

Piaget proposed that intelligence grows and develops through a series of stages. Older children do not just think more quickly than younger children. Instead, there are both qualitative and quantitative differences between the thinking of young children versus older children.

Based on his observations, he concluded that children were not less intelligent than adults—they simply think differently. Albert Einstein called Piaget's discovery "so simple only a genius could have thought of it."

Piaget's stage theory describes the  cognitive development of children . Cognitive development involves changes in cognitive process and abilities. In Piaget's view, early cognitive development involves processes based upon actions and later progresses to changes in mental operations.

The Sensorimotor Stage of Cognitive Development

During this earliest stage of cognitive development, infants and toddlers acquire knowledge through sensory experiences and manipulating objects. A child's entire experience at the earliest period of this stage occurs through basic reflexes, senses, and motor responses.

Birth to 2 Years

Major characteristics and developmental changes during this stage:

  • Know the world through movements and sensations
  • Learn about the world through basic actions such as sucking, grasping, looking, and listening
  • Learn that things continue to exist even when they cannot be seen ( object permanence )
  • Realize that they are separate beings from the people and objects around them
  • Realize that their actions can cause things to happen in the world around them

During the sensorimotor stage, children go through a period of dramatic growth and learning. As kids interact with their environment, they continually make new discoveries about how the world works.

The cognitive development that occurs during this period takes place over a relatively short time and involves a great deal of growth. Children not only learn how to perform physical actions such as crawling and walking; they also learn a great deal about language from the people with whom they interact. Piaget also broke this stage down into substages. Early representational thought emerges during the final part of the sensorimotor stage.

Piaget believed that developing  object permanence  or object constancy, the understanding that objects continue to exist even when they cannot be seen, was an important element at this point of development.

By learning that objects are separate and distinct entities and that they have an existence of their own outside of individual perception, children are then able to begin to attach names and words to objects.

The Preoperational Stage of Cognitive Development

The foundations of language development may have been laid during the previous stage, but the emergence of language is one of the major hallmarks of the preoperational stage of development.

2 to 7 Years

  • Begin to think symbolically and learn to use words and pictures to represent objects
  • Tend to be egocentric and struggle to see things from the perspective of others
  • Getting better with language and thinking, but still tend to think in very concrete terms

At this stage, kids learn through pretend play but still struggle with logic and taking the point of view of other people. They also often struggle with understanding the idea of constancy.

Children become much more skilled at pretend play during this stage of development, yet they continue to think very concretely about the world around them. 

For example, a researcher might take a lump of clay, divide it into two equal pieces, and then give a child the choice between two pieces of clay to play with. One piece of clay is rolled into a compact ball while the other is smashed into a flat pancake shape. Because the flat shape  looks  larger, the preoperational child will likely choose that piece, even though the two pieces are exactly the same size.

The Concrete Operational Stage of Cognitive Development

While children are still very concrete and literal in their thinking at this point in development, they become much more adept at using logic.   The egocentrism of the previous stage begins to disappear as kids become better at thinking about how other people might view a situation.

7 to 11 Years

  • Begin to think logically about concrete events
  • Begin to understand the concept of conservation; that the amount of liquid in a short, wide cup is equal to that in a tall, skinny glass, for example
  • Thinking becomes more logical and organized, but still very concrete
  • Begin using inductive logic, or reasoning from specific information to a general principle

While thinking becomes much more logical during the concrete operational state, it can also be very rigid. Kids at this point in development tend to struggle with abstract and hypothetical concepts.

During this stage, children also become less egocentric and begin to think about how other people might think and feel. Kids in the concrete operational stage also begin to understand that their thoughts are unique to them and that not everyone else necessarily shares their thoughts, feelings, and opinions.

The Formal Operational Stage of Cognitive Development

The final stage of Piaget's theory involves an increase in logic, the ability to use deductive reasoning, and an understanding of abstract ideas. At this point, adolescents and young adults become capable of seeing multiple potential solutions to problems and think more scientifically about the world around them.

Age 12 and Up

Major characteristics and developmental changes during this time:

  • Begins to think abstractly and reason about hypothetical problems
  • Begins to think more about moral, philosophical, ethical, social, and political issues that require theoretical and abstract reasoning
  • Begins to use deductive logic, or reasoning from a general principle to specific information

The ability to thinking about abstract ideas and situations is the key hallmark of the formal operational stage of cognitive development. The ability to systematically plan for the future and reason about hypothetical situations are also critical abilities that emerge during this stage. 

It is important to note that Piaget did not view children's intellectual development as a quantitative process. That is, kids do not just add more information and knowledge to their existing knowledge as they get older.

Instead, Piaget suggested that there is a qualitative change in how children think as they gradually process through these four stages. At age 7, children don't just have more information about the world than they did at age 2; there is a fundamental change in  how  they think about the world.

Piaget suggested several factors that influence how children learn and grow.

A schema describes both the mental and physical actions involved in understanding and knowing. Schemas are categories of knowledge that help us to interpret and understand the world.

In Piaget's view, a schema includes both a category of knowledge and the process of obtaining that knowledge. As experiences happen, this new information is used to modify, add to, or change previously existing schemas.

For example, a child may have a schema about a type of animal, such as a dog. If the child's sole experience has been with small dogs, a child might believe that all dogs are small, furry, and have four legs. Suppose then that the child encounters an enormous dog. The child will take in this new information, modifying the previously existing schema to include these new observations.

Assimilation

The process of taking in new information into our already existing schemas is known as assimilation. The process is somewhat subjective because we tend to modify experiences and information slightly to fit in with our preexisting beliefs. In the example above, seeing a dog and labeling it "dog" is a case of assimilating the animal into the child's dog schema.

Accommodation

Another part of adaptation is the ability to change existing schemas in light of new information; this process is known as accommodation. New schemas may also be developed during this process.

Equilibration

As children progress through the stages of cognitive development, it is important to maintain a balance between applying previous knowledge (assimilation) and changing behavior to account for new knowledge (accommodation).

Piaget believed that all children try to strike a balance between assimilation and accommodation using a mechanism he called equilibration. Equilibration helps explain how children can move from one stage of thought to the next.

One of the main points of Piaget's theory is that creating knowledge and intelligence is an inherently  active  process.

"I find myself opposed to the view of knowledge as a passive copy of reality," Piaget wrote. "I believe that knowing an object means acting upon it, constructing systems of transformations that can be carried out on or with this object. Knowing reality means constructing systems of transformations that correspond, more or less adequately, to reality."

Piaget's theory of cognitive development helped add to our understanding of children's intellectual growth. It also stressed that children were not merely passive recipients of knowledge. Instead, kids are constantly investigating and experimenting as they build their understanding of how the world works.

Hugar SM, Kukreja P, Assudani HG, Gokhale N. Evaluation of the relevance of Piaget's cognitive principles among parented and orphan children in Belagavi City, Karnataka, India: A comparative study . I nt J Clin Pediatr Dent. 2017;10(4):346-350. doi:10.5005/jp-journals-10005-1463

Malik F. Cognitive development . In: StatPearls [Internet]. StatPearls Publishing.

Scott HK. Piaget . In: StatPearls [Internet]. StatPearls Publishing.

Fischer KW, Bullock D. Cognitive development in school-age children: Conclusions and new directions . In: Development During Middle Childhood: The Years From Six to Twelve. National Academies Press.

Sobel AA, Resick PA, Rabalais AE. The effect of cognitive processing therapy on cognitions: impact statement coding . J Trauma Stress. 2009;22(3):205-11. doi:10.1002/jts.20408

Piaget J. The Essential Piaget. Gruber HE, Voneche JJ. eds. Basic Books.

Fancher RE, Rutherford A. Pioneers of Psychology: A History . W.W. Norton.

Santrock JW. A Topical Approach to Lifespan Development (8th ed.) . McGraw-Hill.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 10. Intelligence and Language

10.1 Defining and Measuring Intelligence

Learning objectives.

  • Define intelligence and list the different types of intelligences psychologists study.
  • Summarize the characteristics of a scientifically valid intelligence test.
  • Outline the biological and environmental determinants of intelligence.

Psychologists have long debated how to best conceptualize and measure intelligence (Sternberg, 2003). These questions include how many types of intelligence there are, the role of nature versus nurture in intelligence, how intelligence is represented in the brain, and the meaning of group differences in intelligence.

General (g) versus Specific (s) Intelligences

In the early 1900s, the French psychologist Alfred Binet (1857-1914) and his colleague Henri Simon (1872-1961) began working in Paris to develop a measure that would differentiate students who were expected to be better learners from students who were expected to be slower learners. The goal was to help teachers better educate these two groups of students. Binet and Simon developed what most psychologists today regard as the first intelligence test (Figure 10.1, “Intelligence Tests in Schools”), which consisted of a wide variety of questions that included the ability to name objects, define words, draw pictures, complete sentences, compare items, and construct sentences.

