Banner

  • Phoenix College

Lab Report Writing

  • Lab Report Style
  • Lab Report Format
  • Introduction
  • Materials and Methods

Results Section

Figures and tables, test yourself (figure title).

  • Discussion/Conclusion

You've given an introduction to the topic you studied and you've told the reader how you did your study, so you can finally start talking about the results of all your hard work! Use the Results section to summarize the findings of your study. The text of this section should focus on the major trends in the data you collected. The details can be summarized in tables and/or graphs that will accompany the text. In this section, just tell the reader the facts. Don't try to interpret the data or talk about why they are important. Save your interpretations for the Discussion/Conclusion section.

One of the best ways to represent the results of your study is by using graphs and tables (in lab reports, graphs and other images are usually known as "figures"). This is because they are easy to read and convey a lot of information to the reader in an efficient way. Here are some of the things to keep in mind when including tables and figures in your lab report:

  • Tables and figures should be self-explanatory and should include enough information to be able to "stand alone" without reading the entire paper
  • All columns in the tables and all axes on graphs should be clearly labeled, including units of measurement (cm, °C, etc.)
  • All tables and figures should be given a number and should include a caption that explains what they are trying to convey. For example, in a paper on the effects of increased phosphorus on oxygen content of pond water, you might include a graph with this caption: "Figure 1. Oxygen concentration of pond water is determined by phosphorus content."

Any time you include a figure or table, you must mention it in the text, usually in the Results section. There are two ways to cite your figure or table in the text:

  • Mention the figure directly in the text, like this: "Figure 1 shows the impact of phosphorus enrichment on pond water oxygen concentration."
  • Add a citation in parentheses at the end of a sentence, like this: "Oxygen concentration of the pond water decreased with an increase in phosphorus (Fig. 1)." In this case, Figure is abbreviated to Fig., but you would not need to abbreviate the word Table.

The following figure is from the bone fracture paper, showing how many men sustained bone fractures during the course of the study. Note how both axes are labeled, and there is a proper title underneath.

how to write results section of lab report example

Figure 1. Cumulative Number of Hip Fractures and Fractures of any Type after Study Entry at Age 50 y and during Follow-up

Now compare the graph above to the table below.  Notice how the table is arranged into rows and columns and is only composed of text.

Table 2. Hazard Ratios (HRs) of Hip Fractures and any Type of Fracture Associated with Time-Dependent Physical Activity Level in Leisure Time

Imagine you did an experiment in which you taught tricks to a group of dogs.  Which of the following is the best example of a title for a graph in your lab report based on this experiment?

a. Average number of tricks performed by dogs after 3 weeks of training b. Figure 1. Number of tricks c. Figure 1. Average number of tricks performed by dogs after 3 weeks of training d. Table 1. Average number of tricks performed by dogs after 3 weeks of training

C A graph should be labeled as a Figure, not a Table. The title of the figure should include enough detail that the image could "stand alone" without having to read too much of the paper.

Click on the question, to see the answer.

  • << Previous: Materials and Methods
  • Next: Discussion/Conclusion >>
  • Last Updated: Jan 13, 2022 10:50 AM
  • URL: https://phoenixcollege.libguides.com/LabReportWriting

Home

  • Peterborough

an student standing in front of a blackboard full of physics and Math formulas.

Writing Lab Reports: Results

Keys to the results section.

Purpose : What did you find? Relative size : 10-15% of total (excluding tables and figures) Scope : Narrow: the middle of the hourglass Verb Tense : Always use the past tense when summarizing the results of your experiment

Summarize the results of your study.

Be careful to present your results in a manner that relates to your hypotheses; the reader should be able to identify your hypotheses in your introduction and easily find their associated results. This is not a place to provide raw data – present only summarized or analyzed data.

When appropriate, use  figures and/or tables  to present your results in a meaningful way and imbed them within the text. Results should only be presented in one format though – either in the text, in a figure, or in a table.

For example, if you are presenting means and standard deviations in a figure, rather than repeating these same numbers in the text, refer to the per cent difference, increase, or decrease (e.g., Plant height increased by 20% with the addition of fertilizer [Figure 2]). Do not explain what a graph is showing (e.g., Figure 1 shows the mean +/- standard deviations of plant height in response to fertilizer treatment) – the readers can see that for themselves.

Describe trends and patterns; highlight interesting and anomalous data; report significant findings. This provides the reader with a more relevant context than would simple digits. 

The results section should contain information specific to your study only. Therefore, it should not include any interpretation of your results (this would require a comparison with other literature): do not state whether your results supported or rejected your hypotheses; do not say what your results mean; and do not compare your results to those of other studies.

Results Section Details

Description of results : You must include a written description of your results. Include only summarized data (e.g., means, statistics, etc.) and point out trends, patterns, and interesting data. Refer to tables and figures to support your descriptions.

Figures : Graphs provide a visual representation of your results. This is the ideal way to present your findings. You must refer to each figure in the written portion of your results.

Tables : Use tables to present more complex or detailed results that do not lend themselves to figures or text. You must refer to each table in the written portion of your results. 

Appendix : This is an additional section, placed at the very end of your report after your reference section, where you can include, if required, raw data and other supplementary information. You must refer to the appendices in the written portion of your results.

A good results section should…

  • Describe summarized data and statistical results
  • Describe trends and patterns; highlight interesting and anomalous data; report significant findings
  • Include appropriate tables and figures, referred to and imbedded within the text

A good results section should NOT…

  • Include raw data
  • Repeat numbers from text, tables, and figures
  • Interpret or explain results
  • Refer to other studies

Back to Writing Lab Reports

Next to Tables and Figures

UCI Libraries Mobile Site

  • Langson Library
  • Science Library
  • Grunigen Medical Library
  • Law Library
  • Connect From Off-Campus
  • Accessibility
  • Gateway Study Center

Libaries home page

Email this link

Writing a scientific paper.

  • Writing a lab report
  • INTRODUCTION

Writing a "good" results section

Figures and Captions in Lab Reports

"Results Checklist" from: How to Write a Good Scientific Paper. Chris A. Mack. SPIE. 2018.

Additional tips for results sections.

  • LITERATURE CITED
  • Bibliography of guides to scientific writing and presenting
  • Peer Review
  • Presentations
  • Lab Report Writing Guides on the Web

This is the core of the paper. Don't start the results sections with methods you left out of the Materials and Methods section. You need to give an overall description of the experiments and present the data you found.

  • Factual statements supported by evidence. Short and sweet without excess words
  • Present representative data rather than endlessly repetitive data
  • Discuss variables only if they had an effect (positive or negative)
  • Use meaningful statistics
  • Avoid redundancy. If it is in the tables or captions you may not need to repeat it

A short article by Dr. Brett Couch and Dr. Deena Wassenberg, Biology Program, University of Minnesota

  • Present the results of the paper, in logical order, using tables and graphs as necessary.
  • Explain the results and show how they help to answer the research questions posed in the Introduction. Evidence does not explain itself; the results must be presented and then explained. 
  • Avoid: presenting results that are never discussed;  presenting results in chronological order rather than logical order; ignoring results that do not support the conclusions; 
  • Number tables and figures separately beginning with 1 (i.e. Table 1, Table 2, Figure 1, etc.).
  • Do not attempt to evaluate the results in this section. Report only what you found; hold all discussion of the significance of the results for the Discussion section.
  • It is not necessary to describe every step of your statistical analyses. Scientists understand all about null hypotheses, rejection rules, and so forth and do not need to be reminded of them. Just say something like, "Honeybees did not use the flowers in proportion to their availability (X2 = 7.9, p<0.05, d.f.= 4, chi-square test)." Likewise, cite tables and figures without describing in detail how the data were manipulated. Explanations of this sort should appear in a legend or caption written on the same page as the figure or table.
  • You must refer in the text to each figure or table you include in your paper.
  • Tables generally should report summary-level data, such as means ± standard deviations, rather than all your raw data.  A long list of all your individual observations will mean much less than a few concise, easy-to-read tables or figures that bring out the main findings of your study.  
  • Only use a figure (graph) when the data lend themselves to a good visual representation.  Avoid using figures that show too many variables or trends at once, because they can be hard to understand.

From:  https://writingcenter.gmu.edu/guides/imrad-results-discussion

  • << Previous: METHODS
  • Next: DISCUSSION >>
  • Last Updated: Aug 4, 2023 9:33 AM
  • URL: https://guides.lib.uci.edu/scientificwriting

Off-campus? Please use the Software VPN and choose the group UCIFull to access licensed content. For more information, please Click here

Software VPN is not available for guests, so they may not have access to some content when connecting from off-campus.

FTLOScience

Complete Guide to Writing a Lab Report (With Example)

Students tend to approach writing lab reports with confusion and dread. Whether in high school science classes or undergraduate laboratories, experiments are always fun and games until the times comes to submit a lab report. What if we didn’t need to spend hours agonizing over this piece of scientific writing? Our lives would be so much easier if we were told what information to include, what to do with all their data and how to use references. Well, here’s a guide to all the core components in a well-written lab report, complete with an example.

Things to Include in a Laboratory Report

The laboratory report is simply a way to show that you understand the link between theory and practice while communicating through clear and concise writing. As with all forms of writing, it’s not the report’s length that matters, but the quality of the information conveyed within. This article outlines the important bits that go into writing a lab report (title, abstract, introduction, method, results, discussion, conclusion, reference). At the end is an example report of reducing sugar analysis with Benedict’s reagent.

The report’s title should be short but descriptive, indicating the qualitative or quantitative nature of the practical along with the primary goal or area of focus.

Following this should be the abstract, 2-3 sentences summarizing the practical. The abstract shows the reader the main results of the practical and helps them decide quickly whether the rest of the report is relevant to their use. Remember that the whole report should be written in a passive voice .

Introduction

The introduction provides context to the experiment in a couple of paragraphs and relevant diagrams. While a short preamble outlining the history of the techniques or materials used in the practical is appropriate, the bulk of the introduction should outline the experiment’s goals, creating a logical flow to the next section.

Some reports require you to write down the materials used, which can be combined with this section. The example below does not include a list of materials used. If unclear, it is best to check with your teacher or demonstrator before writing your lab report from scratch.

Step-by-step methods are usually provided in high school and undergraduate laboratory practicals, so it’s just a matter of paraphrasing them. This is usually the section that teachers and demonstrators care the least about. Any unexpected changes to the experimental setup or techniques can also be documented here.

The results section should include the raw data that has been collected in the experiment as well as calculations that are performed. It is usually appropriate to include diagrams; depending on the experiment, these can range from scatter plots to chromatograms.

The discussion is the most critical part of the lab report as it is a chance for you to show that you have a deep understanding of the practical and the theory behind it. Teachers and lecturers tend to give this section the most weightage when marking the report. It would help if you used the discussion section to address several points:

  • Explain the results gathered. Is there a particular trend? Do the results support the theory behind the experiment?
  • Highlight any unexpected results or outlying data points. What are possible sources of error?
  • Address the weaknesses of the experiment. Refer to the materials and methods used to identify improvements that would yield better results (more accurate equipment, better experimental technique, etc.)  

Finally, a short paragraph to conclude the laboratory report. It should summarize the findings and provide an objective review of the experiment.

If any external sources were used in writing the lab report, they should go here. Referencing is critical in scientific writing; it’s like giving a shout out (known as a citation) to the original provider of the information. It is good practice to have at least one source referenced, either from researching the context behind the experiment, best practices for the method used or similar industry standards.

Google Scholar is a good resource for quickly gathering references of a specific style . Searching for the article in the search bar and clicking on the ‘cite’ button opens a pop-up that allows you to copy and paste from several common referencing styles.

referencing styles from google scholar

Example: Writing a Lab Report

Title : Semi-Quantitative Analysis of Food Products using Benedict’s Reagent

Abstract : Food products (milk, chicken, bread, orange juice) were solubilized and tested for reducing sugars using Benedict’s reagent. Milk contained the highest level of reducing sugars at ~2%, while chicken contained almost no reducing sugars.

Introduction : Sugar detection has been of interest for over 100 years, with the first test for glucose using copper sulfate developed by German chemist Karl Trommer in 1841. It was used to test the urine of diabetics, where sugar was present in high amounts. However, it wasn’t until 1907 when the method was perfected by Stanley Benedict, using sodium citrate and sodium carbonate to stabilize the copper sulfate in solution. Benedict’s reagent is a bright blue because of the copper sulfate, turning green and then red as the concentration of reducing sugars increases.

Benedict’s reagent was used in this experiment to compare the amount of reducing sugars between four food items: milk, chicken solution, bread and orange juice. Following this, standardized glucose solutions (0.0%, 0.5%, 1.0%, 1.5%, 2.0%) were tested with Benedict’s reagent to determine the color produced at those sugar levels, allowing us to perform a semi-quantitative analysis of the food items.

Method : Benedict’s reagent was prepared by mixing 1.73 g of copper (II) sulfate pentahydrate, 17.30 g of sodium citrate pentahydrate and 10.00 g of sodium carbonate anhydrous. The mixture was dissolved with stirring and made up to 100 ml using distilled water before filtration using filter paper and a funnel to remove any impurities.

4 ml of milk, chicken solution and orange juice (commercially available) were measured in test tubes, along with 4 ml of bread solution. The bread solution was prepared using 4 g of dried bread ground with mortar and pestle before diluting with distilled water up to 4 ml. Then, 4 ml of Benedict’s reagent was added to each test tube and placed in a boiling water bath for 5 minutes, then each test tube was observed.

Next, glucose solutions were prepared by dissolving 0.5 g, 1.0 g, 1.5 g and 2.0 g of glucose in 100 ml of distilled water to produce 0.5%, 1.0%, 1.5% and 2.0% solutions, respectively. 4 ml of each solution was added to 4 ml of Benedict’s reagent in a test tube and placed in a boiling water bath for 5 minutes, then each test tube was observed.

Results : Food Solutions (4 ml) with Benedict’s Reagent (4 ml)

Glucose Solutions (4 ml) with Benedict’s Reagent (4 ml)

Semi-Quantitative Analysis from Data

Discussion : From the analysis of food solutions along with the glucose solutions of known concentrations, the semi-quantitative analysis of sugar levels in different food products was performed. Milk had the highest sugar content of 2%, with orange juice at 1.5%, bread at 0.5% and chicken with 0% sugar. These values were approximated; the standard solutions were not the exact color of the food solutions, but the closest color match was chosen.

One point of contention was using the orange juice solution, which conferred color to the starting solution, rendering it green before the reaction started. This could have led to the final color (and hence, sugar quantity) being inaccurate. Also, since comparing colors using eyesight alone is inaccurate, the experiment could be improved with a colorimeter that can accurately determine the exact wavelength of light absorbed by the solution.

Another downside of Benedict’s reagent is its inability to react with non-reducing sugars. Reducing sugars encompass all sugar types that can be oxidized from aldehydes or ketones into carboxylic acids. This means that all monosaccharides (glucose, fructose, etc.) are reducing sugars, while only select polysaccharides are. Disaccharides like sucrose and trehalose cannot be oxidized, hence are non-reducing and will not react with Benedict’s reagent. Furthermore, Benedict’s reagent cannot distinguish between different types of reducing sugars.

Conclusion : Using Benedict’s reagent, different food products were analyzed semi-quantitatively for their levels of reducing sugars. Milk contained around 2% sugar, while the chicken solution had no sugar. Overall, the experiment was a success, although the accuracy of the results could have been improved with the use of quantitative equipment and methods.

Reference :

  • Raza, S. I., Raza, S. A., Kazmi, M., Khan, S., & Hussain, I. (2021). 100 Years of Glucose Monitoring in Diabetes Management.  Journal of Diabetes Mellitus ,  11 (5), 221-233.
  • Benedict, Stanley R (1909). A Reagent for the Detection of Reducing Sugars.  Journal of Biological Chemistry ,  5 , 485-487.

Using this guide and example, writing a lab report should be a hassle-free, perhaps even enjoyable process!

About the Author

sean author

Sean is a consultant for clients in the pharmaceutical industry and is an associate lecturer at La Trobe University, where unfortunate undergrads are subject to his ramblings on chemistry and pharmacology.

You Might Also Like…

Why we still talk about smallpox, years after eradicating the virus.

lab relocation follow PI ftloscience post

Your Lab is Relocating—Should You Follow Your PI?

patreon ftloscience

If our content has been helpful to you, please consider supporting our independent science publishing efforts: for just $1 a month.

© 2023 FTLOScience • All Rights Reserved

Generate accurate APA citations for free

  • Knowledge Base
  • APA Style 7th edition
  • How to write an APA results section

Reporting Research Results in APA Style | Tips & Examples

Published on December 21, 2020 by Pritha Bhandari . Revised on January 17, 2024.

The results section of a quantitative research paper is where you summarize your data and report the findings of any relevant statistical analyses.

The APA manual provides rigorous guidelines for what to report in quantitative research papers in the fields of psychology, education, and other social sciences.

Use these standards to answer your research questions and report your data analyses in a complete and transparent way.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

What goes in your results section, introduce your data, summarize your data, report statistical results, presenting numbers effectively, what doesn’t belong in your results section, frequently asked questions about results in apa.

In APA style, the results section includes preliminary information about the participants and data, descriptive and inferential statistics, and the results of any exploratory analyses.

Include these in your results section:

  • Participant flow and recruitment period. Report the number of participants at every stage of the study, as well as the dates when recruitment took place.
  • Missing data . Identify the proportion of data that wasn’t included in your final analysis and state the reasons.
  • Any adverse events. Make sure to report any unexpected events or side effects (for clinical studies).
  • Descriptive statistics . Summarize the primary and secondary outcomes of the study.
  • Inferential statistics , including confidence intervals and effect sizes. Address the primary and secondary research questions by reporting the detailed results of your main analyses.
  • Results of subgroup or exploratory analyses, if applicable. Place detailed results in supplementary materials.

Write up the results in the past tense because you’re describing the outcomes of a completed research study.

Are your APA in-text citations flawless?

The AI-powered APA Citation Checker points out every error, tells you exactly what’s wrong, and explains how to fix it. Say goodbye to losing marks on your assignment!

Get started!

how to write results section of lab report example

Before diving into your research findings, first describe the flow of participants at every stage of your study and whether any data were excluded from the final analysis.

Participant flow and recruitment period

It’s necessary to report any attrition, which is the decline in participants at every sequential stage of a study. That’s because an uneven number of participants across groups sometimes threatens internal validity and makes it difficult to compare groups. Be sure to also state all reasons for attrition.

If your study has multiple stages (e.g., pre-test, intervention, and post-test) and groups (e.g., experimental and control groups), a flow chart is the best way to report the number of participants in each group per stage and reasons for attrition.

Also report the dates for when you recruited participants or performed follow-up sessions.

Missing data

Another key issue is the completeness of your dataset. It’s necessary to report both the amount and reasons for data that was missing or excluded.

Data can become unusable due to equipment malfunctions, improper storage, unexpected events, participant ineligibility, and so on. For each case, state the reason why the data were unusable.

Some data points may be removed from the final analysis because they are outliers—but you must be able to justify how you decided what to exclude.

If you applied any techniques for overcoming or compensating for lost data, report those as well.

Adverse events

For clinical studies, report all events with serious consequences or any side effects that occured.

Descriptive statistics summarize your data for the reader. Present descriptive statistics for each primary, secondary, and subgroup analysis.

Don’t provide formulas or citations for commonly used statistics (e.g., standard deviation) – but do provide them for new or rare equations.

Descriptive statistics

The exact descriptive statistics that you report depends on the types of data in your study. Categorical variables can be reported using proportions, while quantitative data can be reported using means and standard deviations . For a large set of numbers, a table is the most effective presentation format.

Include sample sizes (overall and for each group) as well as appropriate measures of central tendency and variability for the outcomes in your results section. For every point estimate , add a clearly labelled measure of variability as well.

Be sure to note how you combined data to come up with variables of interest. For every variable of interest, explain how you operationalized it.

According to APA journal standards, it’s necessary to report all relevant hypothesis tests performed, estimates of effect sizes, and confidence intervals.

When reporting statistical results, you should first address primary research questions before moving onto secondary research questions and any exploratory or subgroup analyses.

Present the results of tests in the order that you performed them—report the outcomes of main tests before post-hoc tests, for example. Don’t leave out any relevant results, even if they don’t support your hypothesis.

Inferential statistics

For each statistical test performed, first restate the hypothesis , then state whether your hypothesis was supported and provide the outcomes that led you to that conclusion.

Report the following for each hypothesis test:

  • the test statistic value,
  • the degrees of freedom ,
  • the exact p- value (unless it is less than 0.001),
  • the magnitude and direction of the effect.

When reporting complex data analyses, such as factor analysis or multivariate analysis, present the models estimated in detail, and state the statistical software used. Make sure to report any violations of statistical assumptions or problems with estimation.

Effect sizes and confidence intervals

For each hypothesis test performed, you should present confidence intervals and estimates of effect sizes .

Confidence intervals are useful for showing the variability around point estimates. They should be included whenever you report population parameter estimates.

Effect sizes indicate how impactful the outcomes of a study are. But since they are estimates, it’s recommended that you also provide confidence intervals of effect sizes.

Subgroup or exploratory analyses

Briefly report the results of any other planned or exploratory analyses you performed. These may include subgroup analyses as well.

Subgroup analyses come with a high chance of false positive results, because performing a large number of comparison or correlation tests increases the chances of finding significant results.

If you find significant results in these analyses, make sure to appropriately report them as exploratory (rather than confirmatory) results to avoid overstating their importance.

While these analyses can be reported in less detail in the main text, you can provide the full analyses in supplementary materials.