Binet and Simon (Binet, Simon, & Town, 1915; Siegler, 1992) believed that the questions they asked their students, even though they were on the surface dissimilar, all assessed the basic abilities to understand, reason, and make judgments. And it turned out that the correlations among these different types of measures were in fact all positive; students who got one item correct were more likely to also get other items correct, even though the questions themselves were very different.

On the basis of these results, the psychologist Charles Spearman (1863-1945) hypothesized that there must be a single underlying construct that all of these items measure. He called the construct that the different abilities and skills measured on intelligence tests have in common the general intelligence factor (g). Virtually all psychologists now believe that there is a generalized intelligence factor, g, that relates to abstract thinking and that includes the abilities to acquire knowledge, to reason abstractly, to adapt to novel situations, and to benefit from instruction and experience (Gottfredson, 1997; Sternberg, 2003). People with higher general intelligence learn faster.

Soon after Binet and Simon introduced their test, the American psychologist Lewis Terman (1877-1956) developed an American version of Binet’s test that became known as the Stanford-Binet Intelligence Test . The Stanford-Binet is a measure of general intelligence made up of a wide variety of tasks including vocabulary, memory for pictures, naming of familiar objects, repeating sentences, and following commands .

Although there is general agreement among psychologists that g exists, there is also evidence for specific intelligence (s), a measure of specific skills in narrow domains . One empirical result in support of the idea of s comes from intelligence tests themselves. Although the different types of questions do correlate with each other, some items correlate more highly with each other than do other items; they form clusters or clumps of intelligences.

One distinction is between fluid intelligence , which refers to the capacity to learn new ways of solving problems and performing activities , and crystallized intelligence , which refers to the accumulated knowledge of the world we have acquired throughout our lives (Salthouse, 2004). These intelligences must be different because crystallized intelligence increases with age — older adults are as good as or better than young people in solving crossword puzzles — whereas fluid intelligence tends to decrease with age (Horn, Donaldson, & Engstrom, 1981; Salthouse, 2004).

Other researchers have proposed even more types of intelligences. L. L. Thurstone (1938) proposed that there were seven clusters of primary mental abilities , made up of word fluency, verbal comprehension, spatial ability, perceptual speed, numerical ability, inductive reasoning, and memory . But even these dimensions tend to be at least somewhat correlated, showing again the importance of g.

One advocate of the idea of multiple intelligences is the psychologist Robert Sternberg. Sternberg has proposed a triarchic (three-part) theory of intelligence that proposes that people may display more or less analytical intelligence, creative intelligence, and practical intelligence . Sternberg (1985, 2003) argued that traditional intelligence tests assess analytical intelligence, the ability to answer problems with a single right answer, but that they do not well assess creativity (the ability to adapt to new situations and create new ideas) or practicality (e.g., the ability to write good memos or to effectively delegate responsibility).

As Sternberg proposed, research has found that creativity is not highly correlated with analytical intelligence (Furnham & Bachtiar, 2008), and exceptionally creative scientists, artists, mathematicians, and engineers do not score higher on intelligence than do their less creative peers (Simonton, 2000). Furthermore, the brain areas that are associated with convergent thinking , thinking that is directed toward finding the correct answer to a given problem , are different from those associated with divergent thinking , the ability to generate many different ideas for or solutions to a single problem (Tarasova, Volf, & Razoumnikova, 2010), as suggested by Figure 10.2, “Test Your Divergent Thinking.” On the other hand, being creative often takes some of the basic abilities measured by g, including the abilities to learn from experience, to remember information, and to think abstractly (Bink & Marsh, 2000).

Studies of creative people suggest at least five components that are likely to be important for creativity:

  • Expertise . Creative people have carefully studied and know a lot about the topic that they are working in. Creativity comes with a lot of hard work (Ericsson, 1998; Weisberg, 2006).
  • Imaginative thinking . Creative people often view a problem in a visual way, allowing them to see it from a new and different point of view.
  • Risk taking . Creative people are willing to take on new but potentially risky approaches.
  • Intrinsic interest . Creative people tend to work on projects because they love doing them, not because they are paid for them. In fact, research has found that people who are paid to be creative are often less creative than those who are not (Hennessey & Amabile, 2010).
  • Working in a creative environment . Creativity is in part a social phenomenon. Simonton (1992) found that the most creative people were supported, aided, and challenged by other people working on similar projects.

The last aspect of the triarchic model, practical intelligence, refers primarily to intelligence that cannot be gained from books or formal learning. Practical intelligence represents a type of street smarts or common sense that is learned from life experiences. Although a number of tests have been devised to measure practical intelligence (Sternberg, Wagner, & Okagaki, 1993; Wagner & Sternberg, 1985), research has not found much evidence that practical intelligence is distinct from g or that it is predictive of success at any particular tasks (Gottfredson, 2003). Practical intelligence may include, at least in part, certain abilities that help people perform well at specific jobs, and these abilities may not always be highly correlated with general intelligence (Sternberg, Wagner, & Okagaki, 1993). On the other hand, these abilities or skills are very specific to particular occupations and thus do not seem to represent the broader idea of intelligence.

Another champion of the idea of multiple intelligences is the psychologist Howard Gardner (1983, 1999). Gardner argued that it would be evolutionarily functional for different people to have different talents and skills, and proposed that there are eight intelligences that can be differentiated from each other (Table 10.1, “Howard Gardner’s Eight Specific Intelligences”). Gardner noted that some evidence for multiple intelligences comes from the abilities of autistic savants , people who score low on intelligence tests overall but who nevertheless may have exceptional skills in a given domain, such as math, music, art, or in being able to recite statistics in a given sport (Treffert & Wallace, 2004).

The idea of multiple intelligences has been influential in the field of education, and teachers have used these ideas to try to teach differently to different students (Figure 10.3, “Intelligence”). For instance, to teach math problems to students who have particularly good kinesthetic intelligence, a teacher might encourage the students to move their bodies or hands according to the numbers. On the other hand, some have argued that these intelligences sometimes seem more like abilities or talents rather than real intelligence. And there is no clear conclusion about how many intelligences there are. Are sense of humour, artistic skills, dramatic skills, and so forth also separate intelligences? Furthermore, and again demonstrating the underlying power of a single intelligence, the many different intelligences are in fact correlated and thus represent, in part, g (Brody, 2003).

Measuring Intelligence: Standardization and the Intelligence Quotient

The goal of most intelligence tests is to measure g, the general intelligence factor. Good intelligence tests are reliable , meaning that they are consistent over time , and also demonstrate construct validity , meaning that they actually measure intelligence rather than something else . Because intelligence is such an important individual difference dimension, psychologists have invested substantial effort in creating and improving measures of intelligence, and these tests are now the most accurate of all psychological tests. In fact, the ability to accurately assess intelligence is one of the most important contributions of psychology to everyday public life.

Intelligence changes with age. A three-year-old who could accurately multiply 183 by 39 would certainly be intelligent, but a 25-year-old who could not do so would be seen as unintelligent. Thus understanding intelligence requires that we know the norms or standards in a given population of people at a given age. The standardization of a test involves giving it to a large number of people at different ages and computing the average score on the test at each age level .

It is important that intelligence tests be standardized on a regular basis because the overall level of intelligence in a population may change over time. The Flynn effect refers to the observation that scores on intelligence tests worldwide have increased substantially over the past decades (Flynn, 1999). Although the increase varies somewhat from country to country, the average increase is about three intelligence (IQ) points every 10 years. There are many explanations for the Flynn effect, including better nutrition, increased access to information, and more familiarity with multiple-choice tests (Neisser, 1998). But whether people are actually getting smarter is debatable (Neisser, 1997).

Once the standardization has been accomplished, we have a picture of the average abilities of people at different ages and can calculate a person’s mental age , which is the age at which a person is performing intellectually . If we compare the mental age of a person to the person’s chronological age, the result is the IQ , a measure of intelligence that is adjusted for age . A simple way to calculate IQ is by using the following formula:

IQ = mental age ÷ chronological age × 100.

Thus a 10-year-old child who does as well as the average 10-year-old child has an IQ of 100 (10 ÷ 10 × 100), whereas an eight-year-old child who does as well as the average 10-year-old child would have an IQ of 125 (10 ÷ 8 × 100). Most modern intelligence tests are based the relative position of a person’s score among people of the same age, rather than on the basis of this formula, but the idea of an intelligence ratio or quotient provides a good description of the score’s meaning.

A number of scales are based on the IQ. The Wechsler Adult lntelligence Scale (WAIS) is the most widely used intelligence test for adults (Watkins, Campbell, Nieberding, & Hallmark, 1995). The current version of the WAIS, the WAIS-IV, was standardized on 2,200 people ranging from 16 to 90 years of age. It consists of 15 different tasks, each designed to assess intelligence, including working memory, arithmetic ability, spatial ability, and general knowledge about the world (see Figure 10.4, “Sample Items from the Wechsler Adult Intelligence Scale (WAIS)”). The WAIS-IV yields scores on four domains: verbal, perceptual, working memory, and processing speed. The reliability of the test is high (more than 0.95), and it shows substantial construct validity. The WAIS-IV is correlated highly with other IQ tests such as the Stanford-Binet, as well as with criteria of academic and life success, including grades, measures of work performance, and occupational level. It also shows significant correlations with measures of everyday functioning among those with intellectual disabilities.