To effectively present numbers, use a mix of text, tables , and figures where appropriate:

  • To present three or fewer numbers, try a sentence ,
  • To present between 4 and 20 numbers, try a table ,
  • To present more than 20 numbers, try a figure .

Since these are general guidelines, use your own judgment and feedback from others for effective presentation of numbers.

Tables and figures should be numbered and have titles, along with relevant notes. Make sure to present data only once throughout the paper and refer to any tables and figures in the text.

Formatting statistics and numbers

It’s important to follow capitalization , italicization, and abbreviation rules when referring to statistics in your paper. There are specific format guidelines for reporting statistics in APA , as well as general rules about writing numbers .

If you are unsure of how to present specific symbols, look up the detailed APA guidelines or other papers in your field.

It’s important to provide a complete picture of your data analyses and outcomes in a concise way. For that reason, raw data and any interpretations of your results are not included in the results section.

It’s rarely appropriate to include raw data in your results section. Instead, you should always save the raw data securely and make them available and accessible to any other researchers who request them.

Making scientific research available to others is a key part of academic integrity and open science.

Interpretation or discussion of results

This belongs in your discussion section. Your results section is where you objectively report all relevant findings and leave them open for interpretation by readers.

While you should state whether the findings of statistical tests lend support to your hypotheses, refrain from forming conclusions to your research questions in the results section.

Explanation of how statistics tests work

For the sake of concise writing, you can safely assume that readers of your paper have professional knowledge of how statistical inferences work.

In an APA results section , you should generally report the following:

  • Participant flow and recruitment period.
  • Missing data and any adverse events.
  • Descriptive statistics about your samples.
  • Inferential statistics , including confidence intervals and effect sizes.
  • Results of any subgroup or exploratory analyses, if applicable.

According to the APA guidelines, you should report enough detail on inferential statistics so that your readers understand your analyses.

  • the test statistic value
  • the degrees of freedom
  • the exact p value (unless it is less than 0.001)
  • the magnitude and direction of the effect

You should also present confidence intervals and estimates of effect sizes where relevant.

In APA style, statistics can be presented in the main text or as tables or figures . To decide how to present numbers, you can follow APA guidelines:

  • To present three or fewer numbers, try a sentence,
  • To present between 4 and 20 numbers, try a table,
  • To present more than 20 numbers, try a figure.

Results are usually written in the past tense , because they are describing the outcome of completed actions.

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2024, January 17). Reporting Research Results in APA Style | Tips & Examples. Scribbr. Retrieved February 22, 2024, from https://www.scribbr.com/apa-style/results-section/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, how to write an apa methods section, how to format tables and figures in apa style, reporting statistics in apa style | guidelines & examples, scribbr apa citation checker.

An innovative new tool that checks your APA citations with AI software. Say goodbye to inaccurate citations!

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

Lab Report Format: Step-by-Step Guide & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, Ph.D., is a qualified psychology teacher with over 18 years experience of working in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In psychology, a lab report outlines a study’s objectives, methods, results, discussion, and conclusions, ensuring clarity and adherence to APA (or relevant) formatting guidelines.

A typical lab report would include the following sections: title, abstract, introduction, method, results, and discussion.

The title page, abstract, references, and appendices are started on separate pages (subsections from the main body of the report are not). Use double-line spacing of text, font size 12, and include page numbers.

The report should have a thread of arguments linking the prediction in the introduction to the content of the discussion.

This must indicate what the study is about. It must include the variables under investigation. It should not be written as a question.

Title pages should be formatted in APA style .

The abstract provides a concise and comprehensive summary of a research report. Your style should be brief but not use note form. Look at examples in journal articles . It should aim to explain very briefly (about 150 words) the following:

  • Start with a one/two sentence summary, providing the aim and rationale for the study.
  • Describe participants and setting: who, when, where, how many, and what groups?
  • Describe the method: what design, what experimental treatment, what questionnaires, surveys, or tests were used.
  • Describe the major findings, including a mention of the statistics used and the significance levels, or simply one sentence summing up the outcome.
  • The final sentence(s) outline the study’s “contribution to knowledge” within the literature. What does it all mean? Mention the implications of your findings if appropriate.

The abstract comes at the beginning of your report but is written at the end (as it summarises information from all the other sections of the report).

Introduction

The purpose of the introduction is to explain where your hypothesis comes from (i.e., it should provide a rationale for your research study).

Ideally, the introduction should have a funnel structure: Start broad and then become more specific. The aims should not appear out of thin air; the preceding review of psychological literature should lead logically into the aims and hypotheses.

The funnel structure of the introducion to a lab report

  • Start with general theory, briefly introducing the topic. Define the important key terms.
  • Explain the theoretical framework.
  • Summarise and synthesize previous studies – What was the purpose? Who were the participants? What did they do? What did they find? What do these results mean? How do the results relate to the theoretical framework?
  • Rationale: How does the current study address a gap in the literature? Perhaps it overcomes a limitation of previous research.
  • Aims and hypothesis. Write a paragraph explaining what you plan to investigate and make a clear and concise prediction regarding the results you expect to find.

There should be a logical progression of ideas that aids the flow of the report. This means the studies outlined should lead logically to your aims and hypotheses.

Do be concise and selective, and avoid the temptation to include anything in case it is relevant (i.e., don’t write a shopping list of studies).

USE THE FOLLOWING SUBHEADINGS:

Participants

  • How many participants were recruited?
  • Say how you obtained your sample (e.g., opportunity sample).
  • Give relevant demographic details (e.g., gender, ethnicity, age range, mean age, and standard deviation).
  • State the experimental design .
  • What were the independent and dependent variables ? Make sure the independent variable is labeled and name the different conditions/levels.
  • For example, if gender is the independent variable label, then male and female are the levels/conditions/groups.
  • How were the IV and DV operationalized?
  • Identify any controls used, e.g., counterbalancing and control of extraneous variables.
  • List all the materials and measures (e.g., what was the title of the questionnaire? Was it adapted from a study?).
  • You do not need to include wholesale replication of materials – instead, include a ‘sensible’ (illustrate) level of detail. For example, give examples of questionnaire items.
  • Include the reliability (e.g., alpha values) for the measure(s).
  • Describe the precise procedure you followed when conducting your research, i.e., exactly what you did.
  • Describe in sufficient detail to allow for replication of findings.
  • Be concise in your description and omit extraneous/trivial details, e.g., you don’t need to include details regarding instructions, debrief, record sheets, etc.
  • Assume the reader has no knowledge of what you did and ensure that he/she can replicate (i.e., copy) your study exactly by what you write in this section.
  • Write in the past tense.
  • Don’t justify or explain in the Method (e.g., why you chose a particular sampling method); just report what you did.
  • Only give enough detail for someone to replicate the experiment – be concise in your writing.
  • The results section of a paper usually presents descriptive statistics followed by inferential statistics.
  • Report the means, standard deviations, and 95% confidence intervals (CIs) for each IV level. If you have four to 20 numbers to present, a well-presented table is best, APA style.
  • Name the statistical test being used.
  • Report appropriate statistics (e.g., t-scores, p values ).
  • Report the magnitude (e.g., are the results significant or not?) as well as the direction of the results (e.g., which group performed better?).
  • It is optional to report the effect size (this does not appear on the SPSS output).
  • Avoid interpreting the results (save this for the discussion).
  • Make sure the results are presented clearly and concisely. A table can be used to display descriptive statistics if this makes the data easier to understand.
  • DO NOT include any raw data.
  • Follow APA style.

Use APA Style

  • Numbers reported to 2 d.p. (incl. 0 before the decimal if 1.00, e.g., “0.51”). The exceptions to this rule: Numbers which can never exceed 1.0 (e.g., p -values, r-values): report to 3 d.p. and do not include 0 before the decimal place, e.g., “.001”.
  • Percentages and degrees of freedom: report as whole numbers.
  • Statistical symbols that are not Greek letters should be italicized (e.g., M , SD , t , X 2 , F , p , d ).
  • Include spaces on either side of the equals sign.
  • When reporting 95%, CIs (confidence intervals), upper and lower limits are given inside square brackets, e.g., “95% CI [73.37, 102.23]”
  • Outline your findings in plain English (avoid statistical jargon) and relate your results to your hypothesis, e.g., is it supported or rejected?
  • Compare your results to background materials from the introduction section. Are your results similar or different? Discuss why/why not.
  • How confident can we be in the results? Acknowledge limitations, but only if they can explain the result obtained. If the study has found a reliable effect, be very careful suggesting limitations as you are doubting your results. Unless you can think of any c onfounding variable that can explain the results instead of the IV, it would be advisable to leave the section out.
  • Suggest constructive ways to improve your study if appropriate.
  • What are the implications of your findings? Say what your findings mean for how people behave in the real world.
  • Suggest an idea for further research triggered by your study, something in the same area but not simply an improved version of yours. Perhaps you could base this on a limitation of your study.
  • Concluding paragraph – Finish with a statement of your findings and the key points of the discussion (e.g., interpretation and implications) in no more than 3 or 4 sentences.

Reference Page

The reference section lists all the sources cited in the essay (alphabetically). It is not a bibliography (a list of the books you used).

In simple terms, every time you refer to a psychologist’s name (and date), you need to reference the original source of information.

If you have been using textbooks this is easy as the references are usually at the back of the book and you can just copy them down. If you have been using websites then you may have a problem as they might not provide a reference section for you to copy.

References need to be set out APA style :

Author, A. A. (year). Title of work . Location: Publisher.

Journal Articles

Author, A. A., Author, B. B., & Author, C. C. (year). Article title. Journal Title, volume number (issue number), page numbers

A simple way to write your reference section is to use Google scholar . Just type the name and date of the psychologist in the search box and click on the “cite” link.

google scholar search results

Next, copy and paste the APA reference into the reference section of your essay.

apa reference

Once again, remember that references need to be in alphabetical order according to surname.

Psychology Lab Report Example

Quantitative paper template.

Quantitative professional paper template: Adapted from “Fake News, Fast and Slow: Deliberation Reduces Belief in False (but Not True) News Headlines,” by B. Bago, D. G. Rand, and G. Pennycook, 2020,  Journal of Experimental Psychology: General ,  149 (8), pp. 1608–1613 ( https://doi.org/10.1037/xge0000729 ). Copyright 2020 by the American Psychological Association.

Qualitative paper template

Qualitative professional paper template: Adapted from “‘My Smartphone Is an Extension of Myself’: A Holistic Qualitative Exploration of the Impact of Using a Smartphone,” by L. J. Harkin and D. Kuss, 2020,  Psychology of Popular Media ,  10 (1), pp. 28–38 ( https://doi.org/10.1037/ppm0000278 ). Copyright 2020 by the American Psychological Association.

Print Friendly, PDF & Email

  • How To Find Articles with Databases
  • How To Evaluate Articles
  • How To Read A Scientific Paper
  • How To Interpret Data
  • How To Write A Lab Report
  • How To Write A Scientific Paper
  • Get More Help
  • Reference: Encyclopedia, Handbooks & Dictionaries
  • Research Tools: Databases, Protocols & Citation Locators
  • E-Journal Lists by Subject
  • Scholarly vs Popular
  • Search Tips
  • Open Resources
  • E-Journal lists by subject
  • Develop a Research Question

Writing Lab Reports

Writing lab reports follows a straightforward and structured procedure. It is important to recognize that each part of a lab report is important, so take the time to complete each carefully. A lab report is broken down into eight sections: title, abstract, introduction, methods and materials, results, discussion, conclusion, and references. 

  • Ex: "Determining the Free Chlorine Content of Pool Water"
  • Abstracts are a summary of the experiment as a whole and should familiarize the reader with the purpose of the research. 
  • Abstracts will always be written last, even though they are the first paragraph of a lab report. 
  • Not all lab reports will require an abstract. However, they are often included in upper-level lab reports and should be studied carefully. 
  • Why was the research done or experiment conducted?
  • What problem is being addressed?
  • What results were found?
  • What are the meaning of the results?
  • How is the problem better understood now than before, if at all?

Introduction

  • The introduction of a lab report discusses the problem being studied and other theory that is relevant to understanding the findings. 
  • The hypothesis of the experiment and the motivation for the research are stated in this section. 
  • Write the introduction in your own words. Try not to copy from a lab manual or other guidelines. Instead, show comprehension of the experiment by briefly explaining the problem.

Methods and Materials

  • Ex: pipette, graduated cylinder, 1.13mg of Na, 0.67mg Ag
  • List the steps taken as they actually happened during the experiment, not as they were supposed to happen. 
  • If written correctly, another researcher should be able to duplicate the experiment and get the same or very similar results. 
  • The results show the data that was collected or found during the experiment. 
  • Explain in words the data that was collected.
  • Tables should be labeled numerically, as "Table 1", "Table 2", etc. Other figures should be labeled numerically as "Figure 1", "Figure 2", etc. 
  • Calculations to understand the data can also be presented in the results. 
  • The discussion section is one of the most important parts of the lab report. It analyzes the results of the experiment and is a discussion of the data. 
  • If any results are unexpected, explain why they are unexpected and how they did or did not effect the data obtained. 
  • Analyze the strengths and weaknesses of the design of the experiment and compare your results to other similar experiments.
  • If there are any experimental errors, analyze them.
  • Explain your results and discuss them using relevant terms and theories.
  • What do the results indicate?
  • What is the significance of the results?
  • Are there any gaps in knowledge?
  • Are there any new questions that have been raised?
  • The conclusion is a summation of the experiment. It should clearly and concisely state what was learned and its importance.
  • If there is future work that needs to be done, it can be explained in the conclusion.
  • If using any outside sources to support a claim or explain background information, those sources must be cited in the references section of the lab report. 
  • In the event that no outside sources are used, the references section may be left out. 

Other Useful Sources

  • The Lab Report
  • Sample Laboratory Report #2
  • Some Tips on Writing Lab Reports
  • Writing a Science Lab Report
  • << Previous: How To Interpret Data
  • Next: How To Write A Scientific Paper >>
  • Last Updated: Jan 24, 2024 10:04 AM
  • URL: https://guides.libraries.indiana.edu/STEM

Social media

  • Instagram for Herman B Wells Library
  • Facebook for IU Libraries

Additional resources

Featured databases.

  • Resource available to authorized IU Bloomington users (on or off campus) OneSearch@IU
  • Resource available to authorized IU Bloomington users (on or off campus) Academic Search (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) ERIC (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) Nexis Uni
  • Resource available without restriction HathiTrust Digital Library
  • Databases A-Z
  • Resource available to authorized IU Bloomington users (on or off campus) Google Scholar
  • Resource available to authorized IU Bloomington users (on or off campus) JSTOR
  • Resource available to authorized IU Bloomington users (on or off campus) Web of Science
  • Resource available to authorized IU Bloomington users (on or off campus) Scopus
  • Resource available to authorized IU Bloomington users (on or off campus) WorldCat

IU Libraries

  • Diversity Resources
  • About IU Libraries
  • Alumni & Friends
  • Departments & Staff
  • Jobs & Libraries HR
  • Intranet (Staff)
  • IUL site admin

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Writing the Experimental Report: Methods, Results, and Discussion

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

Written for undergraduate students and new graduate students in psychology (experimental), this handout provides information on writing in psychology and on experimental report and experimental article writing.

Method section

Your method section provides a detailed overview of how you conducted your research. Because your study methods form a large part of your credibility as a researcher and writer, it is imperative that you be clear about what you did to gather information from participants in your study.

With your methods section, as with the sections above, you want to walk your readers through your study almost as if they were a participant. What happened first? What happened next?

The method section includes the following sub-sections.

I. Participants: Discuss who was enrolled in your experiment. Include major demographics that have an impact on the results of the experiment (i.e. if race is a factor, you should provide a breakdown by race). The accepted term for describing a person who participates in research studies is a participant not a subject.

II. Apparatus and materials: The apparatus is any equipment used during data collection (such as computers or eye-tracking devices). Materials include scripts, surveys, or software used for data collection (not data analysis). It is sometimes necessary to provide specific examples of materials or prompts, depending on the nature of your study.

III. Procedure: The procedure includes the step-by-step how of your experiment. The procedure should include:

  • A description of the experimental design and how participants were assigned conditions.
  • Identification of your independent variable(s) (IV), dependent variable(s) (DV), and control variables. Give your variables clear, meaningful names so that your readers are not confused.
  • Important instructions to participants.
  • A step-by-step listing in chronological order of what participants did during the experiment.

Results section

The results section is where you present the results of your research-both narrated for the readers in plain English and accompanied by statistics.

Note : Depending on the requirements or the projected length of your paper, sometimes the results are combined with the discussion section.

Organizing Results

Continue with your story in the results section. How do your results fit with the overall story you are telling? What results are the most compelling? You want to begin your discussion by reminding your readers once again what your hypotheses were and what your overall story is. Then provide each result as it relates to that story. The most important results should go first.

Preliminary discussion: Sometimes it is necessary to provide a preliminary discussion in your results section about your participant groups. In order to convince your readers that your results are meaningful, you must first demonstrate that the conditions of the study were met. For example, if you randomly assigned subjects into groups, are these two groups comparable? You can't discuss the differences in the two groups until you establish that the two groups can be compared.

Provide information on your data analysis: Be sure to describe the analysis you did. If you are using a non-conventional analysis, you also need to provide justification for why you are doing so.

Presenting Results : Bem (2006) recommends the following pattern for presenting findings:

  • Remind readers of the conceptual hypotheses or questions you are asking
  • Remind readers of behaviors measured or operations performed
  • Provide the answer/result in plain English
  • Provide the statistic that supports your plain English answer
  • Elaborate or qualify the overall conclusion if necessary

Writers new to psychology and writing with statistics often dump numbers at their readers without providing a clear narration of what those numbers mean. Please see our Writing with Statistics handout for more information on how to write with statistics.

Discussion section

Your discussion section is where you talk about what your results mean and where you wrap up the overall story you are telling. This is where you interpret your findings, evaluate your hypotheses or research questions, discuss unexpected results, and tie your findings to the previous literature (discussed first in your literature review). Your discussion section should move from specific to general.

Here are some tips for writing your discussion section.

  • Begin by providing an interpretation of your results: what is it that you have learned from your research?
  • Discuss each hypotheses or research question in more depth.
  • Do not repeat what you have already said in your results—instead, focus on adding new information and broadening the perspective of your results to you reader.
  • Discuss how your results compare to previous findings in the literature. If there are differences, discuss why you think these differences exist and what they could mean.
  • Briefly consider your study's limitations, but do not dwell on its flaws.
  • Consider also what new questions your study raises, what questions your study was not able to answer, and what avenues future research could take in this area.

Example: Here is how this works.

References section

References should be in standard APA format. Please see our APA Formatting guide for specific instructions.

Tutorsploit

How to Write the Results Section of a Lab Report

The results section of a lab report is one of the sections in your paper that will be most scrutinized. If you are looking to separate yourself from other students in your class, take care in developing this portion. A common mistake among younger students is writing too much information at once. Keep in mind that you are not writing a dissertation. Rather, you are trying to explain to the reader what happened in the lab so that they may either reproduce your results or better understand your conclusions.

What is the Results Section in a Lab Report?

The results section of the lab report is the section in which you show the findings of the experiment. In this portion of your paper, you will be reporting the number of trials performed and the outcome of the trials.

The result section should not be confused with the discussion section. The results section shows the outcomes of the experiments carried out, while the discussion section focuses on your interpretation of the experiment.

Parts of the Results Section in a Lab Report

The results section in your lab report will typically consist of the following four parts:

1. The first thing you will want to do is to correctly identify which part of the experiment these results correspond to. If you are using data from more than one condition, make sure that you label each set of results.

2. Describe the methods used to carry out the experiment and summarize what you did in a few sentences. This is where your lab manual will come into play. It should be clear from the text of this section as well as your graphs and results in the table if you followed your lab manual correctly or not.

3. Summarize the results in a table or chart. Make sure to include important information such as what it is, how much of it there was, and when you expect this result to happen. This will help your reader reproduce your experiment.

4. Finally, give your conclusion. In this part, you will want to include any relevant information from the background section of your lab report and how it relates to these results.

Just follow the simple steps below!

Steps for Writing Your Results Section

1. Identify the variables in your experiment. This is perhaps the most important part of your paper. You will want to list all of the variables and declare which of them you were manipulating and which ones were controlled throughout your experiment.

2. Identify what happened when these variables were manipulated by explaining how they affect your dependent variable (the thing that you measure in the experiment).

3. List the conditions that were tested under each experimental variable in your results section. If you are using data from more than one condition, make sure to label each set of results in addition to describing the methods used to carry out this experiment in brief sentences.

4. Compile all of your results in a table or chart. If you have trouble understanding what you did, feel free to step back and think of another way to display this information.

5. Describe your results in words, showing how they relate to the problem stated in the introduction of the paper.

Here is an example of a Results Section:

Results section.

The first part of the experiment tested what temperature was needed to allow the maximum amount of light to pass through a plant leaf.

The dependent variable in this experiment is transmittance, which was measured using an instrument called a spectrometer.

The independent variables were temperature and wavelength of light that were used, both controlled by placing them into one of three different heat lamps.

After various trials, it was found that the maximum transmittance of red light occurred at a temperature between 40 and 50 degrees Celsius, as shown in Figure 1 below.

This is because, at approximately 40 degrees Celsius, there is a visible change in pigment colors within the leaf visible to the naked eye. The peak visible wavelength for this change in pigment color is approximately 663 nanometers, corresponding to red light.

how to write results section of lab report example

Fig 1: Transmittance of Red Light over Time at Various Temperatures (Just an Example)

The second part of the experiment tested what wavelength caused the maximum transmittance through a plant leaf and how this relates to photosynthesis.