The Wechsler scale has also been adapted for preschool children in the form of the Wechsler Primary and Preschool Scale of Intelligence (WPPSI-III) and for older children and adolescents in the form of the Wechsler Intelligence Scale for Children (WISC-IV) .

The intelligence tests that you may be most familiar with are aptitude tests , which are designed to measure one’s ability to perform a given task , such as doing well in undergraduate, graduate, or post-graduate training. Canadian post-secondary institutions request official high school transcripts demonstrating minimum grade admission requirements, while most American colleges and universities require students to take the Scholastic Assessment Test (SAT) or the American College Test (ACT). Post-graduate schools in both countries require the Graduate Record Examination (GRE), Graduate Management Admission Test (GMAT), Medical College Admissions Test (MCAT), or the Law School Admission Test (LSAT). These tests are useful for selecting students because they predict success in the programs that they are designed for, particularly in the first year of the program (Kuncel, Hezlett, & Ones, 2010). These aptitude tests also measure, in part, intelligence. Frey and Detterman (2004) found that the SAT correlated highly (between about r = .7 and r = .8) with standard measures of intelligence.

Intelligence tests are also used by industrial and organizational psychologists in the process of personnel selection . Personnel selection is the use of structured tests to select people who are likely to perform well at given jobs (Schmidt & Hunter, 1998). The psychologists begin by conducting a job analysis in which they determine what knowledge, skills, abilities, and personal characteristics (KSAPs) are required for a given job . This is normally accomplished by surveying and/or interviewing current workers and their supervisors. Based on the results of the job analysis, the psychologists choose selection methods that are most likely to be predictive of job performance. Measures include tests of cognitive and physical ability and job knowledge tests, as well as measures of IQ and personality.

The Biology of Intelligence

The brain processes underlying intelligence are not completely understood, but current research has focused on four potential factors: brain size, sensory ability, speed and efficiency of neural transmission, and working memory capacity.

There is at least some truth to the idea that smarter people have bigger brains. Studies that have measured brain volume using neuroimaging techniques find that larger brain size is correlated with intelligence (McDaniel, 2005), and intelligence has also been found to be correlated with the number of neurons in the brain and with the thickness of the cortex (Haier, 2004; Shaw et al., 2006). It is important to remember that these correlational findings do not mean that having more brain volume causes higher intelligence. It is possible that growing up in a stimulating environment that rewards thinking and learning may lead to greater brain growth (Garlick, 2003), and it is also possible that a third variable, such as better nutrition, causes both brain volume and intelligence.

Another possibility is that the brains of more intelligent people operate faster or more efficiently than the brains of the less intelligent. Some evidence supporting this idea comes from data showing that people who are more intelligent frequently show less brain activity (suggesting that they need to use less capacity) than those with lower intelligence when they work on a task (Haier, Siegel, Tang, & Abel, 1992). And the brains of more intelligent people also seem to run faster than the brains of the less intelligent. Research has found that the speed with which people can perform simple tasks — such as determining which of two lines is longer or pressing, as quickly as possible, one of eight buttons that is lighted — is predictive of intelligence (Deary, Der, & Ford, 2001). Intelligence scores also correlate at about r = .5 with measures of working memory (Ackerman, Beier, & Boyle, 2005), and working memory is now used as a measure of intelligence on many tests.

Although intelligence is not located in a specific part of the brain, it is more prevalent in some brain areas than others. Duncan et al. (2000) administered a variety of intelligence tasks and observed the places in the cortex that were most active. Although different tests created different patterns of activation, as you can see in Figure 10.5, “Where Is Intelligence?”, these activated areas were primarily in the outer parts of the cortex, the area of the brain most involved in planning, executive control, and short-term memory.

Is Intelligence Nature or Nurture?

Intelligence has both genetic and environmental causes, and these have been systematically studied through a large number of twin and adoption studies (Neisser et al., 1996; Plomin, 2003). These studies have found that between 40% and 80% of the variability in IQ is due to genetics, meaning that overall, genetics plays a bigger role than environment does in creating IQ differences among individuals (Plomin & Spinath, 2004). The IQs of identical twins correlate very highly ( r = .86), much higher than do the scores of fraternal twins who are less genetically similar ( r = .60). And the correlations between the IQs of parents and their biological children ( r = .42) is significantly greater than the correlation between parents and adopted children ( r = .19). The role of genetics gets stronger as children get older. The intelligence of very young children (less than 3 years old) does not predict adult intelligence, but by age 7 it does, and IQ scores remain very stable in adulthood (Deary, Whiteman, Starr, Whalley, & Fox, 2004).

But there is also evidence for the role of nurture, indicating that individuals are not born with fixed, unchangeable levels of intelligence. Twins raised together in the same home have more similar IQs than do twins who are raised in different homes, and fraternal twins have more similar IQs than do nontwin siblings, which is likely due to the fact that they are treated more similarly than nontwin siblings are.

The fact that intelligence becomes more stable as we get older provides evidence that early environmental experiences matter more than later ones. Environmental factors also explain a greater proportion of the variance in intelligence for children from lower-class households than they do for children from upper-class households (Turkheimer, Haley, Waldron, D’Onofrio, & Gottesman, 2003). This is because most upper-class households tend to provide a safe, nutritious, and supporting environment for children, whereas these factors are more variable in lower-class households.

Social and economic deprivation can adversely affect IQ. Children from households in poverty have lower IQs than do children from households with more resources even when other factors such as education, race, and parenting are controlled (Brooks-Gunn & Duncan, 1997). Poverty may lead to diets that are undernourishing or lacking in appropriate vitamins, and poor children may also be more likely to be exposed to toxins such as lead in drinking water, dust, or paint chips (Bellinger & Needleman, 2003). Both of these factors can slow brain development and reduce intelligence.

If impoverished environments can harm intelligence, we might wonder whether enriched environments can improve it. Government-funded after-school programs such as Head Start are designed to help children learn. Research has found that attending such programs may increase intelligence for a short time, but these increases rarely last after the programs end (McLoyd, 1998; Perkins & Grotzer, 1997). But other studies suggest that Head Start and similar programs may improve emotional intelligence and reduce the likelihood that children will drop out of school or be held back a grade (Reynolds, Temple, Robertson, & Mann 2001).

Intelligence is improved by education; the number of years a person has spent in school correlates at about r = .6 with IQ (Ceci, 1991). In part this correlation may be due to the fact that people with higher IQ scores enjoy taking classes more than people with low IQ scores, and thus they are more likely to stay in school. But education also has a causal effect on IQ. Comparisons between children who are almost exactly the same age but who just do or just do not make a deadline for entering school in a given school year show that those who enter school a year earlier have higher IQ than those who have to wait until the next year to begin school (Baltes & Reinert, 1969; Ceci & Williams, 1997). Children’s IQs tend to drop significantly during summer vacations (Huttenlocher, Levine, & Vevea, 1998), a finding that suggests that a longer school year, as is used in Europe and East Asia, is beneficial.

It is important to remember that the relative roles of nature and nurture can never be completely separated. A child who has higher than average intelligence will be treated differently than a child who has lower than average intelligence, and these differences in behaviours will likely amplify initial differences. This means that modest genetic differences can be multiplied into big differences over time.

Psychology in Everyday Life: Emotional Intelligence

Although most psychologists have considered intelligence a cognitive ability, people also use their emotions to help them solve problems and relate effectively to others. Emotional intelligence refers to the ability to accurately identify, assess, and understand emotions, as well as to effectively control one’s own emotions (Feldman-Barrett & Salovey, 2002; Mayer, Salovey, & Caruso, 2000).

The idea of emotional intelligence is seen in Howard Gardner’s interpersonal intelligence ( the capacity to understand the emotions, intentions, motivations, and desires of other people ) and intrapersonal intelligence ( the capacity to understand oneself, including one’s emotions ). Public interest in, and research on, emotional intellgence became widely prevalent following the publication of Daniel Goleman’s best-selling book,  Working with emotional intelligence (1998).

There are a variety of measures of emotional intelligence (Mayer, Salovey, & Caruso, 2008; Petrides & Furnham, 2000). One popular measure, the Mayer-Salovey-Caruso Emotional Intelligence Test (http://www.emotionaliq.org), includes items about the ability to understand, experience, and manage emotions, such as these:

  • What mood(s) might be helpful to feel when meeting in-laws for the very first time?
  • Tom felt anxious and became a bit stressed when he thought about all the work he needed to do. When his supervisor brought him an additional project, he felt ____ (fill in the blank).
  • anger and fear
  • fear and surprise
  • disgust and anger
  • surprise and disgust
  • Action 1: She started to make a list of things at home that she needed to do.
  • Action 2: She began thinking about where and when she would go on her next vacation.
  • Action 3: She decided it was best to ignore the feeling since it wouldn’t last anyway.