The dependent variable for this part of the experiment was transmittance, as in the first part.

The independent variables were wavelength and temperature, controlled by placing them into three different heat lamps.

After each trial, transmittance measurements were taken using a spectrometer for various wavelengths of light and temperatures.

As expected from the first part of the experiment, transmittance peaked at a wavelength corresponding to red light for this particular set of conditions.

However, it was found that there was a secondary peak in transmittance at 600 nanometers for this temperature and wavelength combination, shown in Figure 2 below.

how to write results section of lab report example

Fig 2: Transmittance of Various Wavelengths over Time at a Particular Temperature (Just an example)

The third part of the experiment tested what wavelength caused maximum transmittance and how this relates to cellular respiration.

The dependent variable in this experiment was transmittance, as it has been in the previous two parts.

The independent variables were wavelength and gas mixture, both controlled by placing them into one of three different gas containers.

After each trial, transmittance measurements were taken using a spectrometer for various wavelengths and gas mixtures.

As expected from the first two parts of the experiment, it was found that red light had the maximum transmittance at the tested temperature and wavelength combination.

However, red light no longer had the highest transmittance when oxygen was removed from the gas mixture and replaced with carbon dioxide.

In fact, when there was no oxygen in the environment, wavelengths between 575 and 630 showed a higher maximum in transmittance than red light. This is shown in Figure 3 below.

how to write results section of lab report example

Fig 3: Transmittance of Various Wavelengths over Time in Different Gas Mixtures (just an example)

This experiment showed that the maximum transmittance through a plant leaf does not change significantly when tested at different gas compositions. Moreover, although photosynthesis is related to carbon dioxide intake and cellular respiration is related to oxygen intake, their effects on transmittance can be separated.

General Guidelines for Writing the Results Section of a Lab Report:

When writing the results section of lab reports, there are some general guidelines that should be followed.

Use formal language – writing a lab report is different from an essay because it should follow the same language, format, and structure as a scientific paper. This means that all results in the results section should be written in complete sentences.

Number each section – each part of the lab report should be numbered in the order presented. This makes it clear for readers and graders to follow.

Write out all measurements – unlike most other sections in a lab report where units can be dropped, all measurements in the results section need to include units. This helps to ensure that results are reliable and accurate.

Edit and proofread – A common mistake is writing measurements in the text without including units. This makes results seem imprecise and can damage reader confidence. Check for errors like this as well as any other mistakes, before handing in the final version to your instructor.

Tips for Writing a Solid Results Section in a Lab Report

1. Make sure you have tables and figures for every piece of data reported in the paper. The reader should not have to flip through the report and read each result individually.

2. Always include units in your data and do not abbreviate anything. You should not be writing “g” or “ml” when you would normally write “grams” or “millilitres.” Instead, use gram for grams and millilitre for millilitres.

3. When analyzing your data, make sure to include any relevant graphs from previous parts of the lab report as well as those that you created in this section. Draw a line under the graph and provide a caption for it. If you are using other pieces of information from your paper, be sure to reference them.

4. Make sure to reference all outside sources that you relied upon. While this is not a literature review , the reader should know where your information came from and how it applies to what you are discussing.

The results section of a lab report is about the data that you collected during your experiment. It should present this information in an organized fashion, making it easy for readers to follow along and understand what you have done.

It is important to remember that writing a lab report is different from writing essays because the language must be formal, scientific, and appropriate for a scientific paper.

Include your results in a table or chart, and be sure that each data point has a caption and units. Make sure to proofread your results section before handing in the final version of your lab report to ensure that all information is accurate.

how to write results section of lab report example

I ‘m a freelance content and SEO writer with a passion for finding the perfect combination of words to capture attention and express a message . I create catchy, SEO-friendly content for websites, blogs, articles, and social media. My experience spans many industries, including health and wellness, technology, education, business, and lifestyle. My clients appreciate my ability to craft compelling stories that engage their target audience, but also help to improve their website’s search engine rankings. I’m also an avid learner and stay up to date on the latest SEO trends. I enjoy exploring new places and reading up on the latest marketing and SEO strategies in my free time.

Similar Posts

Writing About History

Writing About History

Overview In this post, we will explore various approaches to writing about History. We will discuss how you can combine primary and secondary sources to develop a discussion in your paper that is both accurate and insightful. In the second section of this blog post, we will look at how you, as a historian, should…

How to Write a Reflection

A reflection paper is a short piece of writing usually targeted at one particular text, whether an essay or not. It helps you understand the text you’re reading better. This paper shows that you understand the ideas in the text and can critically analyze them. It’s important to prepare a reflection before reading a write-up…

10 Examples of Peer Reviews

10 Examples of Peer Reviews

Peer reviews are among the most important activities that are done in every work and academic environment. In the workplace, they are conducted to ensure that quality standards are met or exceeded by employees who perform certain duties. What is a Peer Review? A peer review is a process of evaluation where other knowledgeable people…

Top 7 Examples of Annotated Bibliographies in APA Format

Top 7 Examples of Annotated Bibliographies in APA Format

There are different types of writing that students have to complete in school. One type of writing is an annotated bibliography. Begin writing an annotated bibliography by first finding several sources on the topic. The sources should either be books or peer reviewed journal articles. In an annotated bibliography, include at least five sources with…

How to Write an Acknowledgement in A Thesis

How to Write an Acknowledgement in A Thesis

A thesis acknowledgment is an informal letter of gratitude to those who contributed in some way to the completion of a degree. The most common form is a short paragraph thanking those who have helped with the research, writing, or other aspects. It may also include thanks for funding or providing equipment and facilities used…

How to Analyze a Film – with Examples

How to Analyze a Film – with Examples

Do you ever watch a movie and ask yourself what the director was trying to tell us? What messages are being communicated through this film? How does the director use characterization, cinematography, editing, sound design, camera angles, or any other element of filmmaking to convey their message? Do these techniques affect your understanding of the…

spin

  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write the Results/Findings Section in Research

how to write results section of lab report example

What is the research paper Results section and what does it do?

The Results section of a scientific research paper represents the core findings of a study derived from the methods applied to gather and analyze information. It presents these findings in a logical sequence without bias or interpretation from the author, setting up the reader for later interpretation and evaluation in the Discussion section. A major purpose of the Results section is to break down the data into sentences that show its significance to the research question(s).

The Results section appears third in the section sequence in most scientific papers. It follows the presentation of the Methods and Materials and is presented before the Discussion section —although the Results and Discussion are presented together in many journals. This section answers the basic question “What did you find in your research?”

What is included in the Results section?

The Results section should include the findings of your study and ONLY the findings of your study. The findings include:

  • Data presented in tables, charts, graphs, and other figures (may be placed into the text or on separate pages at the end of the manuscript)
  • A contextual analysis of this data explaining its meaning in sentence form
  • All data that corresponds to the central research question(s)
  • All secondary findings (secondary outcomes, subgroup analyses, etc.)

If the scope of the study is broad, or if you studied a variety of variables, or if the methodology used yields a wide range of different results, the author should present only those results that are most relevant to the research question stated in the Introduction section .

As a general rule, any information that does not present the direct findings or outcome of the study should be left out of this section. Unless the journal requests that authors combine the Results and Discussion sections, explanations and interpretations should be omitted from the Results.

How are the results organized?

The best way to organize your Results section is “logically.” One logical and clear method of organizing research results is to provide them alongside the research questions—within each research question, present the type of data that addresses that research question.

Let’s look at an example. Your research question is based on a survey among patients who were treated at a hospital and received postoperative care. Let’s say your first research question is:

results section of a research paper, figures

“What do hospital patients over age 55 think about postoperative care?”

This can actually be represented as a heading within your Results section, though it might be presented as a statement rather than a question:

Attitudes towards postoperative care in patients over the age of 55

Now present the results that address this specific research question first. In this case, perhaps a table illustrating data from a survey. Likert items can be included in this example. Tables can also present standard deviations, probabilities, correlation matrices, etc.

Following this, present a content analysis, in words, of one end of the spectrum of the survey or data table. In our example case, start with the POSITIVE survey responses regarding postoperative care, using descriptive phrases. For example:

“Sixty-five percent of patients over 55 responded positively to the question “ Are you satisfied with your hospital’s postoperative care ?” (Fig. 2)

Include other results such as subcategory analyses. The amount of textual description used will depend on how much interpretation of tables and figures is necessary and how many examples the reader needs in order to understand the significance of your research findings.

Next, present a content analysis of another part of the spectrum of the same research question, perhaps the NEGATIVE or NEUTRAL responses to the survey. For instance:

  “As Figure 1 shows, 15 out of 60 patients in Group A responded negatively to Question 2.”

After you have assessed the data in one figure and explained it sufficiently, move on to your next research question. For example:

  “How does patient satisfaction correspond to in-hospital improvements made to postoperative care?”

results section of a research paper, figures

This kind of data may be presented through a figure or set of figures (for instance, a paired T-test table).

Explain the data you present, here in a table, with a concise content analysis:

“The p-value for the comparison between the before and after groups of patients was .03% (Fig. 2), indicating that the greater the dissatisfaction among patients, the more frequent the improvements that were made to postoperative care.”

Let’s examine another example of a Results section from a study on plant tolerance to heavy metal stress . In the Introduction section, the aims of the study are presented as “determining the physiological and morphological responses of Allium cepa L. towards increased cadmium toxicity” and “evaluating its potential to accumulate the metal and its associated environmental consequences.” The Results section presents data showing how these aims are achieved in tables alongside a content analysis, beginning with an overview of the findings:

“Cadmium caused inhibition of root and leave elongation, with increasing effects at higher exposure doses (Fig. 1a-c).”

The figure containing this data is cited in parentheses. Note that this author has combined three graphs into one single figure. Separating the data into separate graphs focusing on specific aspects makes it easier for the reader to assess the findings, and consolidating this information into one figure saves space and makes it easy to locate the most relevant results.

results section of a research paper, figures

Following this overall summary, the relevant data in the tables is broken down into greater detail in text form in the Results section.

  • “Results on the bio-accumulation of cadmium were found to be the highest (17.5 mg kgG1) in the bulb, when the concentration of cadmium in the solution was 1×10G2 M and lowest (0.11 mg kgG1) in the leaves when the concentration was 1×10G3 M.”

Captioning and Referencing Tables and Figures

Tables and figures are central components of your Results section and you need to carefully think about the most effective way to use graphs and tables to present your findings . Therefore, it is crucial to know how to write strong figure captions and to refer to them within the text of the Results section.

The most important advice one can give here as well as throughout the paper is to check the requirements and standards of the journal to which you are submitting your work. Every journal has its own design and layout standards, which you can find in the author instructions on the target journal’s website. Perusing a journal’s published articles will also give you an idea of the proper number, size, and complexity of your figures.