One problem with emotional intelligence tests is that they often do not show a great deal of reliability or construct validity (Føllesdal & Hagtvet, 2009). Although it has been found that people with higher emotional intelligence are also healthier (Martins, Ramalho, & Morin, 2010), findings are mixed about whether emotional intelligence predicts life success — for instance, job performance (Harms & Credé, 2010). Furthermore, other researchers have questioned the construct validity of the measures, arguing that emotional intelligence really measures knowledge about what emotions are, but not necessarily how to use those emotions (Brody, 2004), and that emotional intelligence is actually a personality trait, a part of g, or a skill that can be applied in some specific work situations — for instance, academic and work situations (Landy, 2005).

Although measures of the ability to understand, experience, and manage emotions may not predict effective behaviours, another important aspect of emotional intelligence —  emotion regulation  — does. Emotion regulation refers to the ability to control and productively use one’s emotions . Research has found that people who are better able to override their impulses to seek immediate gratification and who are less impulsive also have higher cognitive and social intelligence. They have better test scores, are rated by their friends as more socially adept, and cope with frustration and stress better than those with less skill at emotion regulation (Ayduk et al., 2000; Eigsti et al., 2006; Mischel & Ayduk, 2004).

Because emotional intelligence seems so important, many school systems have designed programs to teach it to their students. However, the effectiveness of these programs has not been rigorously tested, and we do not yet know whether emotional intelligence can be taught, or if learning it would improve the quality of people’s lives (Mayer & Cobb, 2000).

Key Takeaways

  • Intelligence is the ability to think, to learn from experience, to solve problems, and to adapt to new situations. Intelligence is important because it has an impact on many human behaviours.
  • Psychologists believe that there is a construct, known as general intelligence (g), that accounts for the overall differences in intelligence among people.
  • There is also evidence for specific intelligences (s), which are measures of specific skills in narrow domains, including creativity and practical intelligence.
  • The intelligence quotient (IQ) is a measure of intelligence that is adjusted for age. The Wechsler Adult lntelligence Scale (WAIS) is the most widely used IQ test for adults.
  • Brain volume, speed of neural transmission, and working memory capacity are related to IQ.
  • Between 40% and 80% of the variability in IQ is due to genetics, meaning that overall genetics plays a bigger role than environment does in creating IQ differences among individuals.
  • Intelligence is improved by education and may be hindered by environmental factors such as poverty.
  • Emotional intelligence refers to the ability to identify, assess, manage, and control one’s emotions. People who are better able to regulate their behaviours and emotions are also more successful in their personal and social encounters.

Exercises and Critical Thinking

  • Consider your own IQ. Are you smarter than the average person? What specific intelligences do you think you excel in?
  • Did your parents try to improve your intelligence? Do you think their efforts were successful?
  • Consider the meaning of the Flynn effect. Do you think people are really getting smarter?
  • Give some examples of how emotional intelligence (or the lack of it) influences your everyday life and the lives of other people you know.

Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs?  Psychological Bulletin, 131 (1), 30–60.

Ayduk, O., Mendoza-Denton, R., Mischel, W., Downey, G., Peake, P. K., & Rodriguez, M. (2000). Regulating the interpersonal self: Strategic self-regulation for coping with rejection sensitivity.  Journal of Personality and Social Psychology, 79 (5), 776–792.

Baltes, P. B., & Reinert, G. (1969). Cohort effects in cognitive development of children as revealed by cross-sectional sequences.  Developmental Psychology, 1 (2), 169–177.

Bellinger, D. C., & Needleman, H. L. (2003). Intellectual impairment and blood lead levels [Letter to the editor].  The New England Journal of Medicine, 349 (5), 500.

Binet, A., Simon, T., & Town, C. H. (1915).  A method of measuring the development of the intelligence of young children  (3rd ed.) Chicago, IL: Chicago Medical Book.

Bink, M. L., & Marsh, R. L. (2000). Cognitive regularities in creative activity.  Review of General Psychology, 4 (1), 59–78.

Brody, N. (2003). Construct validation of the Sternberg Triarchic abilities test: Comment and reanalysis.  Intelligence, 31 (4), 319–329.

Brody, N. (2004). What cognitive intelligence is and what emotional intelligence is not.  Psychological Inquiry, 15,  234–238.

Brooks-Gunn, J., & Duncan, G. J. (1997). The effects of poverty on children.  The Future of Children, 7 (2), 55–71.

Ceci, S. J. (1991). How much does schooling influence general intelligence and its cognitive components? A reassessment of the evidence.  Developmental Psychology, 27 (5), 703–722.

Ceci, S. J., & Williams, W. M. (1997). Schooling, intelligence, and income.  American Psychologist, 52 (10), 1051–1058.

Deary, I. J., Der, G., & Ford, G. (2001). Reaction times and intelligence differences: A population-based cohort study.  Intelligence, 29 (5), 389–399.

Deary, I. J., Whiteman, M. C., Starr, J. M., Whalley, L. J., & Fox, H. C. (2004). The impact of childhood intelligence on later life: Following up the Scottish mental surveys of 1932 and 1947.  Journal of Personality and Social Psychology, 86 (1), 130–147.

Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A.,…Emslie, H. (2000). A neural basis for general intelligence.  Science, 289 (5478), 457–460.

Eigsti, I.-M., Zayas, V., Mischel, W., Shoda, Y., Ayduk, O., Dadlani, M. B.,…Casey, B. J. (2006). Predicting cognitive control from preschool to late adolescence and young adulthood.  Psychological Science, 17 (6), 478–484.

Ericsson, K. (1998). The scientific study of expert levels of performance: General implications for optimal learning and creativity.  High Ability Studies, 9 (1), 75–100.

Feldman-Barrett, L., & Salovey, P. (Eds.). (2002).  The wisdom in feeling: Psychological processes in emotional intelligence.  New York, NY: Guilford Press.

Flynn, J. R. (1999). Searching for justice: The discovery of IQ gains over time.  American Psychologist, 54 (1), 5–20.

Føllesdal, H., & Hagtvet, K. A. (2009). Emotional intelligence: The MSCEIT from the perspective of generalizability theory.  Intelligence, 37 (1), 94–105.

Frey, M. C., & Detterman, D. K. (2004). Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability.  Psychological Science, 15 (6), 373–378.

Furnham, A., & Bachtiar, V. (2008). Personality and intelligence as predictors of creativity.  Personality and Individual Differences, 45 (7), 613–617.

Gardner, H. (1983).  Frames of mind: The theory of multiple intelligences . New York, NY: Basic Books.

Gardner, H. (1999).  Intelligence reframed: Multiple intelligences for the 21st century . New York, NY: Basic Books.

Garlick, D. (2003). Integrating brain science research with intelligence research.  Current Directions in Psychological Science, 12 (5), 185–189.

Goleman, D. (1998).  Working with emotional intelligence.  New York, NY: Bantam Books.

Gottfredson, L. S. (1997). Mainstream science on intelligence: An editorial with 52 signatories, history and bibliography.  Intelligence, 24 (1), 13–23.

Gottfredson, L. S. (2003). Dissecting practical intelligence theory: Its claims and evidence.  Intelligence, 31 (4), 343–397.

Haier, R. J. (2004). Brain imaging studies of personality: The slow revolution. In R. M. Stelmack (Ed.),  On the psychobiology of personality: Essays in honor of Marvin Zuckerman  (pp. 329–340). New York, NY: Elsevier Science.

Haier, R. J., Siegel, B. V., Tang, C., & Abel, L. (1992). Intelligence and changes in regional cerebral glucose metabolic rate following learning.  Intelligence, 16 (3–4), 415–426.

Harms, P. D., & Credé, M. (2010). Emotional intelligence and transformational and transactional leadership: A meta-analysis.  Journal of Leadership & Organizational Studies, 17 (1), 5–17.

Hennessey, B. A., & Amabile, T. M. (2010). Creativity.  Annual Review of Psychology, 61 , 569–598.

Horn, J. L., Donaldson, G., & Engstrom, R. (1981). Apprehension, memory, and fluid intelligence decline in adulthood.  Research on Aging, 3 (1), 33–84.

Huttenlocher, J., Levine, S., & Vevea, J. (1998). Environmental input and cognitive growth: A study using time-period comparisons.  Child Development, 69 (4), 1012–1029.

Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2010). A comprehensive meta-analysis of the predictive validity of the graduate record examinations: Implications for graduate student selection and performance.  Psychological Bulletin, 127 (1), 162–181.

Landy, F. J. (2005). Some historical and scientific issues related to research on emotional intelligence.  Journal of Organizational Behavior, 26 , 411–424.

Martins, A., Ramalho, N., & Morin, E. (2010). A comprehensive meta-analysis of the relationship between emotional intelligence and health.  Personality and Individual Differences, 49 (6), 554–564.

Mayer, J. D., & Cobb, C. D. (2000). Educational policy on emotional intelligence: Does it make sense?  Educational Psychology Review, 12 (2), 163–183.

Mayer, J. D., Salovey, P., & Caruso, D. (2000). Models of emotional intelligence. In R. J. Sternberg (Ed.),  Handbook of intelligence  (pp. 396–420). New York, NY: Cambridge University Press.