Regardless of which format you use, the figures should be placed in the order they are referenced in the Results section and be as clear and easy to understand as possible. If there are multiple variables being considered (within one or more research questions), it can be a good idea to split these up into separate figures. Subsequently, these can be referenced and analyzed under separate headings and paragraphs in the text.

To create a caption, consider the research question being asked and change it into a phrase. For instance, if one question is “Which color did participants choose?”, the caption might be “Color choice by participant group.” Or in our last research paper example, where the question was “What is the concentration of cadmium in different parts of the onion after 14 days?” the caption reads:

 “Fig. 1(a-c): Mean concentration of Cd determined in (a) bulbs, (b) leaves, and (c) roots of onions after a 14-day period.”

Steps for Composing the Results Section

Because each study is unique, there is no one-size-fits-all approach when it comes to designing a strategy for structuring and writing the section of a research paper where findings are presented. The content and layout of this section will be determined by the specific area of research, the design of the study and its particular methodologies, and the guidelines of the target journal and its editors. However, the following steps can be used to compose the results of most scientific research studies and are essential for researchers who are new to preparing a manuscript for publication or who need a reminder of how to construct the Results section.

Step 1 : Consult the guidelines or instructions that the target journal or publisher provides authors and read research papers it has published, especially those with similar topics, methods, or results to your study.

  • The guidelines will generally outline specific requirements for the results or findings section, and the published articles will provide sound examples of successful approaches.
  • Note length limitations on restrictions on content. For instance, while many journals require the Results and Discussion sections to be separate, others do not—qualitative research papers often include results and interpretations in the same section (“Results and Discussion”).
  • Reading the aims and scope in the journal’s “ guide for authors ” section and understanding the interests of its readers will be invaluable in preparing to write the Results section.

Step 2 : Consider your research results in relation to the journal’s requirements and catalogue your results.

  • Focus on experimental results and other findings that are especially relevant to your research questions and objectives and include them even if they are unexpected or do not support your ideas and hypotheses.
  • Catalogue your findings—use subheadings to streamline and clarify your report. This will help you avoid excessive and peripheral details as you write and also help your reader understand and remember your findings. Create appendices that might interest specialists but prove too long or distracting for other readers.
  • Decide how you will structure of your results. You might match the order of the research questions and hypotheses to your results, or you could arrange them according to the order presented in the Methods section. A chronological order or even a hierarchy of importance or meaningful grouping of main themes or categories might prove effective. Consider your audience, evidence, and most importantly, the objectives of your research when choosing a structure for presenting your findings.

Step 3 : Design figures and tables to present and illustrate your data.

  • Tables and figures should be numbered according to the order in which they are mentioned in the main text of the paper.
  • Information in figures should be relatively self-explanatory (with the aid of captions), and their design should include all definitions and other information necessary for readers to understand the findings without reading all of the text.
  • Use tables and figures as a focal point to tell a clear and informative story about your research and avoid repeating information. But remember that while figures clarify and enhance the text, they cannot replace it.

Step 4 : Draft your Results section using the findings and figures you have organized.

  • The goal is to communicate this complex information as clearly and precisely as possible; precise and compact phrases and sentences are most effective.
  • In the opening paragraph of this section, restate your research questions or aims to focus the reader’s attention to what the results are trying to show. It is also a good idea to summarize key findings at the end of this section to create a logical transition to the interpretation and discussion that follows.
  • Try to write in the past tense and the active voice to relay the findings since the research has already been done and the agent is usually clear. This will ensure that your explanations are also clear and logical.
  • Make sure that any specialized terminology or abbreviation you have used here has been defined and clarified in the  Introduction section .

Step 5 : Review your draft; edit and revise until it reports results exactly as you would like to have them reported to your readers.

  • Double-check the accuracy and consistency of all the data, as well as all of the visual elements included.
  • Read your draft aloud to catch language errors (grammar, spelling, and mechanics), awkward phrases, and missing transitions.
  • Ensure that your results are presented in the best order to focus on objectives and prepare readers for interpretations, valuations, and recommendations in the Discussion section . Look back over the paper’s Introduction and background while anticipating the Discussion and Conclusion sections to ensure that the presentation of your results is consistent and effective.
  • Consider seeking additional guidance on your paper. Find additional readers to look over your Results section and see if it can be improved in any way. Peers, professors, or qualified experts can provide valuable insights.

One excellent option is to use a professional English proofreading and editing service  such as Wordvice, including our paper editing service . With hundreds of qualified editors from dozens of scientific fields, Wordvice has helped thousands of authors revise their manuscripts and get accepted into their target journals. Read more about the  proofreading and editing process  before proceeding with getting academic editing services and manuscript editing services for your manuscript.

As the representation of your study’s data output, the Results section presents the core information in your research paper. By writing with clarity and conciseness and by highlighting and explaining the crucial findings of their study, authors increase the impact and effectiveness of their research manuscripts.

For more articles and videos on writing your research manuscript, visit Wordvice’s Resources page.

Wordvice Resources

  • How to Write a Research Paper Introduction 
  • Which Verb Tenses to Use in a Research Paper
  • How to Write an Abstract for a Research Paper
  • How to Write a Research Paper Title
  • Useful Phrases for Academic Writing
  • Common Transition Terms in Academic Papers
  • Active and Passive Voice in Research Papers
  • 100+ Verbs That Will Make Your Research Writing Amazing
  • Tips for Paraphrasing in Research Papers

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • How to Write a Results Section | Tips & Examples

How to Write a Results Section | Tips & Examples

Published on 27 October 2016 by Bas Swaen . Revised on 25 October 2022 by Tegan George.

A results section is where you report the main findings of the data collection and analysis you conducted for your thesis or dissertation . You should report all relevant results concisely and objectively, in a logical order. Don’t include subjective interpretations of why you found these results or what they mean – any evaluation should be saved for the discussion section .

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

How to write a results section, reporting quantitative research results, reporting qualitative research results, results vs discussion vs conclusion, checklist: research results, frequently asked questions about results sections.

When conducting research, it’s important to report the results of your study prior to discussing your interpretations of it. This gives your reader a clear idea of exactly what you found and keeps the data itself separate from your subjective analysis.

Here are a few best practices:

  • Your results should always be written in the past tense.
  • While the length of this section depends on how much data you collected and analysed, it should be written as concisely as possible.
  • Only include results that are directly relevant to answering your research questions . Avoid speculative or interpretative words like ‘appears’ or ‘implies’.
  • If you have other results you’d like to include, consider adding them to an appendix or footnotes.
  • Always start out with your broadest results first, and then flow into your more granular (but still relevant) ones. Think of it like a shoe shop: first discuss the shoes as a whole, then the trainers, boots, sandals, etc.

Prevent plagiarism, run a free check.

If you conducted quantitative research , you’ll likely be working with the results of some sort of statistical analysis .

Your results section should report the results of any statistical tests you used to compare groups or assess relationships between variables . It should also state whether or not each hypothesis was supported.

The most logical way to structure quantitative results is to frame them around your research questions or hypotheses. For each question or hypothesis, share:

  • A reminder of the type of analysis you used (e.g., a two-sample t test or simple linear regression ). A more detailed description of your analysis should go in your methodology section.
  • A concise summary of each relevant result, both positive and negative. This can include any relevant descriptive statistics (e.g., means and standard deviations ) as well as inferential statistics (e.g., t scores, degrees of freedom , and p values ). Remember, these numbers are often placed in parentheses.
  • A brief statement of how each result relates to the question, or whether the hypothesis was supported. You can briefly mention any results that didn’t fit with your expectations and assumptions, but save any speculation on their meaning or consequences for your discussion  and conclusion.

A note on tables and figures

In quantitative research, it’s often helpful to include visual elements such as graphs, charts, and tables , but only if they are directly relevant to your results. Give these elements clear, descriptive titles and labels so that your reader can easily understand what is being shown. If you want to include any other visual elements that are more tangential in nature, consider adding a figure and table list .

As a rule of thumb:

  • Tables are used to communicate exact values, giving a concise overview of various results
  • Graphs and charts are used to visualise trends and relationships, giving an at-a-glance illustration of key findings

Don’t forget to also mention any tables and figures you used within the text of your results section. Summarise or elaborate on specific aspects you think your reader should know about rather than merely restating the same numbers already shown.

Example of using figures in the results section

Figure 1: Intention to donate to environmental organisations based on social distance from impact of environmental damage.

In qualitative research , your results might not all be directly related to specific hypotheses. In this case, you can structure your results section around key themes or topics that emerged from your analysis of the data.

For each theme, start with general observations about what the data showed. You can mention:

  • Recurring points of agreement or disagreement
  • Patterns and trends
  • Particularly significant snippets from individual responses

Next, clarify and support these points with direct quotations. Be sure to report any relevant demographic information about participants. Further information (such as full transcripts , if appropriate) can be included in an appendix .

‘I think that in role-playing games, there’s more attention to character design, to world design, because the whole story is important and more attention is paid to certain game elements […] so that perhaps you do need bigger teams of creative experts than in an average shooter or something.’

Responses suggest that video game consumers consider some types of games to have more artistic potential than others.

Your results section should objectively report your findings, presenting only brief observations in relation to each question, hypothesis, or theme.

It should not  speculate about the meaning of the results or attempt to answer your main research question . Detailed interpretation of your results is more suitable for your discussion section , while synthesis of your results into an overall answer to your main research question is best left for your conclusion .

I have completed my data collection and analyzed the results.

I have included all results that are relevant to my research questions.

I have concisely and objectively reported each result, including relevant descriptive statistics and inferential statistics .

I have stated whether each hypothesis was supported or refuted.

I have used tables and figures to illustrate my results where appropriate.

All tables and figures are correctly labelled and referred to in the text.

There is no subjective interpretation or speculation on the meaning of the results.

You've finished writing up your results! Use the other checklists to further improve your thesis.

The results chapter of a thesis or dissertation presents your research results concisely and objectively.

In quantitative research , for each question or hypothesis , state:

  • The type of analysis used
  • Relevant results in the form of descriptive and inferential statistics
  • Whether or not the alternative hypothesis was supported

In qualitative research , for each question or theme, describe:

  • Recurring patterns
  • Significant or representative individual responses
  • Relevant quotations from the data

Don’t interpret or speculate in the results chapter.

Results are usually written in the past tense , because they are describing the outcome of completed actions.

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Swaen, B. (2022, October 25). How to Write a Results Section | Tips & Examples. Scribbr. Retrieved 22 February 2024, from https://www.scribbr.co.uk/thesis-dissertation/results-section/

Is this article helpful?

Bas Swaen

Other students also liked

What is a research methodology | steps & tips, how to write a discussion section | tips & examples, how to write a thesis or dissertation conclusion.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write an APA Results Section

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

how to write results section of lab report example

Emily is a board-certified science editor who has worked with top digital publishing brands like Voices for Biodiversity, Study.com, GoodTherapy, Vox, and Verywell.

how to write results section of lab report example

Verywell / Nusha Ashjaee 

What to Include in an APA Results Section

  • Justify Claims
  • Summarize Results

Report All Relevant Results

  • Report Statistical Findings

Include Tables and Figures

What not to include in an apa results section.