Mayer, J. D., Salovey, P., & Caruso, D. R. (2008). Emotional intelligence: New ability or eclectic traits.  American Psychologist, 63 (6), 503–517.

McDaniel, M. A. (2005). Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence.  Intelligence, 33 (4), 337–346.

McLoyd, V. C. (1998). Children in poverty: Development, public policy and practice. In W. Damon, I. E. Sigel, & K. A. Renninger (Eds.),  Handbook of child psychology: Child psychology in practice  (5th ed., Vol. 4, pp. 135–208). Hoboken, NJ: John Wiley & Sons.

Mischel, W., & Ayduk, O. (Eds.). (2004).  Willpower in a cognitive-affective processing system: The dynamics of delay of gratification . New York, NY: Guilford Press.

Neisser, U. (1997). Rising scores on intelligence tests.  American Scientist, 85 , 440–447.

Neisser, U. (Ed.). (1998).  The rising curve . Washington, DC: American Psychological Association.

Neisser, U., Boodoo, G., Bouchard, T. J., Jr., Boykin, A. W., Brody, N., Ceci, S. J.,…Urbina, S. (1996). Intelligence: Knowns and unknowns.  American Psychologist, 51 (2), 77–101.

Perkins, D. N., & Grotzer, T. A. (1997). Teaching intelligence.  American Psychologist, 52 (10), 1125–1133.

Petrides, K. V., & Furnham, A. (2000). On the dimensional structure of emotional intelligence.  Personality and Individual Differences, 29,  313–320.

Plomin, R. (2003). General cognitive ability. In R. Plomin, J. C. DeFries, I. W. Craig, & P. McGuffin (Eds.),  Behavioral genetics in the postgenomic era  (pp. 183–201). Washington, DC: American Psychological Association.

Plomin, R., & Spinath, F. M. (2004). Intelligence: Genetics, genes, and genomics.  Journal of Personality and Social Psychology, 86 (1), 112–129.

Reynolds, A. J., Temple, J. A., Robertson, D. L., & Mann, E. A. (2001). Long-term effects of an early childhood intervention on educational achievement and juvenile arrest: A 15-year follow-up of low-income children in public schools.  Journal of the American Medical Association, 285 (18), 2339–2346.

Salthouse, T. A. (2004). What and when of cognitive aging.  Current Directions in Psychological Science, 13 (4), 140–144.

Schmidt, F. L., & Hunter, J. E. (1998). The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 85 years of research findings.  Psychological Bulletin, 124 , 262–274.

Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N.,…Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents.  Nature, 440 (7084), 676–679.

Siegler, R. S. (1992). The other Alfred Binet.  Developmental Psychology, 28 (2), 179–190.

Simonton, D. K. (1992). The social context of career success and course for 2,026 scientists and inventors.  Personality and Social Psychology Bulletin, 18 (4), 452–463.

Simonton, D. K. (2000). Creativity: Cognitive, personal, developmental, and social aspects.  American Psychologist, 55 (1), 151–158.

Sternberg, R. J. (1985).  Beyond IQ: A triarchic theory of human intelligence . New York, NY: Cambridge University Press. Sternberg, R. J. (2003). Our research program validating the triarchic theory of successful intelligence: Reply to Gottfredson.  Intelligence, 31 (4), 399–413.

Sternberg, R. J. (2003). Contemporary theories of intelligence. In W. M. Reynolds & G. E. Miller (Eds.),  Handbook of psychology: Educational psychology  (Vol. 7, pp. 23–45). Hoboken, NJ: John Wiley & Sons.

Sternberg, R. J., Wagner, R. K., & Okagaki, L. (1993). Practical intelligence: The nature and role of tacit knowledge in work and at school. In J. M. Puckett & H. W. Reese (Eds.),  Mechanisms of everyday cognition  (pp. 205–227). Hillsdale, NJ: Lawrence Erlbaum Associates.

Tarasova, I. V., Volf, N. V., & Razoumnikova, O. M. (2010). Parameters of cortical interactions in subjects with high and low levels of verbal creativity.  Human Physiology, 36 (1), 80–85.

Thorndike, R. L., & Hagen, E. P. (1997). Cognitive Abilities Test (Form 5): Research handbook . Chicago, IL: Riverside Publishing.

Thurstone, L. L. (1938). Primary mental abilities.  Psychometric Monographs, No. 1 . Chicago, IL: University of Chicago Press.

Treffert, D. A., & Wallace, G. L. (2004, January 1). Islands of genius.[PDF] Scientific American , 14–23. Retrieved from http://gordonresearch.com/articles_autism/SciAm-Islands_of_Genius.pdf

Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children.  Psychological Science, 14 (6), 623–628.

Wagner, R., & Sternberg, R. (1985). Practical intelligence in real-world pursuits: The role of tacit knowledge.  Journal of Personality and Social Psychology, 49 (2), 436–458.

Watkins, C. E., Campbell, V. L., Nieberding, R., & Hallmark, R. (1995). Contemporary practice of psychological assessment by clinical psychologists.  Professional Psychology: Research and Practice, 26 (1), 54–60.

Weisberg, R. (2006).  Creativity: Understanding innovation in problem solving, science, invention, and the arts.  Hoboken, NJ: John Wiley & Sons.

Image Attributions

Figure 10.1: “ The school-boy doing his homework ” by Moonsun1981 (http://commons.wikimedia.org/wiki/File:Az-Writing_boy_e-citizen.jpg) is licensed under CC BY-SA 3.0 license (http://creativecommons.org/licenses/by-sa/3.0/deed.en).

Figure 10.2: “ paper clip ” by Hawyih (http://en.wikipedia.org/wiki/File:Wanzijia.jpg) is in the public domain .

Figure 10.3: “ Women heptathlon ” by Marie-Lan Nguyen (http://en.wikipedia.org/wiki/File:Women_heptathlon_LJ_French_Athletics_Championships_2013_t144221.jpg) is licensed under CC-BY 3.0 license (http://creativecommons.org/licenses/by/3.0/). “ Street Painter ” by Pedro Ribeiro Simões (http://www.flickr.com/photos/pedrosimoes7/190673196/) is licensed under CC BY 2.0 license (http://creativecommons.org/licenses/by/2.0/deed.en_CA). “ Vardan Mamikonyan Armenian pianist ” by Chaojoker (http://commons.wikimedia.org/wiki/File:Vardan_Mamikonyan_Armenian_pianist.JPG) is licensed under CC BY-SA 3.0 license (http://creativecommons.org/licenses/by-sa/3.0/deed.en). “ Teacher at Chalkboard ” by cybrarian77 (http://www.flickr.com/photos/cybrarian77/6284181389/) is licensed under CC BY-NC 2.0 license (http://creativecommons.org/licenses/by-nc/2.0/deed.en_CA). “ Klutz the Clown ” by Herald Post (http://www.flickr.com/photos/heraldpost/3771785750/) is licensed under CC BY-NC 2.0 license (http://creativecommons.org/licenses/by-nc/2.0/deed.en_CA)

Figure 10.4: Adapted from Thorndike & Hagen (1997).

Figure 10.5: Adapted from Duncan, et al. (2000).

Long Descirption

Figure 10.4 long description:

  • What day of the year is Independence Day?
  • If eggs cost 60 cents a dozen, what does 1 egg cost?
  • Tell me the meaning of “corrupt.”
  • Why do people buy fire insurance?
  • Say the following numbers after me: 7 3 4 1 8 6
  • Say the following numbers backwards: 3 8 4 1 6

The last two questions involve making pictures out of blocks. [Return to Figure 10.4]

Introduction to Psychology - 1st Canadian Edition Copyright © 2014 by Jennifer Walinga and Charles Stangor is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

the ability to solve problems and to adjust and learn from experiences is known as

Chapter 11: Lifespan Development

Cognitive development, learning objectives.

  • Explain key developments for each of Piaget’s stages of cognitive development
  • Explain Vygotsky’s Zone of Proximal Development and how it applies to learning

Piaget’s Theory of Cognitive Development

A photograph depicts Jean Piaget in his later years.

Figure 1 . Jean Piaget.

Jean Piaget (1896–1980) is another stage theorist who studied childhood development (Figure 1). Instead of approaching development from a psychoanalytical or psychosocial perspective, Piaget focused on children’s cognitive growth. He believed that thinking is a central aspect of development and that children are naturally inquisitive. However, he said that children do not think and reason like adults (Piaget, 1930, 1932). His theory of cognitive development holds that our cognitive abilities develop through specific stages, which exemplifies the discontinuity approach to development. As we progress to a new stage, there is a distinct shift in how we think and reason.

Piaget said that children develop schemata to help them understand the world. Schemata are concepts (mental models) that are used to help us categorize and interpret information. By the time children have reached adulthood, they have created schemata for almost everything. When children learn new information, they adjust their schemata through two processes: assimilation and accommodation. First, they assimilate new information or experiences in terms of their current schemata: assimilation is when they take in information that is comparable to what they already know. Accommodation describes when they change their schemata based on new information. This process continues as children interact with their environment.

Video 1.   Piaget’s Stages of Cognitive Development explained.

For example, 2-year-old Blake learned the schema for dogs because his family has a Labrador retriever. When Blake sees other dogs in his picture books, he says, “Look mommy, dog!” Thus, he has assimilated them into his schema for dogs. One day, Blake sees a sheep for the first time and says, “Look mommy, dog!” Having a basic schema that a dog is an animal with four legs and fur, Blake thinks all furry, four-legged creatures are dogs. When Blake’s mom tells him that the animal he sees is a sheep, not a dog, Blake must accommodate his schema for dogs to include more information based on his new experiences. Blake’s schema for dog was too broad, since not all furry, four-legged creatures are dogs. He now modifies his schema for dogs and forms a new one for sheep.

Like Freud and Erikson, Piaget thought development unfolds in a series of stages approximately associated with age ranges. He proposed a theory of cognitive development that unfolds in four stages: sensorimotor, preoperational, concrete operational, and formal operational.

The first stage is the sensorimotor stage, which lasts from birth to about 2 years old. During this stage, children learn about the world through their senses and motor behavior. Young children put objects in their mouths to see if the items are edible, and once they can grasp objects, they may shake or bang them to see if they make sounds. Between 5 and 8 months old, the child develops object permanence , which is the understanding that even if something is out of sight, it still exists (Bogartz, Shinskey, & Schilling, 2000). According to Piaget, young infants do not remember an object after it has been removed from sight. Piaget studied infants’ reactions when a toy was first shown to an infant and then hidden under a blanket. Infants who had already developed object permanence would reach for the hidden toy, indicating that they knew it still existed, whereas infants who had not developed object permanence would appear confused.

Please take a few minutes to view this brief video demonstrating different children’s ability to understand object permanence:

In Piaget’s view, around the same time children develop object permanence, they also begin to exhibit stranger anxiety, which is a fear of unfamiliar people. Babies may demonstrate this by crying and turning away from a stranger, by clinging to a caregiver, or by attempting to reach their arms toward familiar faces such as parents. Stranger anxiety results when a child is unable to assimilate the stranger into an existing schema; therefore, she can’t predict what her experience with that stranger will be like, which results in a fear response.

Piaget’s second stage is the preoperational stage , which is from approximately 2 to 7 years old. In this stage, children can use symbols to represent words, images, and ideas, which is why children in this stage engage in pretend play. A child’s arms might become airplane wings as he zooms around the room, or a child with a stick might become a brave knight with a sword. Children also begin to use language in the preoperational stage, but they cannot understand adult logic or mentally manipulate information (the term operational refers to logical manipulation of information, so children at this stage are considered to be pre -operational). Children’s logic is based on their own personal knowledge of the world so far, rather than on conventional knowledge. For example, dad gave a slice of pizza to 10-year-old Keiko and another slice to her 3-year-old brother, Kenny. Kenny’s pizza slice was cut into five pieces, so Kenny told his sister that he got more pizza than she did. Children in this stage cannot perform mental operations because they have not developed an understanding of conservation , which is the idea that even if you change the appearance of something, it is still equal in size as long as nothing has been removed or added.

This video shows a 4.5-year-old boy in the preoperational stage as he responds to Piaget’s conservation tasks.

During this stage, we also expect children to display egocentrism , which means that the child is not able to take the perspective of others. A child at this stage thinks that everyone sees, thinks, and feels just as they do. Let’s look at Kenny and Keiko again. Keiko’s birthday is coming up, so their mom takes Kenny to the toy store to choose a present for his sister. He selects an Iron Man action figure for her, thinking that if he likes the toy, his sister will too. An egocentric child is not able to infer the perspective of other people and instead attributes his own perspective. At some point during this stage and typically between 3 and 5 years old, children come to understand that people have thoughts, feelings, and beliefs that are different from their own. This is known as theory-of-mind (TOM).

Piaget developed the Three-Mountain Task to determine the level of egocentrism displayed by children. Children view a 3-dimensional mountain scene from one viewpoint, and are asked what another person at a different viewpoint would see in the same scene. Watch the Three-Mountain Task in action in this short video from the University of Minnesota and the Science Museum of Minnesota.

https://youtube.com/watch?v=v4oYOjVDgo0%3Fenablejsapi%3D1

Piaget’s third stage is the concrete operational stage , which occurs from about 7 to 11 years old. In this stage, children can think logically about real (concrete) events; they have a firm grasp on the use of numbers and start to employ memory strategies. They can perform mathematical operations and understand transformations, such as addition is the opposite of subtraction, and multiplication is the opposite of division. In this stage, children also master the concept of conservation: Even if something changes shape, its mass, volume, and number stay the same. For example, if you pour water from a tall, thin glass to a short, fat glass, you still have the same amount of water. Remember Keiko and Kenny and the pizza? How did Keiko know that Kenny was wrong when he said that he had more pizza?

Children in the concrete operational stage also understand the principle of reversibility , which means that objects can be changed and then returned back to their original form or condition. Take, for example, water that you poured into the short, fat glass: You can pour water from the fat glass back to the thin glass and still have the same amount (minus a couple of drops).

The fourth, and last, stage in Piaget’s theory is the formal operational stage , which is from about age 11 to adulthood. Whereas children in the concrete operational stage are able to think logically only about concrete events, children in the formal operational stage can also deal with abstract ideas and hypothetical situations. Children in this stage can use abstract thinking to problem solve, look at alternative solutions, and test these solutions. In adolescence, a renewed egocentrism occurs. For example, a 15-year-old with a very small pimple on her face might think it is huge and incredibly visible, under the mistaken impression that others must share her perceptions.

Beyond Formal Operational Thought

As with other major contributors of theories of development, several of Piaget’s ideas have come under criticism based on the results of further research. For example, several contemporary studies support a model of development that is more continuous than Piaget’s discrete stages (Courage & Howe, 2002; Siegler, 2005, 2006). Many others suggest that children reach cognitive milestones earlier than Piaget describes (Baillargeon, 2004; de Hevia & Spelke, 2010).

According to Piaget, the highest level of cognitive development is formal operational thought, which develops between 11 and 20 years old. However, many developmental psychologists disagree with Piaget, suggesting a fifth stage of cognitive development, known as the postformal stage (Basseches, 1984; Commons & Bresette, 2006; Sinnott, 1998). In postformal thinking, decisions are made based on situations and circumstances, and logic is integrated with emotion as adults develop principles that depend on contexts. One way that we can see the difference between an adult in postformal thought and an adolescent in formal operations is in terms of how they handle emotionally charged issues.

It seems that once we reach adulthood our problem-solving abilities change: As we attempt to solve problems, we tend to think more deeply about many areas of our lives, such as relationships, work, and politics (Labouvie-Vief & Diehl, 1999). Because of this, postformal thinkers are able to draw on past experiences to help them solve new problems. Problem-solving strategies using postformal thought vary, depending on the situation. What does this mean? Adults can recognize, for example, that what seems to be an ideal solution to a problem at work involving a disagreement with a colleague may not be the best solution to a disagreement with a significant other.

the ability to solve problems and to adjust and learn from experiences is known as

Figure 3.8.1 . Lev Vygotsky, founder of the sociocultural theory, which emphasizes contextual factors in cognitive development

Modern social learning theories stem from the work of Russian psychologist Lev Vygotsky (Kozulin, 1990). Vygotsky’s ideas are most recognized for identifying the role of social interactions and culture in the development of higher-order thinking skills. His theory is especially valuable for the insights it provides about the dynamic “interdependence between individual and social processes in the construction of knowledge” (John-Steiner & Mahn, 1996, p. 192). Vygotsky’s views are often considered primarily as cognitive development theories, focusing on qualitative changes in the development of thought, language, and higher-order thinking skills. Although Vygotsky’s intent was mainly to understand higher psychological processes in children, his ideas have many implications and practical applications for learners of all ages.

Three themes are often identified with Vygotsky’s ideas of sociocultural learning: (1) human development and learning originate in social, historical, and cultural interactions, (2) use of psychological tools, particularly language, mediate development of higher mental functions, and (3) learning occurs within the Zone of Proximal Development. While we discuss these ideas separately, they are closely interrelated, non-hierarchical, and connected.

Vygotsky’s  sociocultural theory  emphasizes the importance of culture and interaction in the development of cognitive abilities. Vygotsky contended that thinking has social origins, social interactions play a critical role, especially in the development of higher-order thinking skills, and cognitive development cannot be fully understood without considering the social and historical context within which it is embedded. He explained, “Every function in the child’s cultural development appears twice: first, on the social level, and later, on the individual level; first between people (interpsychological) and then inside the child (intrapsychological)” (Vygotsky, 1978, p. 57).  It is through working with others on a variety of tasks that a learner adopts socially shared experiences and associated effects and acquires useful strategies and knowledge (Scott & Palincsar, 2013).