Psychology papers generally follow a specific structure. One important section of a paper is known as the results section. An APA results section of a psychology paper summarizes the data that was collected and the statistical analyses that were performed. The goal of this section is to report the results of your study or experiment without any type of subjective interpretation.

At a Glance

The results section is a vital part of an APA paper that summarizes a study's findings and statistical analysis. This section often includes descriptive text, tables, and figures to help summarize the findings. The focus is purely on summarizing and presenting the findings and should not include any interpretation, since you'll cover that in the subsequent discussion section.

This article covers how to write an APA results section, including what to include and what to avoid.

The results section is the third section of a psychology paper. It will appear after the introduction and methods sections and before the discussion section.

The results section should include:

  • A summary of the research findings.
  • Information about participant flow, recruitment, retention, and attrition. If some participants started the study and later left or failed to complete the study, then this should be described. 
  • Information about any reasons why some data might have been excluded from the study. 
  • Statistical information including samples sizes and statistical tests that were used. It should report standard deviations, p-values, and other measures of interest.

Results Should Justify Your Claims

Report data in order to sufficiently justify your conclusions. Since you'll be talking about your own interpretation of the results in the discussion section, you need to be sure that the information reported in the results section justifies your claims.

When you start writing your discussion section, you can then look back on your results to ensure that all the data you need are there to fully support your conclusions. Be sure not to make claims in your discussion section that are not supported by the findings described in your results section.

Summarize Your Results

Remember, you are summarizing the results of your psychological study, not reporting them in full detail. The results section should be a relatively brief overview of your findings, not a complete presentation of every single number and calculation.

If you choose, you can create a supplemental online archive where other researchers can access the raw data if they choose.

How long should a results section be?

The length of your results section will vary depending on the nature of your paper and the complexity of your research. In most cases, this will be the shortest section of your paper.

Just as the results section of your psychology paper should sufficiently justify your claims, it should also provide an accurate look at what you found in your study. Be sure to mention all relevant information.

Don't omit findings simply because they failed to support your predictions.

Your hypothesis may have expected more statistically significant results or your study didn't support your hypothesis , but that doesn't mean that the conclusions you reach are not useful. Provide data about what you found in your results section, then save your interpretation for what the results might mean in the discussion section.

While your study might not have supported your original predictions, your finding can provide important inspiration for future explorations into a topic.

How is the results section different from the discussion section?

The results section provides the results of your study or experiment. The goal of the section is to report what happened and the statistical analyses you performed. The discussion section is where you will examine what these results mean and whether they support or fail to support your hypothesis.

Report Your Statistical Findings

Always assume that your readers have a solid understanding of statistical concepts. There's no need to explain what a t-test is or how a one-way ANOVA works. Your responsibility is to report the results of your study, not to teach your readers how to analyze or interpret statistics.

Include Effect Sizes

The Publication Manual of the American Psychological Association recommends including effect sizes in your results section so that readers can appreciate the importance of your study's findings.

Your results section should include both text and illustrations. Presenting data in this way makes it easier for readers to quickly look at your results.

Structure your results section around tables or figures that summarize the results of your statistical analysis. In many cases, the easiest way to accomplish this is to first create your tables and figures and then organize them in a logical way. Next, write the summary text to support your illustrative materials.

Only include tables and figures if you are going to talk about them in the body text of your results section.

In addition to knowing what you should include in the results section of your psychology paper, it's also important to be aware of things that you should avoid putting in this section:

Cause-and-Effect Conclusions

Don't draw cause-effect conclusions. Avoid making any claims suggesting that your result "proves" that something is true. 

Interpretations

Present the data without editorializing it. Save your comments and interpretations for the discussion section of your paper. 

Statistics Without Context

Don't include statistics without narration. The results section should not be a numbers dump. Instead, you should sequentially narrate what these numbers mean.

Don't include the raw data in the results section. The results section should be a concise presentation of the results. If there is raw data that would be useful, include it in the appendix .

Don't only rely on descriptive text. Use tables and figures to present these findings when appropriate. This makes the results section easier to read and can convey a great deal of information quickly.

Repeated Data

Don't present the same data twice in your illustrative materials. If you have already presented some data in a table, don't present it again in a figure. If you have presented data in a figure, don't present it again in a table.

All of Your Findings

Don't feel like you have to include everything. If data is irrelevant to the research question, don't include it in the results section.

But Don't Skip Relevant Data

Don't leave out results because they don't support your claims. Even if your data does not support your hypothesis, including it in your findings is essential if it's relevant.

More Tips for Writing a Results Section

If you are struggling, there are a few things to remember that might help:

  • Use the past tense . The results section should be written in the past tense.
  • Be concise and objective . You will have the opportunity to give your own interpretations of the results in the discussion section.
  • Use APA format . As you are writing your results section, keep a style guide on hand. The Publication Manual of the American Psychological Association is the official source for APA style.
  • Visit your library . Read some journal articles that are on your topic. Pay attention to how the authors present the results of their research.
  • Get a second opinion . If possible, take your paper to your school's writing lab for additional assistance.

What This Means For You

Remember, the results section of your paper is all about providing the data from your study. This section is often the shortest part of your paper, and in most cases, the most clinical.

Be sure not to include any subjective interpretation of the results. Simply relay the data in the most objective and straightforward way possible. You can then provide your own analysis of what these results mean in the discussion section of your paper.

Bavdekar SB, Chandak S. Results: Unraveling the findings . J Assoc Physicians India . 2015 Sep;63(9):44-6. PMID:27608866.

Snyder N, Foltz C, Lendner M, Vaccaro AR. How to write an effective results section .  Clin Spine Surg . 2019;32(7):295-296. doi:10.1097/BSD.0000000000000845

American Psychological Association.  Publication Manual of the American Psychological Association  (7th ed.). Washington DC: The American Psychological Association; 2019.

Purdue Online Writing Lab. APA sample paper: Experimental psychology .

Berkeley University. Reviewing test results .

Tuncel A, Atan A. How to clearly articulate results and construct tables and figures in a scientific paper ? Turk J Urol . 2013;39(Suppl 1):16-19. doi:10.5152/tud.2013.048

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

how to write results section of lab report example

How to Write the Results Section of a Research Paper

Table of Contents

Laura Moro-Martin, freelance scientific writer on Kolabtree, provides expert tips on how to write the results section of a research paper . 

You have prepared a detailed −but concise− Methods section . Now it is time to write the Results of your research article. This part of the paper reports the findings of the experiments that you conducted to answer the research question(s). The Results can be considered the nucleus of a scientific article because they justify your claims, so you need to ensure that they are clear and understandable. You are telling a story −of course, a scientific story− and you want the readers to picture that same story in their minds. Let’s see how to avoid that your message ends up as in the ‘telephone game’.

The Results Section: Goals and Structure

Depending on the discipline, journal, and the nature of the study, the structure of the article can differ. We will focus on articles were the Results and Discussion appear in two separate sections, but it is possible in some cases to combine them.

In the Results section, you provide an overall description of the experiments and present the data that you obtained in a logical order, using tables and graphs as necessary. The Results section should simply state your findings without bias or interpretation. For example, in your analysis, you may have noticed a significant correlation between two variables never described before. It is correct to explain this in the Results section. However, speculation about the reasons for this correlation should go in the Discussion section of your paper.

In general, the Results section includes the following elements:

  • A very short introductory context that repeats the research question and helps to understand your results.
  • Report on data collection, recruitment, and/or participants. For example, in the case of clinical research, it is common to include a first table summarizing the demographic, clinical, and other relevant characteristics of the study participants.
  • A systematic description of the main findings in a logical order (generally following the order of the Methods section), highlighting the most relevant results.
  • Other important secondary findings, such as secondary outcomes or subgroup analyses (remember that you do not need to mention any single result).
  • Visual elements, such as, figures, charts, maps, tables, etc. that summarize and illustrate the findings. These elements should be cited in the text and numbered in order. Figures and tables should be able to stand on its own without the text, which means that the legend should include enough information to understand the non-textual element.

How to Write the Results Section of a Research Paper: Tips

The first tip −applicable to other sections of the paper too− is to check and apply the requirements of the journal to which you are submitting your work.

In the Results section, you need to write concisely and objectively, leaving interpretation for the Discussion section. As always, ‘learning from others’ can help you. Select a few papers from your field, including some published in your target journal, which you consider ‘good quality’ and well written. Read them carefully and observe how the Results section is structured, the type and amount of information provided, and how the findings are exposed in a logical order. Keep an eye on visual elements, such as figures, tables, and supplementary materials. Understand what works well in those papers to effectively convey their findings, and apply it to your writing.

Your Results section needs to describe the sequence of what you did and found, the frequency of occurrence of a particular event or result, the quantities of your observations, and the causality (i.e. the relationships or connections) between the events that you observed.

To organize the results, you can try to provide them alongside the research questions. In practice, this means that you will organize this section based on the sequence of tables and figures summarizing the results of your statistical analysis. In this way, it will be easier for readers to look at and understand your findings. You need to report your statistical findings, without describing every step of your statistical analysis. Tables and figures generally report summary-level data (for example, means and standard deviations), rather than all the raw data.

Following, you can prepare the summary text to support those visual elements. You need not only to present but also to explain your findings, showing how they help to address the research question(s) and how they align with the objectives that you presented in the Introduction . Keep in mind that results do not speak for themselves, so if you do not describe them in words, the reader may perceive the findings differently from you. Build coherence along this section using goal statements and explicit reasoning (guide the reader through your reasoning, including sentences of this type: ‘In order to…, we performed….’; ‘In view of this result, we ….’, etc.).

In summary, the general steps for writing the Results section of a research article are:

  • Check the guidelines of your target journal and read articles that it has published in similar topics to your study.
  • Catalogue your findings in relation to the journal requirements, and design figures and tables to organize your data.
  • Write the Results section following the order of figures and tables.
  • Edit and revise your draft and seek additional input from colleagues or experts.

The Style of the Results Section

‘If you are out to describe the truth, leave elegance to the tailor’, Austrian physicist Ludwig Boltzmann said. Although the scope of the Results section −and of scientific papers in general− is eminently functional, this does not mean that you cannot write well. Try to improve the rhythm to move the reader along, use transitions and connectors between different sections and paragraphs, and dedicate time to revise your writing.

The Results section should be written in the past tense. Although writing in the passive voice may be tempting, the use of the active voice makes the action much more visualizable. The passive voice weakens the power of language and increases the number of words needed to say the same thing, so we recommend using the active voice as much as possible. Another tip to make your language visualizable and reduce sentence length is the use of verbal phrases instead of long nouns. For example, instead of writing ‘As shown in Table 1, there was a significant increase in gene expression’, you can say ‘As shown in Table 1, gene expression increased significantly’.