Rogoff (1990) refers to this process as guided participation, where a learner actively acquires new culturally valuable skills and capabilities through a meaningful, collaborative activity with an assisting, more experienced other. It is critical to notice that these culturally mediated functions are viewed as being embedded in sociocultural activities rather than being self-contained. Development is a “transformation of participation in a sociocultural activity,” not a transmission of discrete cultural knowledge or skills (Matusov, 2015, p. 315).

Scaffolding and the Zone of Proximal Development

Vygotsky differed with Piaget in that he believed that a person has not only a set of abilities but also a set of potential abilities that can be realized if given the proper guidance from others. He believed that through guided participation known as  scaffolding , with a teacher or capable peer, a child could learn cognitive skills within a certain range known as the  zone of proximal development . While Piaget’s ideas of cognitive development assume that development through certain stages is biologically determined, originates in the individual, and precedes cognitive complexity, Vygotsky presents a different view in which learning drives development. The idea of learning driving development, rather than being determined by the developmental level of the learner, fundamentally changes our understanding of the learning process and has significant instructional and educational implications (Miller, 2011).

the ability to solve problems and to adjust and learn from experiences is known as

Figure 3.8.2. Model of zone of proximal development.

Have you ever taught a child to perform a task? Maybe it was brushing their teeth or preparing food. Chances are you spoke to them and described what you were doing while you demonstrated the skill and let them work along with you throughout the process. You assisted them when they seemed to need it, but once they knew what to do-you stood back and let them go. This is scaffolding. Educators have also adopted this approach to teaching. Rather than assessing students on what they are doing, they should be understood in terms of what they are capable of doing with the proper guidance.

This difference in assumptions has significant implications for the design and development of learning experiences. If we believe as Piaget did that development precedes learning, then we will make sure that new concepts and problems are not introduced until learners have developed innate capabilities to understand them. On the other hand, if we believe as Vygotsky did that learning drives development and that development occurs as we learn a variety of concepts and principles, recognizing their applicability to new tasks and new situations, then our instructional design will look very different.

Video 3.8.1.  Vygotsky’s Sociocultural Development  explains the influence of the social environment on cognition and how more knowledgeable others help us learn within our zone of proximal development.Glossary

  • Modification and adaptation, addition of video link. Provided by : Lumen Learning. License : CC BY: Attribution
  • Lifespan Theories. Authored by : OpenStax. Located at : http://cnx.org/contents/[email protected]:Edod3PQm@5/Lifespan-Theories . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/content/col11629/latest/.
  • Piaget - Stage 1 - Sensorimotor stage : Object Permanence. Authored by : Geert Stienissen. Located at : https://www.youtube.com/watch?v=NCdLNuP7OA8 . License : Other . License Terms : Standard YouTube License
  • A typical child on Piaget's conservation tasks. Authored by : munakatay. Located at : https://www.youtube.com/watch?v=gnArvcWaH6I . License : Other . License Terms : Standard YouTube License
  • Piaget's Mountains Task. Authored by : UofMNCYFC. Located at : https://www.youtube.com/watch?v=v4oYOjVDgo0 . License : Other . License Terms : Standard YouTube License

Footer Logo Lumen Candela

Privacy Policy

Book cover

Encyclopedia of Evolutionary Psychological Science pp 4163–4171 Cite as

Intelligence

  • Thomas Haarklau Kleppestø 3  
  • Reference work entry
  • First Online: 01 January 2021

34 Accesses

Cognitive ability ; Intellect ; Intellectual ability ; Learnability

An influential definition of human intelligence is “a very general mental capability that, among other things, involves the ability to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly and learn from experience. It is not merely book learning, a narrow academic skill, or test-taking smarts. Rather, it reflects a broader and deeper capability for comprehending our surroundings – ‘catching on,’ ‘making sense’ of things, or ‘figuring out’ what to do” (Gottfredson 1997a , p. 13).

Introduction

One of the striking facts about our universe is that it contains intelligence. Somehow, planet Earth went from a barren, scorching planet into a flowering display of life. Eventually, Homo sapiens (“wise man”) was the first species on Earth, and possibly in the universe, that started to talk, generate rich cultures, send conspecifics and electronics to space, and invent abstract...

This is a preview of subscription content, log in via an institution .

Aiello, L. C., & Wheeler, P. (1995). The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. Current Anthropology, 36 (2), 199–221.

Article   Google Scholar  

Alexander, R. D. (1990). How did humans evolve? Reflections on the uniquely unique species (Special Publication No. 1). Ann Arbor: Museum of Zoology.

Google Scholar  

Andersson, M. (1994). Sexual selection . Princeton: Princeton University Press.

Book   Google Scholar  

Arden, R., Gottfredson, L. S., Miller, G., & Pierce, A. (2009). Intelligence and semen quality are positively correlated. Intelligence, 37 (3), 277–282.

Baron-Cohen, S. (1997). Mindblindness: An essay on autism and theory of mind . Cambridge, MA: A bradford book.

Barrett, H. C., & Kurzban, R. (2006). Modularity in cognition: Framing the debate. Psychological Review, 113 , 628–647. https://doi.org/10.1037/0033-295X.113.3.628 .

Article   PubMed   Google Scholar  

Bjorklund, D. F., & Hernandez Blasi, C. (2016). Evolutionary developmental psychology. In D. M. Buss, C. H. Blasi, & B. J. Ellis (Eds.), The handbook of evolutionary psychology (Vol. 2, pp. 904–924). New Jersey: John Wiley & Sons.

Buss, D. M. (1989). Sex differences in human mate preferences: Evolutionary hypotheses tested in 37 cultures. Behavioral and Brain Sciences, 12 (01), 1–14.

Clark, A. (2014). Mindware: An introduction to the philosophy of cognitive science (2nd ed.). New York: Oxford University Press.

Cosmides, L., & Tooby, J. (2002). In R. J. Sternberg & J. C. Kaufman (Eds.), Unraveling the enigma of human intelligence: Evolutionary psychology and the multimodular mind (pp. 145–198). Mahwah: Lawrence Erlbaum Associates Publishers.

Day, L. B., Westcott, D. A., & Olster, D. H. (2005). Evolution of bower complexity and cerebellum size in bowerbirds. Brain, Behavior and Evolution, 66 (1), 62–72.

Deary, I. J., Thorpe, G., Wilson, V., Starr, J. M., & Whalley, L. J. (2003). Population sex differences in IQ at age 11: The Scottish mental survey 1932. Intelligence, 31 (6), 533–542.

Dennett, D. C. (1989). The intentional stance . Cambridge, MA: MIT press.

DeVore, I., & Tooby, J. (1987). The reconstruction of hominid behavioral evolution through strategic modeling. In W. G. Kinzey (Ed.), The evolution of human behavior: Primate models (pp. 183–237). Albany: SUNY Press.

Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6 , 178–190.

Elman, J. L., Bates, E. A., & Johnson, M. H. (1998). Rethinking innateness: A connectionist perspective on development (Vol. 10). Cambridge, MA: MIT press.

Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science, 306 (5703), 1903–1907.

Flinn, M. V., Geary, D. C., & Ward, C. V. (2005). Ecological dominance, social competition, and coalitionary arms races: Why humans evolved extraordinary intelligence. Evolution and Human Behavior, 26 (1), 10–46.

Gabora, L., & Russon, A. (2011). The evolution of intelligence. In R. J. Sternberg & S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 328–350). New York: Cambridge University Press.

Chapter   Google Scholar  

Gardner, H. (2011). Frames of mind: The theory of multiple intelligences . Hachette: Basic Books.

Geher, G., & Miller, G. (2008). Mating intelligence: Sex, relationships, and the ,ind’s reproductive system . New York: Routledge.

González-Forero, M., & Gardner, A. (2018). Inference of ecological and social drivers of human brain-size evolution. Nature, 557 (7706), 554–557. https://doi.org/10.1038/s41586-018-0127-x .

Gottfredson, L. S. (1997a). Mainstream science on intelligence: An editorial with 52 signatories, history, and bibliography. Intelligence, 24 (1), 13–23.

Gottfredson, L. S. (1997b). Why g matters: The complexity of everyday life. Intelligence, 24 (1), 79–132.

Gottfredson, L. S., & Deary, I. J. (2004). Intelligence predicts health and longevity, but why? Current Directions in Psychological Science, 13 (1), 1–4.

Hart, C., Deary, I., Taylor, M., MacKinnon, P., Smith, G. D., Whalley, L. J., … Starr, J. (2003). The Scottish Mental Survey 1932 linked to the Midspan studies: A prospective investigation of childhood intelligence and future health. Public Health, 117 (3), 187–195.

Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017). Intelligence is associated with the modular structure of intrinsic brain networks. Scientific Reports, 7 (1), 16088. https://doi.org/10.1038/s41598-017-15795-7 .

Article   PubMed   PubMed Central   Google Scholar  

Jensen, A. R. (1998). The g factor: The science of mental ability . Westport: Praeger.

Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30 (2), 135–154.

Keller, M. C. (2008). The role of mutations in human mating. In G. Geher & G. Miller (Eds.), Mating intelligence: Sex, relationships, and the Mind's reproductive system (pp. 173–193). New York: Routledge.

Klein, R. G. (2000). Archeology and the evolution of human behavior. Evolutionary Anthropology, 9 (1), 17–36.

Klein, R. G. (2008). Out of Africa and the evolution of human behavior. Evolutionary Anthropology, 17 (6), 267–281.

Marcus, G. F. (2003). The algebraic mind: Integrating connectionism and cognitive science . Cambridge, MA: MIT Press.

Miller, G. (2000). Sexual selection for indicators of intelligence. In G. Bock, R, J. A. Goode, & K. Webb (Eds.), Novartis Foundation Symposium (Vol. 233). West Sessex, UK: Wiley.

Miller, G. (2011). The mating mind: How sexual choice shaped the evolution of human nature.

Miller, G., & Penke, L. (2007). The evolution of human intelligence and the coefficient of additive genetic variance in human brain size. Intelligence, 35 (2), 97–114.

Nesse, R. M. (2007). Runaway social selection for displays of partner value and altruism. Biological Theory, 2 (2), 143–155.

Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the Association for Computing Machinery, 19 , 113–126.

Odum, E. P. (1959). Fundamentals of ecology (2nd ed.). Philadelphia: WB Saunders.

Pinker, S. (2010). The cognitive niche: Coevolution of intelligence, sociality, and language. PNAS, 107 (2), 8993–8999.

Plomin, R., & von Stumm, S. (2018). The new genetics of intelligence. Nature Reviews Genetics, 19 (3), 148.

Prokosch, M. D., Yeo, R. A., & Miller, G. (2005). Intelligence tests with higher g-loadings show higher correlations with body symmetry: Evidence for a general fitness factor mediated by developmental stability. Intelligence, 33 , 203–213. https://doi.org/10.1016/j.intell.2004.07.007 .

Raven, J. C., & Court, J. H. (1998). Manual for Raven’s progressive matrices and vocabulary scales . Oxford: Oxford Psychologists Press.

Rosenberg, K., & Trevathan, W. (2002). Birth, obstetrics and human evolution. International Journal of Obstetrics Gynaecology, 109 (11), 1199–1206.

Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive Sciences, 9 (5), 250–257.

Ruff, C. B., Trinkaus, E., & Holliday, T. W. (1997). Body mass and encephalization in Pleistocene Homo. Nature, 387 (6629), 173.

Schmidt, F. L., & Hunter, J. (2004). General mental ability in the world of work: Occupational attainment and job performance. Journal of Personality and Social Psychology, 86 (1), 162–173. https://doi.org/10.1037/0022-3514.86.1.162 .

Spearman, C. (1904). “General Intelligence”, objectively determined and measured. The American Journal of Psychology, 15 (2), 201–292.

Stewart-Williams, S., & Thomas, A. G. (2013). The ape that thought it was a peacock: Does evolutionary psychology exaggerate human sex differences? Psychological Inquiry, 24 (3), 137–168.

Street, S. E., Navarrete, A. F., Reader, S. M., & Laland, K. N. (2017). Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Proceedings of the National Academy of Sciences, 114 (30), 7908–7914.

Striedter, G. (2005). Principles of brain evolution . Sunderland: Sinauer.

Urbina, S. (2011). Tests of intelligence. In R. J. Sternberg & J. C. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 20–38). New York: Cambridge University Press.

Visser, B. A., Ashton, M. C., & Vernon, P. A. (2006). g and the measurement of multiple intelligences: A response to Gardner. Intelligence, 34 (5), 507–510.

Wechsler, D. (2008). Wechsler adult intelligence scale–fourth edition (WAIS–IV) . San Antonio: The Psychological Corporation.

Zahavi, A. (1975). Mate selection—A selection for a handicap. Journal of Theoretical Biology, 53 , 205–214. https://doi.org/10.1016/0022-5193(75)90111-3 .

Download references

Author information

Authors and affiliations.

Department of Psychology, University of Oslo, Oslo, Norway

Thomas Haarklau Kleppestø

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Thomas Haarklau Kleppestø .

Editor information

Editors and affiliations.

Department of Psychology, Oakland University, Rochester, MI, USA

Todd K Shackelford

Viviana A Weekes-Shackelford

Section Editor information

Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada

Doug P VanderLaan

Child, Youth and Family Division, Centre for Addiction and Mental Health, Toronto, ON, Canada

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Cite this entry.

Kleppestø, T.H. (2021). Intelligence. In: Shackelford, T.K., Weekes-Shackelford, V.A. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-19650-3_634

Download citation

DOI : https://doi.org/10.1007/978-3-319-19650-3_634

Published : 22 April 2021

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-19649-7

Online ISBN : 978-3-319-19650-3

eBook Packages : Behavioral Science and Psychology Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. Introduction to Problem Solving Skills

    the ability to solve problems and to adjust and learn from experiences is known as

  2. Top 10 Skills Of Problem Solving With Examples

    the ability to solve problems and to adjust and learn from experiences is known as

  3. 5 step problem solving method

    the ability to solve problems and to adjust and learn from experiences is known as

  4. Developing Problem-Solving Skills for Kids

    the ability to solve problems and to adjust and learn from experiences is known as

  5. 7 Steps to Improve Your Problem Solving Skills

    the ability to solve problems and to adjust and learn from experiences is known as

  6. Problem solving infographic 10 steps concept Vector Image

    the ability to solve problems and to adjust and learn from experiences is known as

VIDEO

  1. Verify, Solve & Factorise by identity || Class 9 || Ex-2.5 || Q-9 to 12 || Maths Addicton

  2. Top 6 Reasoning Questions For Competitive Exams

  3. 45th BCS Mental Ability Solution(৪৫তম বিসিএস প্রিলির মানসিক দক্ষতার বিস্তারিত ব্যাখ্যাসহ সমাধান)

  4. Guided Math with Dr Nicki

  5. Solve Problems, Overcome Anxiety- Adjust Your Focus #lifehacks #stressrelief #anxietysupport #nlp

  6. How toincrease Brightness and Contrast on Pc

COMMENTS

  1. human development chapter 8 Flashcards | Quizlet

    intelligence. the ability to solve problems and to adapt and learn from experiences. intelligence quotient. an individual's mental age divided by chronological age, multiplied by 100; devised in 1912 by William Stern. Binet test or known know as stanford binet test. 2 thorough adult. Intelligence consists of complex cognitive process such as ...

  2. Psychology Chapter 9 Flashcards | Quizlet

    the ability to learn from experience, solve problems, and use knowledge to adapt to new situations. achievement. knowledge and skills gained from experience. facility. ability or aptitude. triarchic theory. theory proposed by Robert Sternberg that states that intelligence consists of three parts including Analytic = the ability to solve ...

  3. Piaget’s Stages: 4 Stages of Cognitive Development & Theory

    Piaget divided children’s cognitive development into four stages; each of the stages represents a new way of thinking and understanding the world. He called them (1) sensorimotor intelligence, (2) preoperational thinking, (3) concrete operational thinking, and (4) formal operational thinking. Each stage is correlated with an age period of ...

  4. Theories Of Intelligence In Psychology

    Intelligence Today. Intelligence in psychology refers to the mental capacity to learn from experiences, adapt to new situations, understand and handle abstract concepts, and use knowledge to manipulate one’s environment. It includes skills such as problem-solving, critical thinking, learning quickly, and understanding complex ideas.

  5. Piaget's Stages of Cognitive Development Explained

    Jean Piaget's theory of cognitive development suggests that children move through four different stages of learning. His theory focuses not only on understanding how children acquire knowledge, but also on understanding the nature of intelligence. Piaget's stages are: Sensorimotor stage: Birth to 2 years. Preoperational stage: Ages 2 to 7.

  6. Human intelligence | Definition, Types, Test, Theories, & Facts

    human intelligence, mental quality that consists of the abilities to learn from experience, adapt to new situations, understand and handle abstract concepts, and use knowledge to manipulate one ’s environment. Much of the excitement among investigators in the field of intelligence derives from their attempts to determine exactly what ...

  7. 10.1 Defining and Measuring Intelligence – Introduction to ...

    Intelligence is the ability to think, to learn from experience, to solve problems, and to adapt to new situations. Intelligence is important because it has an impact on many human behaviours. Psychologists believe that there is a construct, known as general intelligence (g), that accounts for the overall differences in intelligence among people.

  8. What Are Critical Thinking Skills and Why Are They Important?

    Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. One way to properly solve problems is to first recognize there’s a problem that needs solving.

  9. Cognitive Development | Introduction to Psychology

    schema: (plural = schemata) concept (mental model) that is used to help us categorize and interpret information. sensorimotor stage: first stage in Piaget’s theory of cognitive development; from birth through age 2, a child learns about the world through senses and motor behavior. theory-of-mind: the understanding that people have thoughts ...

  10. Intelligence | SpringerLink

    Definition. An influential definition of human intelligence is “a very general mental capability that, among other things, involves the ability to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly and learn from experience. It is not merely book learning, a narrow academic skill, or test-taking smarts.