Get a Second (And Even Third) Opinion

Writing a scientific article is not an individual work. Take advantage of your co-authors by making them check the Results section and adding their comments and suggestions. Not only that, but an external opinion will help you to identify misinterpretations or errors. Ask a colleague that is not directly involved in the work to review your Results and then try to evaluate what your colleague did or did not understand. If needed, seek additional help from a qualified expert.

Common Errors to Avoid While Writing the Results Section

Several mistakes frequently occur when you write the Results section of a research paper. Here we have collected a few examples:

  • Including raw results and/or endlessly repetitive data. You do not need to present every single number and calculation, but a summary of the results. If relevant, raw data can be included in supplementary materials.
  • Including redundant information. If data are contained in the tables or figures, you do not need to repeat all of them in the Results section. You will have the opportunity to highlight the most relevant results in the Discussion .
  • Repeating background information or methods , or introducing several sentences of introductory information (if you feel that more background information is necessary to present a result, consider inserting that information in the Introduction ).
  • Results and Methods do not match . You need to explain the methodology used to obtain all the experimental observations.
  • Ignoring negative results or results that do not support the conclusions. In addition to posing potential ethical concerns on your work, reviewers will not like it. You need to mention all relevant findings, even if they failed to support your predictions or hypotheses. Negative results are useful and will guide future studies on the topic. Provide your interpretation for negative results in the Discussion .
  • Discussing or interpreting the results . Leave that for the Discussion , unless your target journal allows preparing one section combining Results and Discussion .
  • Errors in figures/tables are varied and common . Examples of errors include using an excessive number of figures/tables (it is a good idea to select the most relevant ones and move the rest to supplementary materials), very complex figures/tables (hard-to-read figures with many subfigures or enormous tables may confuse your readers; think how these elements will be visualized in the final format of the article), difficult to interpret figures/tables (cryptic abbreviations; inadequate use of colors, axis, scales, symbols, etc.), and figures/tables that are not self-standing (figures/tables require a caption, all abbreviations used need to be explained in the legend or a footnote, and statistical tests applied are frequently reported). Do not include tables and figures that are not mentioned in the body text of your Results .

In summary, the Results section is the nucleus of your paper that justifies your claims. Take time to adequately organize it and prepare understandable figures and tables to convey your message to the reader. Good writing!

  • The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. https://abacus.bates.edu/~ganderso/biology/resources/writing/HTWsections.html – methods (accessed on 30th September 2020)
  • Organizing Academic Research Papers: 7. The Results. https://library.sacredheart.edu/c.php?g=29803&p=185931 (accessed on 30th September 2020)
  • Kendra Cherry. How to Write an APA Results Section. https://www.verywellmind.com/how-to-write-a-results-section-2795727 (accessed on 30th September 2020)
  • Chapin Rodríguez. Empowering your scientific language by making it “visualizable”. http://creaducate.eu/wp-content/uploads/2019/11/tipsheet36_visualizable-lang-tip-sheet.pdf (accessed on 1st October 2020)
  • IMRaD Results Discussion. https://writingcenter.gmu.edu/guides/imrad-results-discussion (accessed on 1st October 2020)
  • Writing the Results Section for a Research Paper. https://wordvice.com/writing-the-results-section-for-a-research-paper/ (accessed on 1st October 2020)
  • Scott L. Montgomery. The Chicago Guide to Communicating Science , Chapter 9. Second edition, The University of Chicago Press, 2017.
  • Hilary Glasman-Deal . Science Research Writing for Non-Native Speakers of English, Unit 2 . Imperial College Press, 2010.

how to write results section of lab report example

Unlock Corporate Benefits • Secure Payment Assistance • Onboarding Support • Dedicated Account Manager

Sign up with your professional email to avail special advances offered against purchase orders, seamless multi-channel payments, and extended support for agreements.

About Author

' src=

Ramya Sriram manages digital content and communications at Kolabtree (kolabtree.com), the world's largest freelancing platform for scientists. She has over a decade of experience in publishing, advertising and digital content creation.

Related Posts

regulatory medical writer

Spotlight: Kolabtree’s Regulatory Medical Writer Dr. Nare Simonyan

healthcare writer

How Healthcare Writers Can Help Your Business 

medical education writer

The Benefits of Outsourcing in Continuing Medical Education (CME)

Leave a reply cancel reply.

Save my name, email, and website in this browser for the next time I comment.

IMAGES

  1. lab report results

    how to write results section of lab report example

  2. Results section of lab report

    how to write results section of lab report example

  3. Writing a Lab Report

    how to write results section of lab report example

  4. 10 Laboratory Report Templates Free Sample Example Format Throughout

    how to write results section of lab report example

  5. How Write A Lab Report

    how to write results section of lab report example

  6. Writing A Lab Report Sample

    how to write results section of lab report example

VIDEO

  1. How to Start Labflow? How to Use It? How to Write a Lab Report of CHEM1152 Lab?

  2. L 28 Part 1 How to write ‘Results’ section in your Manuscript

  3. the PERFECT Lab Report Guide

  4. Lab Work : How To Write A Good Materials & Metallurgical Engineering Lab Report

  5. How to Write a Formal Lab Report

  6. Critical Analysis: Lab-based Research

COMMENTS

  1. How To Write A Lab Report

    How To Write A Lab Report | Step-by-Step Guide & Examples Published on May 20, 2021 by Pritha Bhandari . Revised on July 23, 2023. A lab report conveys the aim, methods, results, and conclusions of a scientific experiment.

  2. Results

    Example The following figure is from the bone fracture paper, showing how many men sustained bone fractures during the course of the study. Note how both axes are labeled, and there is a proper title underneath. Figure 1. Cumulative Number of Hip Fractures and Fractures of any Type after Study Entry at Age 50 y and during Follow-up

  3. Writing Lab Reports: Results

    For example, if you are presenting means and standard deviations in a figure, rather than repeating these same numbers in the text, refer to the per cent difference, increase, or decrease (e.g., Plant height increased by 20% with the addition of fertilizer [Figure 2]).

  4. RESULTS

    Writing a "good" results section This is the core of the paper. Don't start the results sections with methods you left out of the Materials and Methods section. You need to give an overall description of the experiments and present the data you found. Goals: Factual statements supported by evidence. Short and sweet without excess words

  5. Complete Guide to Writing a Lab Report (With Example)

    Method Some reports require you to write down the materials used, which can be combined with this section. The example below does not include a list of materials used. If unclear, it is best to check with your teacher or demonstrator before writing your lab report from scratch.

  6. Reporting Research Results in APA Style

    Reporting Research Results in APA Style | Tips & Examples Published on December 21, 2020 by Pritha Bhandari . Revised on January 17, 2024. The results section of a quantitative research paper is where you summarize your data and report the findings of any relevant statistical analyses.

  7. Scientific Reports

    For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

  8. PDF A Basic Guide to Writing a Successful Laboratory Report

    Introduction. Being a successful engineer requires more than simply being able to successfully run an experiment or execute a computation. The ability to convey information in a clear and concise manner is equally important. This document provides a guideline to writing meaningful reports that communicate data obtained in an experimental setting.

  9. How to Write a Lab Report: Step-by-Step Guide & Examples

    Introduction Method Results Discussion Reference Page Psychology Lab Report Example In psychology, a lab report outlines a study's objectives, methods, results, discussion, and conclusions, ensuring clarity and adherence to APA (or relevant) formatting guidelines.

  10. Library Research Guides: STEM: How To Write A Lab Report

    A lab report is broken down into eight sections: title, abstract, introduction, methods and materials, results, discussion, conclusion, and references. Title The title of the lab report should be descriptive of the experiment and reflect what the experiment analyzed. Ex: "Determining the Free Chlorine Content of Pool Water" Abstract

  11. Experimental Reports 2

    The results section is where you present the results of your research-both narrated for the readers in plain English and accompanied by statistics. Note: Depending on the requirements or the projected length of your paper, sometimes the results are combined with the discussion section. Organizing Results. Continue with your story in the results ...

  12. How to Write the Results Section of a Lab Report

    Here is an example of a Results Section: General Guidelines for Writing the Results Section of a Lab Report: Tips for Writing a Solid Results Section in a Lab Report Summary Overview The results section of a lab report is one of the sections in your paper that will be most scrutinized.

  13. Lab Report Format

    Procedure This section describes experimental design. Identify the parameter you changed ( independent variable) and the one you measured ( dependent variable ). Describe the equipment and set-up you used, materials, and methods. If a reader can't picture the apparatus from your description, include a photograph or diagram.

  14. How to Write the Results/Findings Section in Research

    Let's look at an example. Your research question is based on a survey among patients who were treated at a hospital and received postoperative care. Let's say your first research question is: "What do hospital patients over age 55 think about postoperative care?"

  15. How to Write a Results Section

    Think of it like a shoe shop: first discuss the shoes as a whole, then the trainers, boots, sandals, etc. Note In a few fields, including a separate results section is not common practice. In some types of qualitative research, such as ethnographies, the results are often woven together with the discussion.

  16. How to Write a Results Section for a Lab Report

    Figures Through figures, complex text is made simpler to the readers. The figures could be in the form of a bar graph, a map, or even a pie chart. Similar to tables, figures also have certain rules of presentation: All figures should have a clear title, a legend, and should be numbered consecutively (Figure 1, Figure 2, and so on).

  17. PDF Biology Lab Report Sample

    Biology Lab Report Sample What is the purpose of scientific papers? Scientific papers are written to communicate current research findings or ideas within the scientific community. These papers also allow others to understand and repeat your experiments.

  18. PDF How To Write A Lab Report

    Results Structure. Start with an introduction - describe your results in general, before giving a more detailed description. In the main body, use paragraphs to detail your results with illustrations to support. Help the reader by using 'locating statements', such as: ‒ ...as can be seen in graph 1...

  19. PDF How to write a resultsspring2010

    The following is an example of a results section written for a lab report on seed germination. Your results section will be different from this example, however this example illustrates aspects of a result section you must include in your lab report results section; such as referring to the table and figure within the text of

  20. How to Write a Lab Report: Examples from Academic Editors

    Here are some guidelines on how to write a results section: Begin with a concise summary of your key findings in the form of a brief paragraph or bullet points. ... Lab report results example. The aluminum alloys tested have varying degrees of corrosion resistance. Table 1 shows the corrosion rates for each sample, calculated as the percentage ...

  21. How to Write an APA Results Section

    APA Style and Writing How to Write an APA Results Section By Kendra Cherry, MSEd Updated on November 09, 2023 Fact checked by Emily Swaim Verywell / Nusha Ashjaee Table of Contents View All What to Include in an APA Results Section Justify Claims Summarize Results Report All Relevant Results Report Statistical Findings

  22. How to Write the Results Section of a Research Paper

    Build coherence along this section using goal statements and explicit reasoning (guide the reader through your reasoning, including sentences of this type: 'In order to…, we performed….'; 'In view of this result, we ….', etc.). In summary, the general steps for writing the Results section of a research article are: