Exploring the Problem Solving Cycle in Computer Science – Strategies, Techniques, and Tools

  • Post author By bicycle-u
  • Post date 08.12.2023

The world of computer science is built on the foundation of problem solving. Whether it’s finding a solution to a complex algorithm or analyzing data to make informed decisions, the problem solving cycle is at the core of every computer science endeavor.

At its essence, problem solving in computer science involves breaking down a complex problem into smaller, more manageable parts. This allows for a systematic approach to finding a solution by analyzing each part individually. The process typically starts with gathering and understanding the data or information related to the problem at hand.

Once the data is collected, computer scientists use various techniques and algorithms to analyze and explore possible solutions. This involves evaluating different approaches and considering factors such as efficiency, accuracy, and scalability. During this analysis phase, it is crucial to think critically and creatively to come up with innovative solutions.

After a thorough analysis, the next step in the problem solving cycle is designing and implementing a solution. This involves creating a detailed plan of action, selecting the appropriate tools and technologies, and writing the necessary code to bring the solution to life. Attention to detail and precision are key in this stage to ensure that the solution functions as intended.

The final step in the problem solving cycle is evaluating the solution and its effectiveness. This includes testing the solution against different scenarios and data sets to ensure its reliability and performance. If any issues or limitations are discovered, adjustments and optimizations are made to improve the solution.

In conclusion, the problem solving cycle is a fundamental process in computer science, involving analysis, data exploration, algorithm development, solution implementation, and evaluation. It is through this cycle that computer scientists are able to tackle complex problems and create innovative solutions that drive progress in the field of computer science.

Understanding the Importance

In computer science, problem solving is a crucial skill that is at the core of the problem solving cycle. The problem solving cycle is a systematic approach to analyzing and solving problems, involving various stages such as problem identification, analysis, algorithm design, implementation, and evaluation. Understanding the importance of this cycle is essential for any computer scientist or programmer.

Data Analysis and Algorithm Design

The first step in the problem solving cycle is problem identification, which involves recognizing and defining the issue at hand. Once the problem is identified, the next crucial step is data analysis. This involves gathering and examining relevant data to gain insights and understand the problem better. Data analysis helps in identifying patterns, trends, and potential solutions.

After data analysis, the next step is algorithm design. An algorithm is a step-by-step procedure or set of rules to solve a problem. Designing an efficient algorithm is crucial as it determines the effectiveness and efficiency of the solution. A well-designed algorithm takes into consideration the constraints, resources, and desired outcomes while implementing the solution.

Implementation and Evaluation

Once the algorithm is designed, the next step in the problem solving cycle is implementation. This involves translating the algorithm into a computer program using a programming language. The implementation phase requires coding skills and expertise in a specific programming language.

After implementation, the solution needs to be evaluated to ensure that it solves the problem effectively. Evaluation involves testing the program and verifying its correctness and efficiency. This step is critical to identify any errors or issues and to make necessary improvements or adjustments.

In conclusion, understanding the importance of the problem solving cycle in computer science is essential for any computer scientist or programmer. It provides a systematic and structured approach to analyze and solve problems, ensuring efficient and effective solutions. By following the problem solving cycle, computer scientists can develop robust algorithms, implement them in efficient programs, and evaluate their solutions to ensure their correctness and efficiency.

Identifying the Problem

In the problem solving cycle in computer science, the first step is to identify the problem that needs to be solved. This step is crucial because without a clear understanding of the problem, it is impossible to find a solution.

Identification of the problem involves a thorough analysis of the given data and understanding the goals of the task at hand. It requires careful examination of the problem statement and any constraints or limitations that may affect the solution.

During the identification phase, the problem is broken down into smaller, more manageable parts. This can involve breaking the problem down into sub-problems or identifying the different aspects or components that need to be addressed.

Identifying the problem also involves considering the resources and tools available for solving it. This may include considering the specific tools and programming languages that are best suited for the problem at hand.

By properly identifying the problem, computer scientists can ensure that they are focused on the right goals and are better equipped to find an effective and efficient solution. It sets the stage for the rest of the problem solving cycle, including the analysis, design, implementation, and evaluation phases.

Gathering the Necessary Data

Before finding a solution to a computer science problem, it is essential to gather the necessary data. Whether it’s writing a program or developing an algorithm, data serves as the backbone of any solution. Without proper data collection and analysis, the problem-solving process can become inefficient and ineffective.

The Importance of Data

In computer science, data is crucial for a variety of reasons. First and foremost, it provides the information needed to understand and define the problem at hand. By analyzing the available data, developers and programmers can gain insights into the nature of the problem and determine the most efficient approach for solving it.

Additionally, data allows for the evaluation of potential solutions. By collecting and organizing relevant data, it becomes possible to compare different algorithms or strategies and select the most suitable one. Data also helps in tracking progress and measuring the effectiveness of the chosen solution.

Data Gathering Process

The process of gathering data involves several steps. Firstly, it is necessary to identify the type of data needed for the particular problem. This may include numerical values, textual information, or other types of data. It is important to determine the sources of data and assess their reliability.

Once the required data has been identified, it needs to be collected. This can be done through various methods, such as surveys, experiments, observations, or by accessing existing data sets. The collected data should be properly organized, ensuring its accuracy and validity.

Data cleaning and preprocessing are vital steps in the data gathering process. This involves removing any irrelevant or erroneous data and transforming it into a suitable format for analysis. Properly cleaned and preprocessed data will help in generating reliable and meaningful insights.

Data Analysis and Interpretation

After gathering and preprocessing the data, the next step is data analysis and interpretation. This involves applying various statistical and analytical methods to uncover patterns, trends, and relationships within the data. By analyzing the data, programmers can gain valuable insights that can inform the development of an effective solution.

During the data analysis process, it is crucial to remain objective and unbiased. The analysis should be based on sound reasoning and logical thinking. It is also important to communicate the findings effectively, using visualizations or summaries to convey the information to stakeholders or fellow developers.

In conclusion, gathering the necessary data is a fundamental step in solving computer science problems. It provides the foundation for understanding the problem, evaluating potential solutions, and tracking progress. By following a systematic and rigorous approach to data gathering and analysis, developers can ensure that their solutions are efficient, effective, and well-informed.

Analyzing the Data

Once you have collected the necessary data, the next step in the problem-solving cycle is to analyze it. Data analysis is a crucial component of computer science, as it helps us understand the problem at hand and develop effective solutions.

To analyze the data, you need to break it down into manageable pieces and examine each piece closely. This process involves identifying patterns, trends, and outliers that may be present in the data. By doing so, you can gain insights into the problem and make informed decisions about the best course of action.

There are several techniques and tools available for data analysis in computer science. Some common methods include statistical analysis, data visualization, and machine learning algorithms. Each approach has its own strengths and limitations, so it’s essential to choose the most appropriate method for the problem you are solving.

Statistical Analysis

Statistical analysis involves using mathematical models and techniques to analyze data. It helps in identifying correlations, distributions, and other statistical properties of the data. By applying statistical tests, you can determine the significance and validity of your findings.

Data Visualization

Data visualization is the process of presenting data in a visual format, such as charts, graphs, or maps. It allows for a better understanding of complex data sets and facilitates the communication of findings. Through data visualization, patterns and trends can become more apparent, making it easier to derive meaningful insights.

Machine Learning Algorithms

Machine learning algorithms are powerful tools for analyzing large and complex data sets. These algorithms can automatically detect patterns and relationships in the data, leading to the development of predictive models and solutions. By training the algorithm on a labeled dataset, it can learn from the data and make accurate predictions or classifications.

In conclusion, analyzing the data is a critical step in the problem-solving cycle in computer science. It helps us gain a deeper understanding of the problem and develop effective solutions. Whether through statistical analysis, data visualization, or machine learning algorithms, data analysis plays a vital role in transforming raw data into actionable insights.

Exploring Possible Solutions

Once you have gathered data and completed the analysis, the next step in the problem-solving cycle is to explore possible solutions. This is where the true power of computer science comes into play. With the use of algorithms and the application of scientific principles, computer scientists can develop innovative solutions to complex problems.

During this stage, it is important to consider a variety of potential solutions. This involves brainstorming different ideas and considering their feasibility and potential effectiveness. It may be helpful to consult with colleagues or experts in the field to gather additional insights and perspectives.

Developing an Algorithm

One key aspect of exploring possible solutions is the development of an algorithm. An algorithm is a step-by-step set of instructions that outlines a specific process or procedure. In the context of problem solving in computer science, an algorithm provides a clear roadmap for implementing a solution.

The development of an algorithm requires careful thought and consideration. It is important to break down the problem into smaller, manageable steps and clearly define the inputs and outputs of each step. This allows for the creation of a logical and efficient solution.

Evaluating the Solutions

Once you have developed potential solutions and corresponding algorithms, the next step is to evaluate them. This involves analyzing each solution to determine its strengths, weaknesses, and potential impact. Consider factors such as efficiency, scalability, and resource requirements.

It may be helpful to conduct experiments or simulations to further assess the effectiveness of each solution. This can provide valuable insights and data to support the decision-making process.

Ultimately, the goal of exploring possible solutions is to find the most effective and efficient solution to the problem at hand. By leveraging the power of data, analysis, algorithms, and scientific principles, computer scientists can develop innovative solutions that drive progress and solve complex problems in the world of technology.

Evaluating the Options

Once you have identified potential solutions and algorithms for a problem, the next step in the problem-solving cycle in computer science is to evaluate the options. This evaluation process involves analyzing the potential solutions and algorithms based on various criteria to determine the best course of action.

Consider the Problem

Before evaluating the options, it is important to take a step back and consider the problem at hand. Understand the requirements, constraints, and desired outcomes of the problem. This analysis will help guide the evaluation process.

Analyze the Options

Next, it is crucial to analyze each solution or algorithm option individually. Look at factors such as efficiency, accuracy, ease of implementation, and scalability. Consider whether the solution or algorithm meets the specific requirements of the problem, and if it can be applied to related problems in the future.

Additionally, evaluate the potential risks and drawbacks associated with each option. Consider factors such as cost, time, and resources required for implementation. Assess any potential limitations or trade-offs that may impact the overall effectiveness of the solution or algorithm.

Select the Best Option

Based on the analysis, select the best option that aligns with the specific problem-solving goals. This may involve prioritizing certain criteria or making compromises based on the limitations identified during the evaluation process.

Remember that the best option may not always be the most technically complex or advanced solution. Consider the practicality and feasibility of implementation, as well as the potential impact on the overall system or project.

In conclusion, evaluating the options is a critical step in the problem-solving cycle in computer science. By carefully analyzing the potential solutions and algorithms, considering the problem requirements, and considering the limitations and trade-offs, you can select the best option to solve the problem at hand.

Making a Decision

Decision-making is a critical component in the problem-solving process in computer science. Once you have analyzed the problem, identified the relevant data, and generated a potential solution, it is important to evaluate your options and choose the best course of action.

Consider All Factors

When making a decision, it is important to consider all relevant factors. This includes evaluating the potential benefits and drawbacks of each option, as well as understanding any constraints or limitations that may impact your choice.

In computer science, this may involve analyzing the efficiency of different algorithms or considering the scalability of a proposed solution. It is important to take into account both the short-term and long-term impacts of your decision.

Weigh the Options

Once you have considered all the factors, it is important to weigh the options and determine the best approach. This may involve assigning weights or priorities to different factors based on their importance.

Using techniques such as decision matrices or cost-benefit analysis can help you systematically compare and evaluate different options. By quantifying and assessing the potential risks and rewards, you can make a more informed decision.

Remember: Decision-making in computer science is not purely subjective or based on personal preference. It is crucial to use analytical and logical thinking to select the most optimal solution.

In conclusion, making a decision is a crucial step in the problem-solving process in computer science. By considering all relevant factors and weighing the options using logical analysis, you can choose the best possible solution to a given problem.

Implementing the Solution

Once the problem has been analyzed and a solution has been proposed, the next step in the problem-solving cycle in computer science is implementing the solution. This involves turning the proposed solution into an actual computer program or algorithm that can solve the problem.

In order to implement the solution, computer science professionals need to have a strong understanding of various programming languages and data structures. They need to be able to write code that can manipulate and process data in order to solve the problem at hand.

During the implementation phase, the proposed solution is translated into a series of steps or instructions that a computer can understand and execute. This involves breaking down the problem into smaller sub-problems and designing algorithms to solve each sub-problem.

Computer scientists also need to consider the efficiency of their solution during the implementation phase. They need to ensure that the algorithm they design is able to handle large amounts of data and solve the problem in a reasonable amount of time. This often requires optimization techniques and careful consideration of the data structures used.

Once the code has been written and the algorithm has been implemented, it is important to test and debug the solution. This involves running test cases and checking the output to ensure that the program is working correctly. If any errors or bugs are found, they need to be fixed before the solution can be considered complete.

In conclusion, implementing the solution is a crucial step in the problem-solving cycle in computer science. It requires strong programming skills and a deep understanding of algorithms and data structures. By carefully designing and implementing the solution, computer scientists can solve problems efficiently and effectively.

Testing and Debugging

In computer science, testing and debugging are critical steps in the problem-solving cycle. Testing helps ensure that a program or algorithm is functioning correctly, while debugging analyzes and resolves any issues or bugs that may arise.

Testing involves running a program with specific input data to evaluate its output. This process helps verify that the program produces the expected results and handles different scenarios correctly. It is important to test both the normal and edge cases to ensure the program’s reliability.

Debugging is the process of identifying and fixing errors or bugs in a program. When a program does not produce the expected results or crashes, it is necessary to go through the code to find and fix the problem. This can involve analyzing the program’s logic, checking for syntax errors, and using debugging tools to trace the flow of data and identify the source of the issue.

Data analysis plays a crucial role in both testing and debugging. It helps to identify patterns, anomalies, or inconsistencies in the program’s behavior. By analyzing the data, developers can gain insights into potential issues and make informed decisions on how to improve the program’s performance.

In conclusion, testing and debugging are integral parts of the problem-solving cycle in computer science. Through testing and data analysis, developers can verify the correctness of their programs and identify and resolve any issues that may arise. This ensures that the algorithms and programs developed in computer science are robust, reliable, and efficient.

Iterating for Improvement

In computer science, problem solving often involves iterating through multiple cycles of analysis, solution development, and evaluation. This iterative process allows for continuous improvement in finding the most effective solution to a given problem.

The problem solving cycle starts with problem analysis, where the specific problem is identified and its requirements are understood. This step involves examining the problem from various angles and gathering all relevant information.

Once the problem is properly understood, the next step is to develop an algorithm or a step-by-step plan to solve the problem. This algorithm is a set of instructions that, when followed correctly, will lead to the solution.

After the algorithm is developed, it is implemented in a computer program. This step involves translating the algorithm into a programming language that a computer can understand and execute.

Once the program is implemented, it is then tested and evaluated to ensure that it produces the correct solution. This evaluation step is crucial in identifying any errors or inefficiencies in the program and allows for further improvement.

If any issues or problems are found during testing, the cycle iterates, starting from problem analysis again. This iterative process allows for refinement and improvement of the solution until the desired results are achieved.

Iterating for improvement is a fundamental concept in computer science problem solving. By continually analyzing, developing, and evaluating solutions, computer scientists are able to find the most optimal and efficient approaches to solving problems.

Documenting the Process

Documenting the problem-solving process in computer science is an essential step to ensure that the cycle is repeated successfully. The process involves gathering information, analyzing the problem, and designing a solution.

During the analysis phase, it is crucial to identify the specific problem at hand and break it down into smaller components. This allows for a more targeted approach to finding the solution. Additionally, analyzing the data involved in the problem can provide valuable insights and help in designing an effective solution.

Once the analysis is complete, it is important to document the findings. This documentation can take various forms, such as written reports, diagrams, or even code comments. The goal is to create a record that captures the problem, the analysis, and the proposed solution.

Documenting the process serves several purposes. Firstly, it allows for easy communication and collaboration between team members or future developers. By documenting the problem, analysis, and solution, others can easily understand the thought process behind the solution and potentially build upon it.

Secondly, documenting the process provides an opportunity for reflection and improvement. By reviewing the documentation, developers can identify areas where the problem-solving cycle can be strengthened or optimized. This continuous improvement is crucial in the field of computer science, as new challenges and technologies emerge rapidly.

In conclusion, documenting the problem-solving process is an integral part of the computer science cycle. It allows for effective communication, collaboration, and reflection on the solutions devised. By taking the time to document the process, developers can ensure a more efficient and successful problem-solving experience.

Communicating the Solution

Once the problem solving cycle is complete, it is important to effectively communicate the solution. This involves explaining the analysis, data, and steps taken to arrive at the solution.

Analyzing the Problem

During the problem solving cycle, a thorough analysis of the problem is conducted. This includes understanding the problem statement, gathering relevant data, and identifying any constraints or limitations. It is important to clearly communicate this analysis to ensure that others understand the problem at hand.

Presenting the Solution

The next step in communicating the solution is presenting the actual solution. This should include a detailed explanation of the steps taken to solve the problem, as well as any algorithms or data structures used. It is important to provide clear and concise descriptions of the solution, so that others can understand and reproduce the results.

Overall, effective communication of the solution in computer science is essential to ensure that others can understand and replicate the problem solving process. By clearly explaining the analysis, data, and steps taken, the solution can be communicated in a way that promotes understanding and collaboration within the field of computer science.

Reflecting and Learning

Reflecting and learning are crucial steps in the problem solving cycle in computer science. Once a problem has been solved, it is essential to reflect on the entire process and learn from the experience. This allows for continuous improvement and growth in the field of computer science.

During the reflecting phase, one must analyze and evaluate the problem solving process. This involves reviewing the initial problem statement, understanding the constraints and requirements, and assessing the effectiveness of the chosen algorithm and solution. It is important to consider the efficiency and accuracy of the solution, as well as any potential limitations or areas for optimization.

By reflecting on the problem solving cycle, computer scientists can gain valuable insights into their own strengths and weaknesses. They can identify areas where they excelled and areas where improvement is needed. This self-analysis helps in honing problem solving skills and becoming a better problem solver.

Learning from Mistakes

Mistakes are an integral part of the problem solving cycle, and they provide valuable learning opportunities. When a problem is not successfully solved, it is essential to analyze the reasons behind the failure and learn from them. This involves identifying errors in the algorithm or solution, understanding the underlying concepts or principles that were misunderstood, and finding alternative approaches or strategies.

Failure should not be seen as a setback, but rather as an opportunity for growth. By learning from mistakes, computer scientists can improve their problem solving abilities and expand their knowledge and understanding of computer science. It is through these failures and the subsequent learning process that new ideas and innovations are often born.

Continuous Improvement

Reflecting and learning should not be limited to individual problem solving experiences, but should be an ongoing practice. As computer science is a rapidly evolving field, it is crucial to stay updated with new technologies, algorithms, and problem solving techniques. Continuous learning and improvement contribute to staying competitive and relevant in the field.

Computer scientists can engage in continuous improvement by seeking feedback from peers, participating in research and development activities, attending conferences and workshops, and actively seeking new challenges and problem solving opportunities. This dedication to learning and improvement ensures that one’s problem solving skills remain sharp and effective.

In conclusion, reflecting and learning are integral parts of the problem solving cycle in computer science. They enable computer scientists to refine their problem solving abilities, learn from mistakes, and continuously improve their skills and knowledge. By embracing these steps, computer scientists can stay at the forefront of the ever-changing world of computer science and contribute to its advancements.

Applying Problem Solving in Real Life

In computer science, problem solving is not limited to the realm of programming and algorithms. It is a skill that can be applied to various aspects of our daily lives, helping us to solve problems efficiently and effectively. By using the problem-solving cycle and applying the principles of analysis, data, solution, algorithm, and cycle, we can tackle real-life challenges with confidence and success.

The first step in problem-solving is to analyze the problem at hand. This involves breaking it down into smaller, more manageable parts and identifying the key issues or goals. By understanding the problem thoroughly, we can gain insights into its root causes and potential solutions.

For example, let’s say you’re facing a recurring issue in your daily commute – traffic congestion. By analyzing the problem, you may discover that the main causes are a lack of alternative routes and a lack of communication between drivers. This analysis helps you identify potential solutions such as using navigation apps to find alternate routes or promoting carpooling to reduce the number of vehicles on the road.

Gathering and Analyzing Data

Once we have identified the problem, it is important to gather relevant data to support our analysis. This may involve conducting surveys, collecting statistics, or reviewing existing research. By gathering data, we can make informed decisions and prioritize potential solutions based on their impact and feasibility.

Continuing with the traffic congestion example, you may gather data on the average commute time, the number of vehicles on the road, and the impact of carpooling on congestion levels. This data can help you analyze the problem more accurately and determine the most effective solutions.

Generating and Evaluating Solutions

After analyzing the problem and gathering data, the next step is to generate potential solutions. This can be done through brainstorming, researching best practices, or seeking input from experts. It is important to consider multiple options and think outside the box to find innovative and effective solutions.

For our traffic congestion problem, potential solutions can include implementing a smart traffic management system that optimizes traffic flow or investing in public transportation to incentivize people to leave their cars at home. By evaluating each solution’s potential impact, cost, and feasibility, you can make an informed decision on the best course of action.

Implementing and Iterating

Once a solution has been chosen, it is time to implement it in real life. This may involve developing a plan, allocating resources, and executing the solution. It is important to monitor the progress and collect feedback to learn from the implementation and make necessary adjustments.

For example, if the chosen solution to address traffic congestion is implementing a smart traffic management system, you would work with engineers and transportation authorities to develop and deploy the system. Regular evaluation and iteration of the system’s performance would ensure that it is effective and making a positive impact on reducing congestion.

By applying the problem-solving cycle derived from computer science to real-life situations, we can approach challenges with a systematic and analytical mindset. This can help us make better decisions, improve our problem-solving skills, and ultimately achieve more efficient and effective solutions.

Building Problem Solving Skills

In the field of computer science, problem-solving is a fundamental skill that is crucial for success. Whether you are a computer scientist, programmer, or student, developing strong problem-solving skills will greatly benefit your work and studies. It allows you to approach challenges with a logical and systematic approach, leading to efficient and effective problem resolution.

The Problem Solving Cycle

Problem-solving in computer science involves a cyclical process known as the problem-solving cycle. This cycle consists of several stages, including problem identification, data analysis, solution development, implementation, and evaluation. By following this cycle, computer scientists are able to tackle complex problems and arrive at optimal solutions.

Importance of Data Analysis

Data analysis is a critical step in the problem-solving cycle. It involves gathering and examining relevant data to gain insights and identify patterns that can inform the development of a solution. Without proper data analysis, computer scientists may overlook important information or make unfounded assumptions, leading to subpar solutions.

To effectively analyze data, computer scientists can employ various techniques such as data visualization, statistical analysis, and machine learning algorithms. These tools enable them to extract meaningful information from large datasets and make informed decisions during the problem-solving process.

Developing Effective Solutions

Developing effective solutions requires creativity, critical thinking, and logical reasoning. Computer scientists must evaluate multiple approaches, consider various factors, and assess the feasibility of different solutions. They should also consider potential limitations and trade-offs to ensure that the chosen solution addresses the problem effectively.

Furthermore, collaboration and communication skills are vital when building problem-solving skills. Computer scientists often work in teams and need to effectively communicate their ideas, propose solutions, and address any challenges that arise during the problem-solving process. Strong interpersonal skills facilitate collaboration and enhance problem-solving outcomes.

  • Mastering programming languages and algorithms
  • Staying updated with technological advancements in the field
  • Practicing problem solving through coding challenges and projects
  • Seeking feedback and learning from mistakes
  • Continuing to learn and improve problem-solving skills

By following these strategies, individuals can strengthen their problem-solving abilities and become more effective computer scientists or programmers. Problem-solving is an essential skill in computer science and plays a central role in driving innovation and advancing the field.

Questions and answers:

What is the problem solving cycle in computer science.

The problem solving cycle in computer science refers to a systematic approach that programmers use to solve problems. It involves several steps, including problem definition, algorithm design, implementation, testing, and debugging.

How important is the problem solving cycle in computer science?

The problem solving cycle is extremely important in computer science as it allows programmers to effectively tackle complex problems and develop efficient solutions. It helps in organizing the thought process and ensures that the problem is approached in a logical and systematic manner.

What are the steps involved in the problem solving cycle?

The problem solving cycle typically consists of the following steps: problem definition and analysis, algorithm design, implementation, testing, and debugging. These steps are repeated as necessary until a satisfactory solution is achieved.

Can you explain the problem definition and analysis step in the problem solving cycle?

During the problem definition and analysis step, the programmer identifies and thoroughly understands the problem that needs to be solved. This involves analyzing the requirements, constraints, and possible inputs and outputs. It is important to have a clear understanding of the problem before proceeding to the next steps.

Why is testing and debugging an important step in the problem solving cycle?

Testing and debugging are important steps in the problem solving cycle because they ensure that the implemented solution functions as intended and is free from errors. Through testing, the programmer can identify and fix any issues or bugs in the code, thereby improving the quality and reliability of the solution.

What is the problem-solving cycle in computer science?

The problem-solving cycle in computer science refers to the systematic approach that computer scientists use to solve problems. It involves various steps, including problem analysis, algorithm design, coding, testing, and debugging.

Related posts:

  • The Stages of the Problem Solving Cycle in Cognitive Psychology – Understanding, Planning, Execution, Evaluation, and Reflection
  • A Comprehensive Guide to the Problem Solving Cycle in Psychology – Strategies, Techniques, and Applications
  • The Step-by-Step Problem Solving Cycle for Effective Solutions
  • The Importance of Implementing the Problem Solving Cycle in Education to Foster Critical Thinking and Problem-Solving Skills in Students
  • The Importance of the Problem Solving Cycle in Business Studies – Strategies for Success
  • The Comprehensive Guide to the Problem Solving Cycle in PDF Format
  • A Comprehensive Guide on the Problem Solving Cycle – Step-by-Step Approach with Real-Life Example
  • The Seven Essential Steps of the Problem Solving Cycle

How to think like a programmer — lessons in problem solving

How to think like a programmer — lessons in problem solving

by Richard Reis

aNP21-ICMABUCyfdi4Pys7P0D2wiZqTd3iRY

If you’re interested in programming, you may well have seen this quote before:

“Everyone in this country should learn to program a computer, because it teaches you to think.” — Steve Jobs

You probably also wondered what does it mean, exactly, to think like a programmer? And how do you do it??

Essentially, it’s all about a more effective way for problem solving .

In this post, my goal is to teach you that way.

By the end of it, you’ll know exactly what steps to take to be a better problem-solver.

Why is this important?

Problem solving is the meta-skill.

We all have problems. Big and small. How we deal with them is sometimes, well…pretty random.

Unless you have a system, this is probably how you “solve” problems (which is what I did when I started coding):

  • Try a solution.
  • If that doesn’t work, try another one.
  • If that doesn’t work, repeat step 2 until you luck out.

Look, sometimes you luck out. But that is the worst way to solve problems! And it’s a huge, huge waste of time.

The best way involves a) having a framework and b) practicing it.

“Almost all employers prioritize problem-solving skills first.
Problem-solving skills are almost unanimously the most important qualification that employers look for….more than programming languages proficiency, debugging, and system design.
Demonstrating computational thinking or the ability to break down large, complex problems is just as valuable (if not more so) than the baseline technical skills required for a job.” — Hacker Rank ( 2018 Developer Skills Report )

Have a framework

To find the right framework, I followed the advice in Tim Ferriss’ book on learning, “ The 4-Hour Chef ”.

It led me to interview two really impressive people: C. Jordan Ball (ranked 1st or 2nd out of 65,000+ users on Coderbyte ), and V. Anton Spraul (author of the book “ Think Like a Programmer: An Introduction to Creative Problem Solving ”).

I asked them the same questions, and guess what? Their answers were pretty similar!

Soon, you too will know them.

Sidenote: this doesn’t mean they did everything the same way. Everyone is different. You’ll be different. But if you start with principles we all agree are good, you’ll get a lot further a lot quicker.

“The biggest mistake I see new programmers make is focusing on learning syntax instead of learning how to solve problems.” — V. Anton Spraul

So, what should you do when you encounter a new problem?

Here are the steps:

1. Understand

Know exactly what is being asked. Most hard problems are hard because you don’t understand them (hence why this is the first step).

How to know when you understand a problem? When you can explain it in plain English.

Do you remember being stuck on a problem, you start explaining it, and you instantly see holes in the logic you didn’t see before?

Most programmers know this feeling.

This is why you should write down your problem, doodle a diagram, or tell someone else about it (or thing… some people use a rubber duck ).

“If you can’t explain something in simple terms, you don’t understand it.” — Richard Feynman

Don’t dive right into solving without a plan (and somehow hope you can muddle your way through). Plan your solution!

Nothing can help you if you can’t write down the exact steps.

In programming, this means don’t start hacking straight away. Give your brain time to analyze the problem and process the information.

To get a good plan, answer this question:

“Given input X, what are the steps necessary to return output Y?”

Sidenote: Programmers have a great tool to help them with this… Comments!

Pay attention. This is the most important step of all.

Do not try to solve one big problem. You will cry.

Instead, break it into sub-problems. These sub-problems are much easier to solve.

Then, solve each sub-problem one by one. Begin with the simplest. Simplest means you know the answer (or are closer to that answer).

After that, simplest means this sub-problem being solved doesn’t depend on others being solved.

Once you solved every sub-problem, connect the dots.

Connecting all your “sub-solutions” will give you the solution to the original problem. Congratulations!

This technique is a cornerstone of problem-solving. Remember it (read this step again, if you must).

“If I could teach every beginning programmer one problem-solving skill, it would be the ‘reduce the problem technique.’
For example, suppose you’re a new programmer and you’re asked to write a program that reads ten numbers and figures out which number is the third highest. For a brand-new programmer, that can be a tough assignment, even though it only requires basic programming syntax.
If you’re stuck, you should reduce the problem to something simpler. Instead of the third-highest number, what about finding the highest overall? Still too tough? What about finding the largest of just three numbers? Or the larger of two?
Reduce the problem to the point where you know how to solve it and write the solution. Then expand the problem slightly and rewrite the solution to match, and keep going until you are back where you started.” — V. Anton Spraul

By now, you’re probably sitting there thinking “Hey Richard... That’s cool and all, but what if I’m stuck and can’t even solve a sub-problem??”

First off, take a deep breath. Second, that’s fair.

Don’t worry though, friend. This happens to everyone!

The difference is the best programmers/problem-solvers are more curious about bugs/errors than irritated.

In fact, here are three things to try when facing a whammy:

  • Debug: Go step by step through your solution trying to find where you went wrong. Programmers call this debugging (in fact, this is all a debugger does).
“The art of debugging is figuring out what you really told your program to do rather than what you thought you told it to do.”” — Andrew Singer
  • Reassess: Take a step back. Look at the problem from another perspective. Is there anything that can be abstracted to a more general approach?
“Sometimes we get so lost in the details of a problem that we overlook general principles that would solve the problem at a more general level. […]
The classic example of this, of course, is the summation of a long list of consecutive integers, 1 + 2 + 3 + … + n, which a very young Gauss quickly recognized was simply n(n+1)/2, thus avoiding the effort of having to do the addition.” — C. Jordan Ball

Sidenote: Another way of reassessing is starting anew. Delete everything and begin again with fresh eyes. I’m serious. You’ll be dumbfounded at how effective this is.

  • Research: Ahh, good ol’ Google. You read that right. No matter what problem you have, someone has probably solved it. Find that person/ solution. In fact, do this even if you solved the problem! (You can learn a lot from other people’s solutions).

Caveat: Don’t look for a solution to the big problem. Only look for solutions to sub-problems. Why? Because unless you struggle (even a little bit), you won’t learn anything. If you don’t learn anything, you wasted your time.

Don’t expect to be great after just one week. If you want to be a good problem-solver, solve a lot of problems!

Practice. Practice. Practice. It’ll only be a matter of time before you recognize that “this problem could easily be solved with <insert concept here>.”

How to practice? There are options out the wazoo!

Chess puzzles, math problems, Sudoku, Go, Monopoly, video-games, cryptokitties, bla… bla… bla….

In fact, a common pattern amongst successful people is their habit of practicing “micro problem-solving.” For example, Peter Thiel plays chess, and Elon Musk plays video-games.

“Byron Reeves said ‘If you want to see what business leadership may look like in three to five years, look at what’s happening in online games.’
Fast-forward to today. Elon [Musk], Reid [Hoffman], Mark Zuckerberg and many others say that games have been foundational to their success in building their companies.” — Mary Meeker ( 2017 internet trends report )

Does this mean you should just play video-games? Not at all.

But what are video-games all about? That’s right, problem-solving!

So, what you should do is find an outlet to practice. Something that allows you to solve many micro-problems (ideally, something you enjoy).

For example, I enjoy coding challenges. Every day, I try to solve at least one challenge (usually on Coderbyte ).

Like I said, all problems share similar patterns.

That’s all folks!

Now, you know better what it means to “think like a programmer.”

You also know that problem-solving is an incredible skill to cultivate (the meta-skill).

As if that wasn’t enough, notice how you also know what to do to practice your problem-solving skills!

Phew… Pretty cool right?

Finally, I wish you encounter many problems.

You read that right. At least now you know how to solve them! (also, you’ll learn that with every solution, you improve).

“Just when you think you’ve successfully navigated one obstacle, another emerges. But that’s what keeps life interesting.[…]
Life is a process of breaking through these impediments — a series of fortified lines that we must break through.
Each time, you’ll learn something.
Each time, you’ll develop strength, wisdom, and perspective.
Each time, a little more of the competition falls away. Until all that is left is you: the best version of you.” — Ryan Holiday ( The Obstacle is the Way )

Now, go solve some problems!

And best of luck ?

Special thanks to C. Jordan Ball and V. Anton Spraul . All the good advice here came from them.

Thanks for reading! If you enjoyed it, test how many times can you hit in 5 seconds. It’s great cardio for your fingers AND will help other people see the story.

If this article was helpful, share it .

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

What Is Problem Solving? How Software Engineers Approach Complex Challenges

HackerRank AI Promotion

From debugging an existing system to designing an entirely new software application, a day in the life of a software engineer is filled with various challenges and complexities. The one skill that glues these disparate tasks together and makes them manageable? Problem solving . 

Throughout this blog post, we’ll explore why problem-solving skills are so critical for software engineers, delve into the techniques they use to address complex challenges, and discuss how hiring managers can identify these skills during the hiring process. 

What Is Problem Solving?

But what exactly is problem solving in the context of software engineering? How does it work, and why is it so important?

Problem solving, in the simplest terms, is the process of identifying a problem, analyzing it, and finding the most effective solution to overcome it. For software engineers, this process is deeply embedded in their daily workflow. It could be something as simple as figuring out why a piece of code isn’t working as expected, or something as complex as designing the architecture for a new software system. 

In a world where technology is evolving at a blistering pace, the complexity and volume of problems that software engineers face are also growing. As such, the ability to tackle these issues head-on and find innovative solutions is not only a handy skill — it’s a necessity. 

The Importance of Problem-Solving Skills for Software Engineers

Problem-solving isn’t just another ability that software engineers pull out of their toolkits when they encounter a bug or a system failure. It’s a constant, ongoing process that’s intrinsic to every aspect of their work. Let’s break down why this skill is so critical.

Driving Development Forward

Without problem solving, software development would hit a standstill. Every new feature, every optimization, and every bug fix is a problem that needs solving. Whether it’s a performance issue that needs diagnosing or a user interface that needs improving, the capacity to tackle and solve these problems is what keeps the wheels of development turning.

It’s estimated that 60% of software development lifecycle costs are related to maintenance tasks, including debugging and problem solving. This highlights how pivotal this skill is to the everyday functioning and advancement of software systems.

Innovation and Optimization

The importance of problem solving isn’t confined to reactive scenarios; it also plays a major role in proactive, innovative initiatives . Software engineers often need to think outside the box to come up with creative solutions, whether it’s optimizing an algorithm to run faster or designing a new feature to meet customer needs. These are all forms of problem solving.

Consider the development of the modern smartphone. It wasn’t born out of a pre-existing issue but was a solution to a problem people didn’t realize they had — a device that combined communication, entertainment, and productivity into one handheld tool.

Increasing Efficiency and Productivity

Good problem-solving skills can save a lot of time and resources. Effective problem-solvers are adept at dissecting an issue to understand its root cause, thus reducing the time spent on trial and error. This efficiency means projects move faster, releases happen sooner, and businesses stay ahead of their competition.

Improving Software Quality

Problem solving also plays a significant role in enhancing the quality of the end product. By tackling the root causes of bugs and system failures, software engineers can deliver reliable, high-performing software. This is critical because, according to the Consortium for Information and Software Quality, poor quality software in the U.S. in 2022 cost at least $2.41 trillion in operational issues, wasted developer time, and other related problems.

Problem-Solving Techniques in Software Engineering

So how do software engineers go about tackling these complex challenges? Let’s explore some of the key problem-solving techniques, theories, and processes they commonly use.

Decomposition

Breaking down a problem into smaller, manageable parts is one of the first steps in the problem-solving process. It’s like dealing with a complicated puzzle. You don’t try to solve it all at once. Instead, you separate the pieces, group them based on similarities, and then start working on the smaller sets. This method allows software engineers to handle complex issues without being overwhelmed and makes it easier to identify where things might be going wrong.

Abstraction

In the realm of software engineering, abstraction means focusing on the necessary information only and ignoring irrelevant details. It is a way of simplifying complex systems to make them easier to understand and manage. For instance, a software engineer might ignore the details of how a database works to focus on the information it holds and how to retrieve or modify that information.

Algorithmic Thinking

At its core, software engineering is about creating algorithms — step-by-step procedures to solve a problem or accomplish a goal. Algorithmic thinking involves conceiving and expressing these procedures clearly and accurately and viewing every problem through an algorithmic lens. A well-designed algorithm not only solves the problem at hand but also does so efficiently, saving computational resources.

Parallel Thinking

Parallel thinking is a structured process where team members think in the same direction at the same time, allowing for more organized discussion and collaboration. It’s an approach popularized by Edward de Bono with the “ Six Thinking Hats ” technique, where each “hat” represents a different style of thinking.

In the context of software engineering, parallel thinking can be highly effective for problem solving. For instance, when dealing with a complex issue, the team can use the “White Hat” to focus solely on the data and facts about the problem, then the “Black Hat” to consider potential problems with a proposed solution, and so on. This structured approach can lead to more comprehensive analysis and more effective solutions, and it ensures that everyone’s perspectives are considered.

This is the process of identifying and fixing errors in code . Debugging involves carefully reviewing the code, reproducing and analyzing the error, and then making necessary modifications to rectify the problem. It’s a key part of maintaining and improving software quality.

Testing and Validation

Testing is an essential part of problem solving in software engineering. Engineers use a variety of tests to verify that their code works as expected and to uncover any potential issues. These range from unit tests that check individual components of the code to integration tests that ensure the pieces work well together. Validation, on the other hand, ensures that the solution not only works but also fulfills the intended requirements and objectives.

Explore verified tech roles & skills.

The definitive directory of tech roles, backed by machine learning and skills intelligence.

Explore all roles

Evaluating Problem-Solving Skills

We’ve examined the importance of problem-solving in the work of a software engineer and explored various techniques software engineers employ to approach complex challenges. Now, let’s delve into how hiring teams can identify and evaluate problem-solving skills during the hiring process.

Recognizing Problem-Solving Skills in Candidates

How can you tell if a candidate is a good problem solver? Look for these indicators:

  • Previous Experience: A history of dealing with complex, challenging projects is often a good sign. Ask the candidate to discuss a difficult problem they faced in a previous role and how they solved it.
  • Problem-Solving Questions: During interviews, pose hypothetical scenarios or present real problems your company has faced. Ask candidates to explain how they would tackle these issues. You’re not just looking for a correct solution but the thought process that led them there.
  • Technical Tests: Coding challenges and other technical tests can provide insight into a candidate’s problem-solving abilities. Consider leveraging a platform for assessing these skills in a realistic, job-related context.

Assessing Problem-Solving Skills

Once you’ve identified potential problem solvers, here are a few ways you can assess their skills:

  • Solution Effectiveness: Did the candidate solve the problem? How efficient and effective is their solution?
  • Approach and Process: Go beyond whether or not they solved the problem and examine how they arrived at their solution. Did they break the problem down into manageable parts? Did they consider different perspectives and possibilities?
  • Communication: A good problem solver can explain their thought process clearly. Can the candidate effectively communicate how they arrived at their solution and why they chose it?
  • Adaptability: Problem-solving often involves a degree of trial and error. How does the candidate handle roadblocks? Do they adapt their approach based on new information or feedback?

Hiring managers play a crucial role in identifying and fostering problem-solving skills within their teams. By focusing on these abilities during the hiring process, companies can build teams that are more capable, innovative, and resilient.

Key Takeaways

As you can see, problem solving plays a pivotal role in software engineering. Far from being an occasional requirement, it is the lifeblood that drives development forward, catalyzes innovation, and delivers of quality software. 

By leveraging problem-solving techniques, software engineers employ a powerful suite of strategies to overcome complex challenges. But mastering these techniques isn’t simple feat. It requires a learning mindset, regular practice, collaboration, reflective thinking, resilience, and a commitment to staying updated with industry trends. 

For hiring managers and team leads, recognizing these skills and fostering a culture that values and nurtures problem solving is key. It’s this emphasis on problem solving that can differentiate an average team from a high-performing one and an ordinary product from an industry-leading one.

At the end of the day, software engineering is fundamentally about solving problems — problems that matter to businesses, to users, and to the wider society. And it’s the proficient problem solvers who stand at the forefront of this dynamic field, turning challenges into opportunities, and ideas into reality.

This article was written with the help of AI. Can you tell which parts?

Get started with HackerRank

Over 2,500 companies and 40% of developers worldwide use HackerRank to hire tech talent and sharpen their skills.

Recommended topics

  • Hire Developers
  • Problem Solving

Abstract, futuristic image generated by AI

What Factors Actually Impact a Developer’s Decision to Accept an Offer?

Popular Searches

Next generation science.

  • Designing Challenge Based Science Learning
  • Unit Library

What is Computational Thinking?

  • Inclusive Integration of Computational Thinking
  • Data Practices
  • Creating Algorithms
  • Understanding Systems with Computational Models

Computational thinking is an interrelated set of skills and practices for solving complex problems, a way to learn topics in many disciplines, and a necessity for fully participating in a computational world.

Many different terms are used when talking about computing, computer science, computational thinking, and programming. Computing encompasses the skills and practices in both computer science and computational thinking. While computer science is an individual academic discipline, computational thinking is a problem-solving approach that integrates across activities, and programming is the practice of developing a set of instructions that a computer can understand and execute, as well as debugging, organizing, and applying that code to appropriate problem-solving contexts. The skills and practices requiring computational thinking are broader, leveraging concepts and skills from computer science and applying them to other contexts, such as core academic disciplines (e.g. arts, English language arts, math, science, social studies) and everyday problem solving. For educators integrating computational thinking into their classrooms, we believe computational thinking is best understood as a series of interrelated skills and competencies.

A Venn diagram showing the relationship between computer science (CS), computational thinking (CT), programming and computing.

Figure 1. The relationship between computer science (CS), computational thinking (CT), programming and computing.

In order to integrate computational thinking into K-12 teaching and learning, educators must define what students need to know and be able to do to be successful computational thinkers. Our recommended framework has three concentric circles.

  • Computational thinking skills , in the outermost circle, are the cognitive processes necessary to engage with computational tools to solve problems. These skills are the foundation to engage in any computational problem solving and should be integrated into early learning opportunities in K-3.
  • Computational thinking practices , in the middle circle, combine multiple computational skills to solve an applied problem. Students in the older grades (4-12) may use these practices to develop artifacts such as a computer program, data visualization, or computational model.
  • Inclusive pedagogies , in the innermost circle, are strategies for engaging all learners in computing, connecting applications to students’ interests and experiences, and providing opportunities to acknowledge, and combat biases and stereotypes within the computing field.

A pie chart extruding from a Venn diagram to illustrate a framework for computational thinking integration.

Figure 2. A framework for computational thinking integration.

What does inclusive computational thinking look like in a classroom? In the image below, we provide examples of inclusive computing pedagogies in the classroom. The pedagogies are divided into three categories to emphasize different pedagogical approaches to inclusivity. Designing Accessible Instruction refers to strategies teachers should use to engage all learners in computing. Connecting to Students’ Interests, Homes, and Communities refers to drawing on the experiences of students to design learning experiences that are connected with their homes, communities, interests and experiences to highlight the relevance of computing in their lives. Acknowledging and Combating Inequity refers to a teacher supporting students to recognize and take a stand against the oppression of marginalized groups in society broadly and specifically in computing. Together these pedagogical approaches promote a more inclusive computational thinking classroom environment, life-relevant learning, and opportunities to critique and counter inequalities. Educators should attend to each of the three approaches as they plan and teach lessons, especially related to computing.

Examples of inclusive pedagogies for teaching computing

Figure 3. Examples of inclusive pedagogies for teaching computing in the classroom adapted from Israel et al., 2017; Kapor Center, 2021; Madkins et al., 2020; National Center for Women & Information Technology, 2021b; Paris & Alim, 2017; Ryoo, 2019; CSTeachingTips, 2021

Micro-credentials for computational thinking

A micro-credential is a digital certificate that verifies an individual’s competence in a specific skill or set of skills. To earn a micro-credential, teachers submit evidence of student work from classroom activities, as well as documentation of lesson planning and reflection.

Because the integration of computational thinking is new to most teachers, micro-credentials can be a useful tool for professional learning and/or credentialing pathways. Digital Promise has created micro-credentials for Computational Thinking Practices . These micro-credentials are framed around practices because the degree to which students have built foundational skills cannot be assessed until they are manifested through the applied practices.

Visit Digital Promise’s micro-credential platform to find out more and start earning micro-credentials today!

Sign up for updates!

CS for CA News & Updates

Computer science skills: computational thinking explained.

It’s a common misconception that computer science (CS) is only applicable to people working in a technology or STEM careers. However, skills learnt through CS are used in our everyday lives, and in a variety of subjects.

One of these skills is known as computational thinking (CT). 

What is computational thinking?

There are many problem-solving skills involved in computer science, including those needed to design, develop, and debug software. Computational thinking is a way of describing these skills.

Computational thinking refers to the thought processes involved in defining a problem and its solution so that the solution can be expertly carried out by a computer. We don't need computers to engage in computational thinking, but CT can leverage the power of computers to solve a problem.

Computational thinking helps build these skills:

  • Decomposition – the process of breaking down a complex problem into smaller parts that are more manageable, and helps us see problems as less overwhelming.
  • Abstraction – identifying common features, recognizing patterns, and filtering out what we don’t need. 
  • Algorithmic Thinking – designing a set of steps to accomplish a specific task. 
  • Debugging and Evaluation – testing and refining a potential solution, and ensuring it’s the best fit for the problem.

These skills relate to critical thinking and problem solving skills across different subject matter, highlighting how concepts of computing can be combined with other fields of study to assist in problem-solving.

Computational thinking is a way of describing the many problem solving skills involved in computer science, including those needed to design, develop, and debug software. However, computer science is more than just skills, it also includes concepts about the Internet, networking, data, cybersecurity, artificial intelligence, and interfaces. Computational thinking can be relevant beyond computer science, overlapping with skills also used in other STEM subjects, as well as the arts, social sciences, and humanities.

Why is computational thinking important? 

Computational thinking can apply these problem-solving techniques to a variety of subjects. For example, CT is established as one of the Science and Engineering Practices in the Next Generation Science Standards , and can also be found in several math state standards . Computational thinking also overlaps with skills used in other STEM subjects, as well as the arts, social sciences, and humanities. Computational thinking encourages us to use the power of computing beyond the screen and keyboard. 

It can also allow us to advance equity in computer science education...

By centering the problem-solving skills that are at the heart of computer science, we can promote its integration with other subject areas, and expose more students to the possibilities of computer science. 

Not only that, but computational thinking also opens the door for us to examine the limitations and opportunities of technology as it’s being developed. We’re able to analyze who is creating technology and why, as well as think critically about the ways in which it can impact society. 

Want to learn more about computational thinking?

To learn more about computational thinking, check out the resources:

  • This framework for CS for K-12 places CT at the core of its practices and is what the California standards are based on. 
  • Part of the British Computing Society, Computing at School put forth resources to assist teachers in the UK in embedding  CT in their classrooms. 
  • This is one of the earliest definitions of CT for educators, and noteworthy for its inclusion of certain dispositions as being essential for effective CT.  
  • The developers of Scratch divide CT into concepts, practices, and perspectives, and focus on the expressive and creative nature of computing. 
  • Instead of focusing solely on standards for students, ISTE  compiled a set of knowledge, skills, and mindsets needed for educators to be successful in integrating  CT across the K-12 content areas and grade bands.  
  • Bebras began as an international competition to promote CT for students, regardless of programming experience. It is now increasingly being used as a form of CT assessment. 

Explore Related Articles

what are the computer problem solving skills

New Report on Equity in Computer Science Education in California’s Schools

what are the computer problem solving skills

California Governor's Budget Supports Computer Science education

what are the computer problem solving skills

SBE Approves Computer Science Strategic Implementation Plan

what are the computer problem solving skills

Unable to load Tweets

Arc Developer Career Blog

Problem-Solving Skills for Software Developers: Why & How to Improve

how to improve problem-solving skills for software developers

Problem-solving skills go hand-in-hand with software development. Learn some great problem-solving techniques and tips for improvement here!

Software developer jobs today require that you possess excellent problem-solving skills , and for good reason. Unfortunately, there seems to be a sort of talent gap when it comes to this one skill required of all software developers.

Troubleshooting and problem resolution are both informally and formally taught, but you mostly find that software developers have to learn problem-solving skills on their own. This is true for self-taught developers , obviously, but also even for those with software engineering degrees or who’ve graduated from coding boot camps.

This is why it’s necessary to acquaint yourself with the problem-solving process, whether you are a newbie or an experienced developer. In this article, we’ll explore everything you need to know about problem-solving so you can 10x your software development career.

Arc Signup Call-to-Action Banner v.6

What are Problem-Solving Skills?

As a developer, what do we mean by problem-solving? Let’s attempt a simple definition.

In software development, problem-solving is the process of using theories and research to find solutions to a problem domain, while testing different ideas and applying best practices to achieve a desired result. Problem-solving also has to do with utilizing creativity and logical thought processes to identify problems and resolve them with software.

Becoming a great software developer hinges more on learning algorithms than programming languages or frameworks . And algorithms are simply step-by-step instructions to solve a given problem.

Read More : How to Build a Software Engineer Portfolio (With Examples & Tips)

Why are impeccable problem-solving skills crucial?

Making good use of a computer language can be likened to being a skilled writer. An effective writer must know how to construct sentences and use grammar appropriately. There’s more to writing than just knowing all the words in the dictionary, and that’s how it works for developers, too.

You have different tasks to work on as a software developer, including perhaps designing, coding, and troubleshooting. Much of your time will be spent on identifying problems, spotting and correcting bugs, and making sense of codebases from before you started working there. Being ingenious at problem-solving is essential in creating incredible solutions to issues that arise throughout software development.

To demonstrate ingenuity, let’s consider Google’s autocomplete tool as an example.

The autocomplete tool is built to suggest related terms in the search bar as you type. The idea behind the tool is to reduce more than 200 years of time spent typing daily and to help users save time by up to 25% while typing.

Here’s what had to be done:

  • To activate real-time completion of suggestions, the UI experience and JavaScript had to be implemented.
  • Next, since users could type just about anything, the autocomplete suggestions had to be compiled into a sensible list dependent on user input.
  • Then, Google had to create a back-end sustainability system for this function. Doing this meant massively increasing its infrastructure to accommodate all forms of data query and HTTP requests.
  • Finally, the user interface had to be refined by software engineers in order to make sure that every user enjoyed a worthwhile experience. So they employed Google Trends to power the auto-completion tool while using algorithms to take out explicit or offensive predictions in line with Google’s auto-completion policy.

This is just one of Google’s innumerable problem-solving examples, but it’s clear to see that solving problems involves more than just telling a computer to do stuff. It’s about your ability to come up with parameters rightly tailored to target users so they can meet their goals.

So why must developers focus on problem-solving at work?

Software developers work with a wide range of people and departments, and it’s common to discover that some clients and teams find it difficult to define what they want. As a problem solver, it’s up to you to help them identify their needs and communicate their thoughts in an effective way.

Of course, you’ll need time and practice to develop your problem resolution ability. That’s because it’s less about solving problems faster but more about coming up with the best solution . And then you’ll need to deploy that solution.

Read More : Common Interview Questions for Software Developer Jobs (Non-Technical)

Types of problem-solving skills

Now let’s talk about four types of problem-solving skills for developers:

1.  Parallel thinking

As a software developer, parallel thinking is a crucial skill necessary to perform optimally. This makes it possible for you to carry out two tasks that complement each other at the same time (like an optimized form of multitasking skills). Being able to reorder tasks to boost parallel execution can help to improve your output and save valuable time .

2. Dissecting broad and/or complex goals

When it comes to building software, you will need to effectively outline the steps and tasks necessary to achieve your goal. Developers must learn to break large and complex tasks into smaller assignments because this is an important skill that will help you create results with precision.

3. Reimplementing existing solutions

You don’t always need to reinvent the wheel. Part of being an effective software developer comes with being able to use already existing tools before even thinking of creating new solutions. Developing problem-solving skills is very much connected to finding solutions that already exist and reusing them.

4. Abstraction

Keep in mind that goals tend to evolve. So if your client comes up with new ideas, that will mean changing your design goals and reordering your tasks. A good programmer must learn to create solutions in such a way that does not require a complete redesign from scratch.

You also have to become adept at abstracting problems so that your solutions can get them resolved so long as they aren’t entirely different from the original issue. You don’t necessarily have to abstract every aspect to avoid more complications being created. This calls for balance by abstracting only where necessary without making narrow decisions.

Read More : Learn 8 Great Benefits of Working From Home

4 Important Tips & Strategies for Improving Problem-Solving Skills

To keep your problem-solving skills and techniques from growing weaker over time, you need to exercise them non-stop. As they say: practice makes perfect!

To train the problem-solving side of your brain, these four tips and strategies can help you improve your abilities:

1. Make problem-solving a part of your life

Never restrict yourself to working on problems only during work hours. Don’t make it a chore, but, instead, do things that make problem-solving look fun. The game of chess, solving puzzles, and playing video games that compel you to think critically will help strengthen your problem-solving skills, and you can tell your significant other you are advancing your career! 🙂

When you come to a complex problem in your life, whether it’s budgeting for a home or renovating the downstairs bathroom, approach it both creatively and critically. Ask yourself: What would a great software engineer do in this situation?

2. Use different platforms to solve problems

Proffer solutions to a set of problems without restricting yourself to one platform. Using different platforms and tools regularly helps make sure you become flexible as a problem-solver. And it makes sense, because there really is no universal solution for the different problems that pop up in your line of work. Trying out different platforms to solve different problems helps you to keep an open mind and enables you to test out different techniques when looking to find solutions.

Read More : 12 Common Mistakes Keeping You From Landing Your First Developer Job

Arc Signup Call-to-Action Banner v.4

3. Be open to assistance from external sources

Part of being a good software developer comes with being able to ask for help and also accept all forms of feedback. You might need a different opinion or a new set of eyes to help find the most fitting solution to some problems. It makes sense to view building problem-solving skills as more of a team effort rather than a personal journey.

Have an open mind and heart to function not only as an individual but also as a collective. It’s a utopian working environment where everyone supports each other to become better versions of themselves. So if you come across an issue that keeps you stuck, get help! You may find someone who has a more refined framework or method you never knew existed or would have thought of using. You could then learn from them and add their solution to your toolkit.

Get feedback often, as well. This could be the catalyst to making improvements to your processes and evolving them into something truly refined.

4. Tackle new problems using lessons from past solutions

As you practice and finesse your ability to identify problems and find solutions, you’ll begin to notice patterns. It’s more like developing your toolbox armed with a wide range of solutions that have proved useful in the past. So when problems emerge, you will notice how easy it is to take some of those old solutions and apply them to the new problem.

The more you attempt to apply creativity in solving problems, the more you grow your skills. In the long run, that will help you find the right solutions faster and apply them to a wide range of problems more naturally. It’s all about improving the effectiveness and efficiency with which you tackle new problems while applying only the best possible solutions.

Read More : How to Stay Motivated at Work

3 Complementary Skills to Improve to Become a Good Problem Solver

Developing software is mostly about problem-solving at the very core before even writing your first lines of code. You have to identify problems that can be solved using software. Then you have to go on to understand how people try to solve such problems in real life.

It’s up to you to come up with a framework that allows you to take both the problem and the solution and convert them into computer code. And you have to do this in such a way that makes the software even more efficient and effective than a human.

While going through this process, developers also have to handle other problems such as deadline deliveries, checking for bugs and fixing them, and collaborate across teams. So, supporting skills must not be overlooked.

Software developers must build interpersonal skills and collaboration skills . Being able to empathize, accept feedback, handle criticism, listen intently, and show respect for others are all important characteristics and abilities necessary for teamwork, and, thus, necessary for solving problems on the job.

Read More : 5 Ways to Stand Out & Get Noticed in Your Current Development Job

Communication

No one is an island, and that’s true when you consider how software engineers work. Building software requires keeping up with clients and teammates and other departments. You can’t afford to be a Lone Ranger, at least not 100% of the time, and that’s why employers always look for good communication skills.

Being a good software developer also involves how well you can break down very complex concepts to laypeople. You want to be the kind of person who fixes a problem and is able to explain how you were able to do it. It’s all about your ability to be clear and articulate about every aspect of your work. And you want to be able to communicate not just verbally but also in written form.

To build your communication skills as a developer, you can learn from more experienced people and observe how they interact with their clients. And, don’t forget, with more and more companies becoming global enterprises and going remote, it’s important to brush up on your intercultural communication skills , as well.

Logical thinking

The difference between elite software developers and average ones is often said to be logical thinking. The ability to process thoughts logically is important, because you’ll often spend most of your time finding and fixing bugs rather than writing code.

Problems can show up from just about anywhere, even from what seems to be the most insignificant errors. So, your ability to detect software issues and solve these problems using deductive thought processes is a vital ingredient to your success as a software developer.

Read More : Questions to Ask at Interviews for Software Engineering Jobs

Problem-Solving Stages & Practices

There are countless problem-solving processes and various schools of thought regarding the best way to approach problems whenever they arise. To solve that problem, we’ve pooled some of these frameworks together to come up with a comprehensive approach to problem-solving.

Step 1 – Define the problem

You have to first start with problem identification. Knowing what you are dealing with is important, because you don’t want to risk spending valuable time applying wrong solutions. Avoid making automatic assumptions. Even when the symptoms look familiar, you want to investigate properly because such signs could be pointing to something else entirely.

Problems in software development come in different sizes and scopes. You could be having trouble getting some aspects of the product to respond in the desired way. Or maybe you’re having issues trying to decipher a codebase section where you can no longer communicate with the original developers. Sometimes, the problem could come in the form of an unfamiliar error message and you’re at loss.

Once you’re able to define the problem, make sure to document it.

Step 2 – Analyze the problem

Now it’s time to carry out problem analysis . Before deciding what problem resolution methods to adopt, it’s necessary to find out all there is to the issue, which builds on our first step. This will make it easier to come up with ideas and solutions later on.

Problem analysis isn’t always a walk in the park. There are times when the problem involves a very small mistake such as failing to import a package correctly or a small syntax error. Other times, however, it could be such a huge error, like the entire program acting differently than what you want. There might be no alarms or blinking red lights to tell you what the exact problem is.

If you encounter such situations, you can find answers by articulating the problem. Document what you intend to do, what you’ve done, the original intention for the program, and where you currently are. Communication comes in handy here, of course, not just in your documentation, but also in how you relay it to your teammates.

Read More : Got a Busy Developer Schedule? Here’s How to Keep Learning & Make Time

Step 3 – Brainstorm

This step has to do with generating ideas, and you can benefit from discussing the problem with a team and then coming up with ways to get it fixed. Keep in mind that problem-solving at work involves interacting with a diverse group of people where the individuals have unique skill sets and experiences.

Many developers tend to neglect the previous steps and rush straight into brainstorming. That’s definitely not a good way to go about problem-solving. The idea is not to skip the important steps in the process.

Once you get to the point where ideas need to be generated, do not discard any, because this step relies on a wide range of ideas. Only after gathering as many perspectives as possible should you then begin reviewing and narrowing down to the best possible solution.

Step 4 – Make a decision

At this point, all viable solutions have to be analyzed before selecting the most appropriate one to implement. Picking the best possible solution depends on its ability to meet certain criteria. It must be suitable, feasible, and then acceptable.

What it means is that the solution must be able to get the problem solved. It should also be easy to see how such a solution fits into the equation. And then every member of the team involved in the brainstorming process has to unanimously accept the solution.

Read More : How to Network as a Software Engineer

Step 5 – Implement

After identifying and choosing the solution, the next logical step is to plan out the implementation process and then execute it. Coming up with a detailed plan is crucial if the solution is to be a success.

Now this plan must detail all the necessary steps required to implement the solution. It will also explain the length of time and stages of work required. Once all of that is put in place, you can then move forward with the execution. The idea is not just to execute a solution but to do it the right way.

Implementation using automated tests can help to keep unexpected issues from arising in the future. Some other problem-solving practices or approaches begin the process with this step. So, whenever any changes are made to the project, tests asserting that the changes will perform as required will be written first before the changes are then made.

Step 6 – Evaluate

No problem-solving process can be deemed comprehensive enough if there is no room for evaluation. Whatever the solution may be, it has to undergo strict evaluation in order to see how it performs. That will also help determine whether the problem still exists and the extent to which such an issue keeps recurring.

In the event that the problem persists despite the implementation of a detailed plan, then the developer and team may even have to restart the problem-solving process. However discouraging that may sound, at least you’ll have caught it early enough. And, this also proves the process worked.

Read More : How to Become a Software Engineer: Education, Steps & Tips for Success

Arc Signup Call-to-Action Banner v.1

Final Thoughts

Developing problem-solving skills is quite necessary for software developers. To be a successful problem solver, you will need lots of years down the line to practice what you study.

Always remember that you are a problem solver first before anything else. There is more to building software than just understanding the tech behind it and writing lines of code. It’s all about improving your ability to identify problems and find solutions, and that will need lots of experience on your part.

Never shy away from problems, but learn to think critically and logically in any situation. By applying the six-step strategy for problem-solving at work discussed in this piece, you will be more equipped to come up with the most effective and efficient solutions.

We hope you enjoyed reading our guide on how to solve a problem as a software developer and ways to improve skills as a problem solver! If you have any questions, feedback, or other great problem-solving techniques or methods, let us know in the comments below 🙂

' src=

The Arc team publishes insightful articles and thought leadership pieces related to software engineering careers and remote work. From helping entry-level developers land their first junior role to assisting remote workers struggling with working from home to guiding mid-level programmers as they seek a leadership position, Arc covers it all and more!

Join the discussion Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Further reading

what are the computer problem solving skills

Here Are 43 of the Best Online Developer Communities to Join in 2024

How to Move Into a More Senior Role as a Software Developer leader management or leadership position

Ready to Take On a Senior Role or Leadership Position as a Developer?

how to improve analytical skills for developers

Key Analytical Skills for Developers (& How to Continually Improve Them)

How to know when you can consider yourself a senior software developer or engineer

Here’s When You Can TRULY Call Yourself a “Senior” Software Developer

how to improve time management skills for remote workers and managing time effectively as a software developer

Time Management Skills for Developers: Best Tips, Tools, and Strategies

Do I Need a Software Engineering Degree for Software Development Jobs?

Software Engineer Degree: Pros, Cons & Alternatives

Tutorial Playlist

Programming tutorial, your guide to the best backend languages for 2024, an ultimate guide that helps you to start learn coding 2024, what is backend development: the ultimate guide for beginners, all you need to know for choosing the first programming language to learn, here’s all you need to know about coding, decoding, and reasoning with examples, understanding what is xml: the best guide to xml and its concepts., an ultimate guide to learn the importance of low-code and no-code development, top frontend languages that you should know about, top 75+ frontend developer interview questions and answers, the ultimate guide to learn typescript generics, the most comprehensive guide for beginners to know ‘what is typescript’.

The Ultimate Guide on Introduction to Competitive Programming

Top 60+ TCS NQT Interview Questions and Answers for 2024

Most commonly asked logical reasoning questions in an aptitude test, everything you need to know about advanced typescript concepts, an absolute guide to build c hello world program, a one-stop solution guide to learn how to create a game in unity, what is nat significance of nat for translating ip addresses in the network model, data science vs software engineering: key differences, a real-time chat application typescript project using node.js as a server, what is raspberry pi here’s the best guide to get started, what is arduino here’s the best beginners guide to get started, arduino vs. raspberry pi: which is the better board, the perfect guide for all you need to learn about mean stack, software developer resume: a comprehensive guide, here’s everything all you need to know about the programming roadmap, an ultimate guide that helps you to develop and improve problem solving in programming, the top 10 awesome arduino projects of all time, roles of product managers, pyspark rdd: everything you need to know about pyspark rdd, wipro interview questions and answers that you should know before going for an interview, how to use typescript with nodejs: the ultimate guide, what is rust programming language why is it so popular, software terminologies, an ultimate guide that helps you to develop and improve problem solving in programming.

Lesson 27 of 34 By Hemant Deshpande

An Ultimate Guide That Helps You to Develop and Improve Problem Solving in Programming

Table of Contents

Coding and Programming skills hold a significant and critical role in implementing and developing various technologies and software. They add more value to the future and development. These programming and coding skills are essential for every person to improve problem solving skills. So, we brought you this article to help you learn and know the importance of these skills in the future. 

Want a Top Software Development Job? Start Here!

Want a Top Software Development Job? Start Here!

Topics covered in this problem solving in programming article are:

  • What is Problem Solving in Programming? 
  • Problem Solving skills in Programming
  • How does it impact your career ?
  • Steps involved in Problem Solving
  • Steps to improve Problem Solving in programming

What is Problem Solving in Programming?

Computers are used to solve various problems in day-to-day life. Problem Solving is an essential skill that helps to solve problems in programming. There are specific steps to be carried out to solve problems in computer programming, and the success depends on how correctly and precisely we define a problem. This involves designing, identifying and implementing problems using certain steps to develop a computer.

When we know what exactly problem solving in programming is, let us learn how it impacts your career growth.

How Does It Impact Your Career?

Many companies look for candidates with excellent problem solving skills. These skills help people manage the work and make candidates put more effort into the work, which results in finding solutions for complex problems in unexpected situations. These skills also help to identify quick solutions when they arise and are identified. 

People with great problem solving skills also possess more thinking and analytical skills, which makes them much more successful and confident in their career and able to work in any kind of environment. 

The above section gives you an idea of how problem solving in programming impacts your career and growth. Now, let's understand what problem solving skills mean.

Problem Solving Skills in Programming

Solving a question that is related to computers is more complicated than finding the solutions for other questions. It requires excellent knowledge and much thinking power. Problem solving in programming skills is much needed for a person and holds a major advantage. For every question, there are specific steps to be followed to get a perfect solution. By using those steps, it is possible to find a solution quickly.

The above section is covered with an explanation of problem solving in programming skills. Now let's learn some steps involved in problem solving.

Steps Involved in Problem Solving

Before being ready to solve a problem, there are some steps and procedures to be followed to find the solution. Let's have a look at them in this problem solving in programming article.

Basically, they are divided into four categories:

  • Analysing the problem
  • Developing the algorithm
  • Testing and debugging

Analysing the Problem

Every problem has a perfect solution; before we are ready to solve a problem, we must look over the question and understand it. When we know the question, it is easy to find the solution for it. If we are not ready with what we have to solve, then we end up with the question and cannot find the answer as expected. By analysing it, we can figure out the outputs and inputs to be carried out. Thus, when we analyse and are ready with the list, it is easy and helps us find the solution easily. 

Developing the Algorithm

It is required to decide a solution before writing a program. The procedure of representing the solution  in a natural language called an algorithm. We must design, develop and decide the final approach after a number of trials and errors, before actually writing the final code on an algorithm before we write the code. It captures and refines all the aspects of the desired solution.

Once we finalise the algorithm, we must convert the decided algorithm into a code or program using a dedicated programming language that is understandable by the computer to find a desired solution. In this stage, a wide variety of programming languages are used to convert the algorithm into code. 

Testing and Debugging

The designed and developed program undergoes several rigorous tests based on various real-time parameters and the program undergoes various levels of simulations. It must meet the user's requirements, which have to respond with the required time. It should generate all expected outputs to all the possible inputs. The program should also undergo bug fixing and all possible exception handling. If it fails to show the possible results, it should be checked for logical errors.

Industries follow some testing methods like system testing, component testing and acceptance testing while developing complex applications. The errors identified while testing are debugged or rectified and tested again until all errors are removed from the program.

The steps mentioned above are involved in problem solving in programming. Now let's see some more detailed information about the steps to improve problem solving in programming.

Steps to Improve Problem Solving in Programming

Right mindset.

The way to approach problems is the key to improving the skills. To find a solution, a positive mindset helps to solve problems quickly. If you think something is impossible, then it is hard to achieve. When you feel free and focus with a positive attitude, even complex problems will have a perfect solution.

Making Right Decisions

When we need to solve a problem, we must be clear with the solution. The perfect solution helps to get success in a shorter period. Making the right decisions in the right situation helps to find the perfect solution quickly and efficiently. These skills also help to get more command over the subject.

Keeping Ideas on Track

Ideas always help much in improving the skills; they also help to gain more knowledge and more command over things. In problem solving situations, these ideas help much and help to develop more skills. Give opportunities for the mind and keep on noting the ideas.

Learning from Feedbacks

A crucial part of learning is from the feedback. Mistakes help you to gain more knowledge and have much growth. When you have a solution for a problem, go for the feedback from the experienced or the professionals. It helps you get success within a shorter period and enables you to find other solutions easily.

Asking Questions

Questions are an incredible part of life. While searching for solutions, there are a lot of questions that arise in our minds. Once you know the question correctly, then you are able to find answers quickly. In coding or programming, we must have a clear idea about the problem. Then, you can find the perfect solution for it. Raising questions can help to understand the problem.

These are a few reasons and tips to improve problem solving in programming skills. Now let's see some major benefits in this article.

  • Problem solving in programming skills helps to gain more knowledge over coding and programming, which is a major benefit.
  • These problem solving skills also help to develop more skills in a person and build a promising career.
  • These skills also help to find the solutions for critical and complex problems in a perfect way.
  • Learning and developing problem solving in programming helps in building a good foundation.
  • Most of the companies are looking for people with good problem solving skills, and these play an important role when it comes to job opportunities 
Don't miss out on the opportunity to become a Certified Professional with Simplilearn's Post Graduate Program in Full Stack Web Development . Enroll Today!

Problem solving in programming skills is important in this modern world; these skills build a great career and hold a great advantage. This article on problem solving in programming provides you with an idea of how it plays a massive role in the present world. In this problem solving in programming article, the skills and the ways to improve more command on problem solving in programming are mentioned and explained in a proper way.

If you are looking to advance in your career. Simplilearn provides training and certification courses on various programming languages - Python , Java , Javascript , and many more. Check out our Post Graduate Program in Full Stack Web Development course that will help you excel in your career.

If you have any questions for us on the problem solving in programming article. Do let us know in the comments section below; we have our experts answer it right away.

Find our Full Stack Developer - MERN Stack Online Bootcamp in top cities:

About the author.

Hemant Deshpande

Hemant Deshpande, PMP has more than 17 years of experience working for various global MNC's. He has more than 10 years of experience in managing large transformation programs for Fortune 500 clients across verticals such as Banking, Finance, Insurance, Healthcare, Telecom and others. During his career he has worked across the geographies - North America, Europe, Middle East, and Asia Pacific. Hemant is an internationally Certified Executive Coach (CCA/ICF Approved) working with corporate leaders. He also provides Management Consulting and Training services. He is passionate about writing and regularly blogs and writes content for top websites. His motto in life - Making a positive difference.

Recommended Resources

Your One-Stop Solution to Understand Coin Change Problem

Your One-Stop Solution to Understand Coin Change Problem

Combating the Global Talent Shortage Through Skill Development Programs

Combating the Global Talent Shortage Through Skill Development Programs

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

One Stop Solution to All the Dynamic Programming Problems

One Stop Solution to All the Dynamic Programming Problems

The Ultimate Guide on Introduction to Competitive Programming

The Ultimate Guide to Top Front End and Back End Programming Languages for 2021

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

Your browser is not supported. Please upgrade your browser to one of our supported browsers . You can try viewing the page, but expect functionality to be broken.

Computer Science Fundamentals

Free set of elementary curricula that introduces students to the foundational concepts of computer science and challenges them to explore how computing and technology can impact the world.

what are the computer problem solving skills

Free, and fun, elementary courses for each grade

  • Six courses, one for each elementary grade
  • Equitable introductory CS courses
  • Use the same course for all students in the same grade, regardless of their experience
  • All courses make suitable entry points for students

Curricula at a glance

Grades: K-5

Level: Beginner

Duration: Month or Quarter

Devices: Laptop, Chromebook, Tablet

Topics: Programming, Internet, Games and Animation, Art and Design, App Design

Programming Tools: Sprite Lab, Play Lab

Professional Learning: Facilitator-led Workshops, Self-paced Modules

Accessibility: Text-to-speech, Closed captioning, Immersive reader

Languages Supported: Arabic, Bahasa Indonesian, Catalán, Chinese Simplified, Chinese Traditional, Czech, French, German, Hindi, Italian, Japanese, Korean, Kannada, Malay, Marathi, Mongolian, Polish, Portuguese-BR, Romanian, Russian, Slovak, Tagalog, Tamil, Thai, Turkish, Ukrainian, Spanish Latam, Urdu, Spanish-ES, Uzbek, Vietnamese

I've been teaching the course since the Monday after the workshop. The students and I LOVE it (and so do their classroom teachers!!!)

CS Fundamentals Teacher

Picking the right CS Fundamentals course for your classroom

With the diverse set of options offered for CS Fundamentals, there is a course for all different needs.

How will your students engage with the content?

Courses specifically designed for your elementary classroom.

Find the course for the grade you teach. Each course is approximately a month long.

Kindergarten

what are the computer problem solving skills

Program using commands like loops and events. Teach students to collaborate with others, investigate different problem-solving techniques, persist in the face of challenging tasks, and learn about internet safety.

what are the computer problem solving skills

Through unplugged activities and a variety of puzzles, students will learn the basics of programming, collaboration techniques, investigation and critical thinking skills, persistence in the face of difficulty, and internet safety.

what are the computer problem solving skills

Create programs with sequencing, loops, and events. Investigate problem-solving techniques and develop strategies for building positive communities both online and offline. Create interactive games that students can share.

what are the computer problem solving skills

Review of the concepts found in earlier courses, including loops and events. Afterward, students will develop their understanding of algorithms, nested loops, while loops, conditionals, and more.

what are the computer problem solving skills

Make fun, interactive projects that reinforce learning about online safety. Engage in more complex coding such as nested loops, functions, and conditionals.

what are the computer problem solving skills

Look at how users make choices in the apps they use. Make a variety of Sprite Lab apps that also offer choices for the user. Learn more advanced concepts, including variables and “for” loops.

Self-paced elementary curriculums

Teachers play a critical role in student learning by teaching our unplugged activities and leading whole class discussions, however, we recognize that CS Fundamentals isn't always taught in a traditional classroom setting. We provide two self-paced express courses alongside Courses A-F. These express courses are designed for situations where teachers allow each student to work at their own pace independently.

Grades: K-1

Pre-Reader Express

what are the computer problem solving skills

Learn the basics of drag-and-drop block coding by solving puzzles and creating animated scenes. Make art and simple games to share with friends, family, and teachers.

Grades: 2-5

what are the computer problem solving skills

Learn to create computer programs, develop problem-solving skills, and work through fun challenges! Make games and creative projects to share with friends, family, and teachers.

No devices? We have you covered

what are the computer problem solving skills

Go ahead, cut the cord (for a while)!

CS education does not always need to be in front of a screen and device access shouldn't be a barrier to learning computer science concepts.

Resources that support you every step of the way

Sign up for a Code.org account to get access to materials that will help you teach computer science with confidence. Code.org has extensive resources designed to support educators, even those without prior CS teaching experience.

Lesson Plans

Get step-by-step guidance, learning objectives, and assessment strategies for effective teaching.

Helpful resources include slide decks, activity guides, rubrics, and more — all organized in one place. Each lesson plan is accompanied by tips for classroom implementation, differentiation ideas, and extension activities to cater to students of all abilities.

Instructional Videos

Watch easy-to-understand overviews of computer science and programming concepts.

Code.org video series are designed specifically to support your classroom and are engaging and fun to watch.

Slide Decks

We offer educators an organized, visually engaging, and pedagogically sound framework to deliver computer science lessons.

Code.org slide decks provide step-by-step instructions, examples, and interactive activities that align with curricular objectives.

what are the computer problem solving skills

Assessments

Our curricula includes a comprehensive system of formative and summative assessment resources.

These include rubrics, checklists, mini-projects, end-of-chapter projects, student-facing rubrics, sample projects, and post-project tests — all designed to support teachers in measuring student growth, providing feedback, and evaluating student understanding.

what are the computer problem solving skills

Programming Tools

Code.org's integrated development environments (IDEs) cater to students of all skill levels.

We offer a versatile and user-friendly platform that supports a variety of programming paradigms. This enables learners to seamlessly transition from block-based coding to text-based languages, and fosters creativity and innovation.

Professional learning that meets your needs

Get the support you need as you prepare to teach. Teachers love it, with over 90% ranking it the best professional development ever!

Facilitator-led Workshops

what are the computer problem solving skills

Join local teachers for inspiring and hands-on support to implement computer science in your classroom. Our Regional Partners offer high-quality, one-day Code.org workshops for individual teachers or for schoolwide PD. Sign up for a professional development workshop near you!

Self-Paced Online Modules

what are the computer problem solving skills

Through reading, viewing videos, completing interactive puzzles, and reflecting on your learning, you will develop your own understanding while preparing to teach computer science in your classroom.

Frequently asked questions

CS Fundamentals was written using both the K-12 Framework for Computer Science and the CSTA standards as guidance. Currently, every lesson in CS Fundamentals contains mappings to the relevant CSTA standards. The summary of all CSTA mappings for each course can be found at:

  • Course A Standards
  • Course B Standards
  • Course C Standards
  • Course D Standards
  • Course E Standards
  • Course F Standards

A Google Sheets version of the standards can be found at CSF Standards .

The leading K-12 CS curriculum in the United States, our elementary program has been proven effective in major urban school districts like Dallas, as well as small rural districts in Iowa. There is no need to hire specialists to teach CS. Our program is uniquely designed to support teachers new to CS while offering the flexibility to evolve lessons to fit student needs. Share this brochure with your school and district administrators, or suggest they take a look at our administrators page specially designed to answer administrators' most common questions.

Our curriculum and platform are available at no cost for anyone, anywhere, to teach!

New to teaching computer science? No worries! Most of our teachers have never taught computer science before. Join local teachers for inspiring and hands-on support to implement computer science in your classroom. Our Regional Partners offer high-quality, one-day Code.org workshops for individual teachers or for schoolwide PD. Sign up for a professional development workshop near you !

Join over 100,000 teachers who have participated in our workshops. The majority of our workshop attendees say, 'It's the best professional development I've ever attended.' In fact, 90% of attendees would recommend our program to other teachers !

Each CSF course includes 13-17 lessons designed for 45-minute periods. We recommend all students move from lesson to lesson at a pace set by the teacher. There are many teacher-led project levels designed to be experienced in unison while the skill-building lessons can be completed by students at their own pace.

Many lessons have handouts that guide students through activities. These resources can be printed or assigned digitally. Some lessons call for typical classroom supplies and manipulatives. Visit the CSF Syllabus to learn more .

Support and questions

what are the computer problem solving skills

Still have questions? Reach out to us! We are here to help.

Our support team is here to answer any questions you may have about starting teaching with Code.org. You can also ask other teachers about their experience on our teacher forums.

Subscribe for updates

Sign up to receive monthly emails about Code.org's Computer Science Fundamentals and get helpful reminders, tips, and updates sent right to your inbox.

You can unsubscribe at any time.

what are the computer problem solving skills

Please select your language

How to improve your problem solving skills and build effective problem solving strategies

what are the computer problem solving skills

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

Effective problem solving is all about using the right process and following a plan tailored to the issue at hand. Recognizing your team or organization has an issue isn’t enough to come up with effective problem solving strategies. 

To truly understand a problem and develop appropriate solutions, you will want to follow a solid process, follow the necessary problem solving steps, and bring all of your problem solving skills to the table.  

We’ll first guide you through the seven step problem solving process you and your team can use to effectively solve complex business challenges. We’ll also look at what problem solving strategies you can employ with your team when looking for a way to approach the process. We’ll then discuss the problem solving skills you need to be more effective at solving problems, complete with an activity from the SessionLab library you can use to develop that skill in your team.

Let’s get to it! 

What is a problem solving process?

  • What are the problem solving steps I need to follow?

Problem solving strategies

What skills do i need to be an effective problem solver, how can i improve my problem solving skills.

Solving problems is like baking a cake. You can go straight into the kitchen without a recipe or the right ingredients and do your best, but the end result is unlikely to be very tasty!

Using a process to bake a cake allows you to use the best ingredients without waste, collect the right tools, account for allergies, decide whether it is a birthday or wedding cake, and then bake efficiently and on time. The result is a better cake that is fit for purpose, tastes better and has created less mess in the kitchen. Also, it should have chocolate sprinkles. Having a step by step process to solve organizational problems allows you to go through each stage methodically and ensure you are trying to solve the right problems and select the most appropriate, effective solutions.

What are the problem solving steps I need to follow? 

All problem solving processes go through a number of steps in order to move from identifying a problem to resolving it.

Depending on your problem solving model and who you ask, there can be anything between four and nine problem solving steps you should follow in order to find the right solution. Whatever framework you and your group use, there are some key items that should be addressed in order to have an effective process.

We’ve looked at problem solving processes from sources such as the American Society for Quality and their four step approach , and Mediate ‘s six step process. By reflecting on those and our own problem solving processes, we’ve come up with a sequence of seven problem solving steps we feel best covers everything you need in order to effectively solve problems.

seven step problem solving process

1. Problem identification 

The first stage of any problem solving process is to identify the problem or problems you might want to solve. Effective problem solving strategies always begin by allowing a group scope to articulate what they believe the problem to be and then coming to some consensus over which problem they approach first. Problem solving activities used at this stage often have a focus on creating frank, open discussion so that potential problems can be brought to the surface.

2. Problem analysis 

Though this step is not a million miles from problem identification, problem analysis deserves to be considered separately. It can often be an overlooked part of the process and is instrumental when it comes to developing effective solutions.

The process of problem analysis means ensuring that the problem you are seeking to solve is the right problem . As part of this stage, you may look deeper and try to find the root cause of a specific problem at a team or organizational level.

Remember that problem solving strategies should not only be focused on putting out fires in the short term but developing long term solutions that deal with the root cause of organizational challenges. 

Whatever your approach, analyzing a problem is crucial in being able to select an appropriate solution and the problem solving skills deployed in this stage are beneficial for the rest of the process and ensuring the solutions you create are fit for purpose.

3. Solution generation

Once your group has nailed down the particulars of the problem you wish to solve, you want to encourage a free flow of ideas connecting to solving that problem. This can take the form of problem solving games that encourage creative thinking or problem solving activities designed to produce working prototypes of possible solutions. 

The key to ensuring the success of this stage of the problem solving process is to encourage quick, creative thinking and create an open space where all ideas are considered. The best solutions can come from unlikely places and by using problem solving techniques that celebrate invention, you might come up with solution gold. 

4. Solution development

No solution is likely to be perfect right out of the gate. It’s important to discuss and develop the solutions your group has come up with over the course of following the previous problem solving steps in order to arrive at the best possible solution. Problem solving games used in this stage involve lots of critical thinking, measuring potential effort and impact, and looking at possible solutions analytically. 

During this stage, you will often ask your team to iterate and improve upon your frontrunning solutions and develop them further. Remember that problem solving strategies always benefit from a multitude of voices and opinions, and not to let ego get involved when it comes to choosing which solutions to develop and take further.

Finding the best solution is the goal of all problem solving workshops and here is the place to ensure that your solution is well thought out, sufficiently robust and fit for purpose. 

5. Decision making 

Nearly there! Once your group has reached consensus and selected a solution that applies to the problem at hand you have some decisions to make. You will want to work on allocating ownership of the project, figure out who will do what, how the success of the solution will be measured and decide the next course of action.

The decision making stage is a part of the problem solving process that can get missed or taken as for granted. Fail to properly allocate roles and plan out how a solution will actually be implemented and it less likely to be successful in solving the problem.

Have clear accountabilities, actions, timeframes, and follow-ups. Make these decisions and set clear next-steps in the problem solving workshop so that everyone is aligned and you can move forward effectively as a group. 

Ensuring that you plan for the roll-out of a solution is one of the most important problem solving steps. Without adequate planning or oversight, it can prove impossible to measure success or iterate further if the problem was not solved. 

6. Solution implementation 

This is what we were waiting for! All problem solving strategies have the end goal of implementing a solution and solving a problem in mind. 

Remember that in order for any solution to be successful, you need to help your group through all of the previous problem solving steps thoughtfully. Only then can you ensure that you are solving the right problem but also that you have developed the correct solution and can then successfully implement and measure the impact of that solution.

Project management and communication skills are key here – your solution may need to adjust when out in the wild or you might discover new challenges along the way.

7. Solution evaluation 

So you and your team developed a great solution to a problem and have a gut feeling its been solved. Work done, right? Wrong. All problem solving strategies benefit from evaluation, consideration, and feedback. You might find that the solution does not work for everyone, might create new problems, or is potentially so successful that you will want to roll it out to larger teams or as part of other initiatives. 

None of that is possible without taking the time to evaluate the success of the solution you developed in your problem solving model and adjust if necessary.

Remember that the problem solving process is often iterative and it can be common to not solve complex issues on the first try. Even when this is the case, you and your team will have generated learning that will be important for future problem solving workshops or in other parts of the organization. 

It’s worth underlining how important record keeping is throughout the problem solving process. If a solution didn’t work, you need to have the data and records to see why that was the case. If you go back to the drawing board, notes from the previous workshop can help save time. Data and insight is invaluable at every stage of the problem solving process and this one is no different.

Problem solving workshops made easy

what are the computer problem solving skills

Problem solving strategies are methods of approaching and facilitating the process of problem-solving with a set of techniques , actions, and processes. Different strategies are more effective if you are trying to solve broad problems such as achieving higher growth versus more focused problems like, how do we improve our customer onboarding process?

Broadly, the problem solving steps outlined above should be included in any problem solving strategy though choosing where to focus your time and what approaches should be taken is where they begin to differ. You might find that some strategies ask for the problem identification to be done prior to the session or that everything happens in the course of a one day workshop.

The key similarity is that all good problem solving strategies are structured and designed. Four hours of open discussion is never going to be as productive as a four-hour workshop designed to lead a group through a problem solving process.

Good problem solving strategies are tailored to the team, organization and problem you will be attempting to solve. Here are some example problem solving strategies you can learn from or use to get started.

Use a workshop to lead a team through a group process

Often, the first step to solving problems or organizational challenges is bringing a group together effectively. Most teams have the tools, knowledge, and expertise necessary to solve their challenges – they just need some guidance in how to use leverage those skills and a structure and format that allows people to focus their energies.

Facilitated workshops are one of the most effective ways of solving problems of any scale. By designing and planning your workshop carefully, you can tailor the approach and scope to best fit the needs of your team and organization. 

Problem solving workshop

  • Creating a bespoke, tailored process
  • Tackling problems of any size
  • Building in-house workshop ability and encouraging their use

Workshops are an effective strategy for solving problems. By using tried and test facilitation techniques and methods, you can design and deliver a workshop that is perfectly suited to the unique variables of your organization. You may only have the capacity for a half-day workshop and so need a problem solving process to match. 

By using our session planner tool and importing methods from our library of 700+ facilitation techniques, you can create the right problem solving workshop for your team. It might be that you want to encourage creative thinking or look at things from a new angle to unblock your groups approach to problem solving. By tailoring your workshop design to the purpose, you can help ensure great results.

One of the main benefits of a workshop is the structured approach to problem solving. Not only does this mean that the workshop itself will be successful, but many of the methods and techniques will help your team improve their working processes outside of the workshop. 

We believe that workshops are one of the best tools you can use to improve the way your team works together. Start with a problem solving workshop and then see what team building, culture or design workshops can do for your organization!

Run a design sprint

Great for: 

  • aligning large, multi-discipline teams
  • quickly designing and testing solutions
  • tackling large, complex organizational challenges and breaking them down into smaller tasks

By using design thinking principles and methods, a design sprint is a great way of identifying, prioritizing and prototyping solutions to long term challenges that can help solve major organizational problems with quick action and measurable results.

Some familiarity with design thinking is useful, though not integral, and this strategy can really help a team align if there is some discussion around which problems should be approached first. 

The stage-based structure of the design sprint is also very useful for teams new to design thinking.  The inspiration phase, where you look to competitors that have solved your problem, and the rapid prototyping and testing phases are great for introducing new concepts that will benefit a team in all their future work. 

It can be common for teams to look inward for solutions and so looking to the market for solutions you can iterate on can be very productive. Instilling an agile prototyping and testing mindset can also be great when helping teams move forwards – generating and testing solutions quickly can help save time in the long run and is also pretty exciting!

Break problems down into smaller issues

Organizational challenges and problems are often complicated and large scale in nature. Sometimes, trying to resolve such an issue in one swoop is simply unachievable or overwhelming. Try breaking down such problems into smaller issues that you can work on step by step. You may not be able to solve the problem of churning customers off the bat, but you can work with your team to identify smaller effort but high impact elements and work on those first.

This problem solving strategy can help a team generate momentum, prioritize and get some easy wins. It’s also a great strategy to employ with teams who are just beginning to learn how to approach the problem solving process. If you want some insight into a way to employ this strategy, we recommend looking at our design sprint template below!

Use guiding frameworks or try new methodologies

Some problems are best solved by introducing a major shift in perspective or by using new methodologies that encourage your team to think differently.

Props and tools such as Methodkit , which uses a card-based toolkit for facilitation, or Lego Serious Play can be great ways to engage your team and find an inclusive, democratic problem solving strategy. Remember that play and creativity are great tools for achieving change and whatever the challenge, engaging your participants can be very effective where other strategies may have failed.

LEGO Serious Play

  • Improving core problem solving skills
  • Thinking outside of the box
  • Encouraging creative solutions

LEGO Serious Play is a problem solving methodology designed to get participants thinking differently by using 3D models and kinesthetic learning styles. By physically building LEGO models based on questions and exercises, participants are encouraged to think outside of the box and create their own responses. 

Collaborate LEGO Serious Play exercises are also used to encourage communication and build problem solving skills in a group. By using this problem solving process, you can often help different kinds of learners and personality types contribute and unblock organizational problems with creative thinking. 

Problem solving strategies like LEGO Serious Play are super effective at helping a team solve more skills-based problems such as communication between teams or a lack of creative thinking. Some problems are not suited to LEGO Serious Play and require a different problem solving strategy.

Card Decks and Method Kits

  • New facilitators or non-facilitators 
  • Approaching difficult subjects with a simple, creative framework
  • Engaging those with varied learning styles

Card decks and method kids are great tools for those new to facilitation or for whom facilitation is not the primary role. Card decks such as the emotional culture deck can be used for complete workshops and in many cases, can be used right out of the box. Methodkit has a variety of kits designed for scenarios ranging from personal development through to personas and global challenges so you can find the right deck for your particular needs.

Having an easy to use framework that encourages creativity or a new approach can take some of the friction or planning difficulties out of the workshop process and energize a team in any setting. Simplicity is the key with these methods. By ensuring everyone on your team can get involved and engage with the process as quickly as possible can really contribute to the success of your problem solving strategy.

Source external advice

Looking to peers, experts and external facilitators can be a great way of approaching the problem solving process. Your team may not have the necessary expertise, insights of experience to tackle some issues, or you might simply benefit from a fresh perspective. Some problems may require bringing together an entire team, and coaching managers or team members individually might be the right approach. Remember that not all problems are best resolved in the same manner.

If you’re a solo entrepreneur, peer groups, coaches and mentors can also be invaluable at not only solving specific business problems, but in providing a support network for resolving future challenges. One great approach is to join a Mastermind Group and link up with like-minded individuals and all grow together. Remember that however you approach the sourcing of external advice, do so thoughtfully, respectfully and honestly. Reciprocate where you can and prepare to be surprised by just how kind and helpful your peers can be!

Mastermind Group

  • Solo entrepreneurs or small teams with low capacity
  • Peer learning and gaining outside expertise
  • Getting multiple external points of view quickly

Problem solving in large organizations with lots of skilled team members is one thing, but how about if you work for yourself or in a very small team without the capacity to get the most from a design sprint or LEGO Serious Play session? 

A mastermind group – sometimes known as a peer advisory board – is where a group of people come together to support one another in their own goals, challenges, and businesses. Each participant comes to the group with their own purpose and the other members of the group will help them create solutions, brainstorm ideas, and support one another. 

Mastermind groups are very effective in creating an energized, supportive atmosphere that can deliver meaningful results. Learning from peers from outside of your organization or industry can really help unlock new ways of thinking and drive growth. Access to the experience and skills of your peers can be invaluable in helping fill the gaps in your own ability, particularly in young companies.

A mastermind group is a great solution for solo entrepreneurs, small teams, or for organizations that feel that external expertise or fresh perspectives will be beneficial for them. It is worth noting that Mastermind groups are often only as good as the participants and what they can bring to the group. Participants need to be committed, engaged and understand how to work in this context. 

Coaching and mentoring

  • Focused learning and development
  • Filling skills gaps
  • Working on a range of challenges over time

Receiving advice from a business coach or building a mentor/mentee relationship can be an effective way of resolving certain challenges. The one-to-one format of most coaching and mentor relationships can really help solve the challenges those individuals are having and benefit the organization as a result.

A great mentor can be invaluable when it comes to spotting potential problems before they arise and coming to understand a mentee very well has a host of other business benefits. You might run an internal mentorship program to help develop your team’s problem solving skills and strategies or as part of a large learning and development program. External coaches can also be an important part of your problem solving strategy, filling skills gaps for your management team or helping with specific business issues. 

Now we’ve explored the problem solving process and the steps you will want to go through in order to have an effective session, let’s look at the skills you and your team need to be more effective problem solvers.

Problem solving skills are highly sought after, whatever industry or team you work in. Organizations are keen to employ people who are able to approach problems thoughtfully and find strong, realistic solutions. Whether you are a facilitator , a team leader or a developer, being an effective problem solver is a skill you’ll want to develop.

Problem solving skills form a whole suite of techniques and approaches that an individual uses to not only identify problems but to discuss them productively before then developing appropriate solutions.

Here are some of the most important problem solving skills everyone from executives to junior staff members should learn. We’ve also included an activity or exercise from the SessionLab library that can help you and your team develop that skill. 

If you’re running a workshop or training session to try and improve problem solving skills in your team, try using these methods to supercharge your process!

Problem solving skills checklist

Active listening

Active listening is one of the most important skills anyone who works with people can possess. In short, active listening is a technique used to not only better understand what is being said by an individual, but also to be more aware of the underlying message the speaker is trying to convey. When it comes to problem solving, active listening is integral for understanding the position of every participant and to clarify the challenges, ideas and solutions they bring to the table.

Some active listening skills include:

  • Paying complete attention to the speaker.
  • Removing distractions.
  • Avoid interruption.
  • Taking the time to fully understand before preparing a rebuttal.
  • Responding respectfully and appropriately.
  • Demonstrate attentiveness and positivity with an open posture, making eye contact with the speaker, smiling and nodding if appropriate. Show that you are listening and encourage them to continue.
  • Be aware of and respectful of feelings. Judge the situation and respond appropriately. You can disagree without being disrespectful.   
  • Observe body language. 
  • Paraphrase what was said in your own words, either mentally or verbally.
  • Remain neutral. 
  • Reflect and take a moment before responding.
  • Ask deeper questions based on what is said and clarify points where necessary.   
Active Listening   #hyperisland   #skills   #active listening   #remote-friendly   This activity supports participants to reflect on a question and generate their own solutions using simple principles of active listening and peer coaching. It’s an excellent introduction to active listening but can also be used with groups that are already familiar with it. Participants work in groups of three and take turns being: “the subject”, the listener, and the observer.

Analytical skills

All problem solving models require strong analytical skills, particularly during the beginning of the process and when it comes to analyzing how solutions have performed.

Analytical skills are primarily focused on performing an effective analysis by collecting, studying and parsing data related to a problem or opportunity. 

It often involves spotting patterns, being able to see things from different perspectives and using observable facts and data to make suggestions or produce insight. 

Analytical skills are also important at every stage of the problem solving process and by having these skills, you can ensure that any ideas or solutions you create or backed up analytically and have been sufficiently thought out.

Nine Whys   #innovation   #issue analysis   #liberating structures   With breathtaking simplicity, you can rapidly clarify for individuals and a group what is essentially important in their work. You can quickly reveal when a compelling purpose is missing in a gathering and avoid moving forward without clarity. When a group discovers an unambiguous shared purpose, more freedom and more responsibility are unleashed. You have laid the foundation for spreading and scaling innovations with fidelity.

Collaboration

Trying to solve problems on your own is difficult. Being able to collaborate effectively, with a free exchange of ideas, to delegate and be a productive member of a team is hugely important to all problem solving strategies.

Remember that whatever your role, collaboration is integral, and in a problem solving process, you are all working together to find the best solution for everyone. 

Marshmallow challenge with debriefing   #teamwork   #team   #leadership   #collaboration   In eighteen minutes, teams must build the tallest free-standing structure out of 20 sticks of spaghetti, one yard of tape, one yard of string, and one marshmallow. The marshmallow needs to be on top. The Marshmallow Challenge was developed by Tom Wujec, who has done the activity with hundreds of groups around the world. Visit the Marshmallow Challenge website for more information. This version has an extra debriefing question added with sample questions focusing on roles within the team.

Communication  

Being an effective communicator means being empathetic, clear and succinct, asking the right questions, and demonstrating active listening skills throughout any discussion or meeting. 

In a problem solving setting, you need to communicate well in order to progress through each stage of the process effectively. As a team leader, it may also fall to you to facilitate communication between parties who may not see eye to eye. Effective communication also means helping others to express themselves and be heard in a group.

Bus Trip   #feedback   #communication   #appreciation   #closing   #thiagi   #team   This is one of my favourite feedback games. I use Bus Trip at the end of a training session or a meeting, and I use it all the time. The game creates a massive amount of energy with lots of smiles, laughs, and sometimes even a teardrop or two.

Creative problem solving skills can be some of the best tools in your arsenal. Thinking creatively, being able to generate lots of ideas and come up with out of the box solutions is useful at every step of the process. 

The kinds of problems you will likely discuss in a problem solving workshop are often difficult to solve, and by approaching things in a fresh, creative manner, you can often create more innovative solutions.

Having practical creative skills is also a boon when it comes to problem solving. If you can help create quality design sketches and prototypes in record time, it can help bring a team to alignment more quickly or provide a base for further iteration.

The paper clip method   #sharing   #creativity   #warm up   #idea generation   #brainstorming   The power of brainstorming. A training for project leaders, creativity training, and to catalyse getting new solutions.

Critical thinking

Critical thinking is one of the fundamental problem solving skills you’ll want to develop when working on developing solutions. Critical thinking is the ability to analyze, rationalize and evaluate while being aware of personal bias, outlying factors and remaining open-minded.

Defining and analyzing problems without deploying critical thinking skills can mean you and your team go down the wrong path. Developing solutions to complex issues requires critical thinking too – ensuring your team considers all possibilities and rationally evaluating them. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Data analysis 

Though it shares lots of space with general analytical skills, data analysis skills are something you want to cultivate in their own right in order to be an effective problem solver.

Being good at data analysis doesn’t just mean being able to find insights from data, but also selecting the appropriate data for a given issue, interpreting it effectively and knowing how to model and present that data. Depending on the problem at hand, it might also include a working knowledge of specific data analysis tools and procedures. 

Having a solid grasp of data analysis techniques is useful if you’re leading a problem solving workshop but if you’re not an expert, don’t worry. Bring people into the group who has this skill set and help your team be more effective as a result.

Decision making

All problems need a solution and all solutions require that someone make the decision to implement them. Without strong decision making skills, teams can become bogged down in discussion and less effective as a result. 

Making decisions is a key part of the problem solving process. It’s important to remember that decision making is not restricted to the leadership team. Every staff member makes decisions every day and developing these skills ensures that your team is able to solve problems at any scale. Remember that making decisions does not mean leaping to the first solution but weighing up the options and coming to an informed, well thought out solution to any given problem that works for the whole team.

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

Dependability

Most complex organizational problems require multiple people to be involved in delivering the solution. Ensuring that the team and organization can depend on you to take the necessary actions and communicate where necessary is key to ensuring problems are solved effectively.

Being dependable also means working to deadlines and to brief. It is often a matter of creating trust in a team so that everyone can depend on one another to complete the agreed actions in the agreed time frame so that the team can move forward together. Being undependable can create problems of friction and can limit the effectiveness of your solutions so be sure to bear this in mind throughout a project. 

Team Purpose & Culture   #team   #hyperisland   #culture   #remote-friendly   This is an essential process designed to help teams define their purpose (why they exist) and their culture (how they work together to achieve that purpose). Defining these two things will help any team to be more focused and aligned. With support of tangible examples from other companies, the team members work as individuals and a group to codify the way they work together. The goal is a visual manifestation of both the purpose and culture that can be put up in the team’s work space.

Emotional intelligence

Emotional intelligence is an important skill for any successful team member, whether communicating internally or with clients or users. In the problem solving process, emotional intelligence means being attuned to how people are feeling and thinking, communicating effectively and being self-aware of what you bring to a room. 

There are often differences of opinion when working through problem solving processes, and it can be easy to let things become impassioned or combative. Developing your emotional intelligence means being empathetic to your colleagues and managing your own emotions throughout the problem and solution process. Be kind, be thoughtful and put your points across care and attention. 

Being emotionally intelligent is a skill for life and by deploying it at work, you can not only work efficiently but empathetically. Check out the emotional culture workshop template for more!

Facilitation

As we’ve clarified in our facilitation skills post, facilitation is the art of leading people through processes towards agreed-upon objectives in a manner that encourages participation, ownership, and creativity by all those involved. While facilitation is a set of interrelated skills in itself, the broad definition of facilitation can be invaluable when it comes to problem solving. Leading a team through a problem solving process is made more effective if you improve and utilize facilitation skills – whether you’re a manager, team leader or external stakeholder.

The Six Thinking Hats   #creative thinking   #meeting facilitation   #problem solving   #issue resolution   #idea generation   #conflict resolution   The Six Thinking Hats are used by individuals and groups to separate out conflicting styles of thinking. They enable and encourage a group of people to think constructively together in exploring and implementing change, rather than using argument to fight over who is right and who is wrong.

Flexibility 

Being flexible is a vital skill when it comes to problem solving. This does not mean immediately bowing to pressure or changing your opinion quickly: instead, being flexible is all about seeing things from new perspectives, receiving new information and factoring it into your thought process.

Flexibility is also important when it comes to rolling out solutions. It might be that other organizational projects have greater priority or require the same resources as your chosen solution. Being flexible means understanding needs and challenges across the team and being open to shifting or arranging your own schedule as necessary. Again, this does not mean immediately making way for other projects. It’s about articulating your own needs, understanding the needs of others and being able to come to a meaningful compromise.

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

Working in any group can lead to unconscious elements of groupthink or situations in which you may not wish to be entirely honest. Disagreeing with the opinions of the executive team or wishing to save the feelings of a coworker can be tricky to navigate, but being honest is absolutely vital when to comes to developing effective solutions and ensuring your voice is heard. 

Remember that being honest does not mean being brutally candid. You can deliver your honest feedback and opinions thoughtfully and without creating friction by using other skills such as emotional intelligence. 

Explore your Values   #hyperisland   #skills   #values   #remote-friendly   Your Values is an exercise for participants to explore what their most important values are. It’s done in an intuitive and rapid way to encourage participants to follow their intuitive feeling rather than over-thinking and finding the “correct” values. It is a good exercise to use to initiate reflection and dialogue around personal values.

Initiative 

The problem solving process is multi-faceted and requires different approaches at certain points of the process. Taking initiative to bring problems to the attention of the team, collect data or lead the solution creating process is always valuable. You might even roadtest your own small scale solutions or brainstorm before a session. Taking initiative is particularly effective if you have good deal of knowledge in that area or have ownership of a particular project and want to get things kickstarted.

That said, be sure to remember to honor the process and work in service of the team. If you are asked to own one part of the problem solving process and you don’t complete that task because your initiative leads you to work on something else, that’s not an effective method of solving business challenges.

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

Impartiality

A particularly useful problem solving skill for product owners or managers is the ability to remain impartial throughout much of the process. In practice, this means treating all points of view and ideas brought forward in a meeting equally and ensuring that your own areas of interest or ownership are not favored over others. 

There may be a stage in the process where a decision maker has to weigh the cost and ROI of possible solutions against the company roadmap though even then, ensuring that the decision made is based on merit and not personal opinion. 

Empathy map   #frame insights   #create   #design   #issue analysis   An empathy map is a tool to help a design team to empathize with the people they are designing for. You can make an empathy map for a group of people or for a persona. To be used after doing personas when more insights are needed.

Being a good leader means getting a team aligned, energized and focused around a common goal. In the problem solving process, strong leadership helps ensure that the process is efficient, that any conflicts are resolved and that a team is managed in the direction of success.

It’s common for managers or executives to assume this role in a problem solving workshop, though it’s important that the leader maintains impartiality and does not bulldoze the group in a particular direction. Remember that good leadership means working in service of the purpose and team and ensuring the workshop is a safe space for employees of any level to contribute. Take a look at our leadership games and activities post for more exercises and methods to help improve leadership in your organization.

Leadership Pizza   #leadership   #team   #remote-friendly   This leadership development activity offers a self-assessment framework for people to first identify what skills, attributes and attitudes they find important for effective leadership, and then assess their own development and initiate goal setting.

In the context of problem solving, mediation is important in keeping a team engaged, happy and free of conflict. When leading or facilitating a problem solving workshop, you are likely to run into differences of opinion. Depending on the nature of the problem, certain issues may be brought up that are emotive in nature. 

Being an effective mediator means helping those people on either side of such a divide are heard, listen to one another and encouraged to find common ground and a resolution. Mediating skills are useful for leaders and managers in many situations and the problem solving process is no different.

Conflict Responses   #hyperisland   #team   #issue resolution   A workshop for a team to reflect on past conflicts, and use them to generate guidelines for effective conflict handling. The workshop uses the Thomas-Killman model of conflict responses to frame a reflective discussion. Use it to open up a discussion around conflict with a team.

Planning 

Solving organizational problems is much more effective when following a process or problem solving model. Planning skills are vital in order to structure, deliver and follow-through on a problem solving workshop and ensure your solutions are intelligently deployed.

Planning skills include the ability to organize tasks and a team, plan and design the process and take into account any potential challenges. Taking the time to plan carefully can save time and frustration later in the process and is valuable for ensuring a team is positioned for success.

3 Action Steps   #hyperisland   #action   #remote-friendly   This is a small-scale strategic planning session that helps groups and individuals to take action toward a desired change. It is often used at the end of a workshop or programme. The group discusses and agrees on a vision, then creates some action steps that will lead them towards that vision. The scope of the challenge is also defined, through discussion of the helpful and harmful factors influencing the group.

Prioritization

As organisations grow, the scale and variation of problems they face multiplies. Your team or is likely to face numerous challenges in different areas and so having the skills to analyze and prioritize becomes very important, particularly for those in leadership roles.

A thorough problem solving process is likely to deliver multiple solutions and you may have several different problems you wish to solve simultaneously. Prioritization is the ability to measure the importance, value, and effectiveness of those possible solutions and choose which to enact and in what order. The process of prioritization is integral in ensuring the biggest challenges are addressed with the most impactful solutions.

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

Project management

Some problem solving skills are utilized in a workshop or ideation phases, while others come in useful when it comes to decision making. Overseeing an entire problem solving process and ensuring its success requires strong project management skills. 

While project management incorporates many of the other skills listed here, it is important to note the distinction of considering all of the factors of a project and managing them successfully. Being able to negotiate with stakeholders, manage tasks, time and people, consider costs and ROI, and tie everything together is massively helpful when going through the problem solving process. 

Record keeping

Working out meaningful solutions to organizational challenges is only one part of the process.  Thoughtfully documenting and keeping records of each problem solving step for future consultation is important in ensuring efficiency and meaningful change. 

For example, some problems may be lower priority than others but can be revisited in the future. If the team has ideated on solutions and found some are not up to the task, record those so you can rule them out and avoiding repeating work. Keeping records of the process also helps you improve and refine your problem solving model next time around!

Personal Kanban   #gamestorming   #action   #agile   #project planning   Personal Kanban is a tool for organizing your work to be more efficient and productive. It is based on agile methods and principles.

Research skills

Conducting research to support both the identification of problems and the development of appropriate solutions is important for an effective process. Knowing where to go to collect research, how to conduct research efficiently, and identifying pieces of research are relevant are all things a good researcher can do well. 

In larger groups, not everyone has to demonstrate this ability in order for a problem solving workshop to be effective. That said, having people with research skills involved in the process, particularly if they have existing area knowledge, can help ensure the solutions that are developed with data that supports their intention. Remember that being able to deliver the results of research efficiently and in a way the team can easily understand is also important. The best data in the world is only as effective as how it is delivered and interpreted.

Customer experience map   #ideation   #concepts   #research   #design   #issue analysis   #remote-friendly   Customer experience mapping is a method of documenting and visualizing the experience a customer has as they use the product or service. It also maps out their responses to their experiences. To be used when there is a solution (even in a conceptual stage) that can be analyzed.

Risk management

Managing risk is an often overlooked part of the problem solving process. Solutions are often developed with the intention of reducing exposure to risk or solving issues that create risk but sometimes, great solutions are more experimental in nature and as such, deploying them needs to be carefully considered. 

Managing risk means acknowledging that there may be risks associated with more out of the box solutions or trying new things, but that this must be measured against the possible benefits and other organizational factors. 

Be informed, get the right data and stakeholders in the room and you can appropriately factor risk into your decision making process. 

Decisions, Decisions…   #communication   #decision making   #thiagi   #action   #issue analysis   When it comes to decision-making, why are some of us more prone to take risks while others are risk-averse? One explanation might be the way the decision and options were presented.  This exercise, based on Kahneman and Tversky’s classic study , illustrates how the framing effect influences our judgement and our ability to make decisions . The participants are divided into two groups. Both groups are presented with the same problem and two alternative programs for solving them. The two programs both have the same consequences but are presented differently. The debriefing discussion examines how the framing of the program impacted the participant’s decision.

Team-building 

No single person is as good at problem solving as a team. Building an effective team and helping them come together around a common purpose is one of the most important problem solving skills, doubly so for leaders. By bringing a team together and helping them work efficiently, you pave the way for team ownership of a problem and the development of effective solutions. 

In a problem solving workshop, it can be tempting to jump right into the deep end, though taking the time to break the ice, energize the team and align them with a game or exercise will pay off over the course of the day.

Remember that you will likely go through the problem solving process multiple times over an organization’s lifespan and building a strong team culture will make future problem solving more effective. It’s also great to work with people you know, trust and have fun with. Working on team building in and out of the problem solving process is a hallmark of successful teams that can work together to solve business problems.

9 Dimensions Team Building Activity   #ice breaker   #teambuilding   #team   #remote-friendly   9 Dimensions is a powerful activity designed to build relationships and trust among team members. There are 2 variations of this icebreaker. The first version is for teams who want to get to know each other better. The second version is for teams who want to explore how they are working together as a team.

Time management 

The problem solving process is designed to lead a team from identifying a problem through to delivering a solution and evaluating its effectiveness. Without effective time management skills or timeboxing of tasks, it can be easy for a team to get bogged down or be inefficient.

By using a problem solving model and carefully designing your workshop, you can allocate time efficiently and trust that the process will deliver the results you need in a good timeframe.

Time management also comes into play when it comes to rolling out solutions, particularly those that are experimental in nature. Having a clear timeframe for implementing and evaluating solutions is vital for ensuring their success and being able to pivot if necessary.

Improving your skills at problem solving is often a career-long pursuit though there are methods you can use to make the learning process more efficient and to supercharge your problem solving skillset.

Remember that the skills you need to be a great problem solver have a large overlap with those skills you need to be effective in any role. Investing time and effort to develop your active listening or critical thinking skills is valuable in any context. Here are 7 ways to improve your problem solving skills.

Share best practices

Remember that your team is an excellent source of skills, wisdom, and techniques and that you should all take advantage of one another where possible. Best practices that one team has for solving problems, conducting research or making decisions should be shared across the organization. If you have in-house staff that have done active listening training or are data analysis pros, have them lead a training session. 

Your team is one of your best resources. Create space and internal processes for the sharing of skills so that you can all grow together. 

Ask for help and attend training

Once you’ve figured out you have a skills gap, the next step is to take action to fill that skills gap. That might be by asking your superior for training or coaching, or liaising with team members with that skill set. You might even attend specialized training for certain skills – active listening or critical thinking, for example, are business-critical skills that are regularly offered as part of a training scheme.

Whatever method you choose, remember that taking action of some description is necessary for growth. Whether that means practicing, getting help, attending training or doing some background reading, taking active steps to improve your skills is the way to go.

Learn a process 

Problem solving can be complicated, particularly when attempting to solve large problems for the first time. Using a problem solving process helps give structure to your problem solving efforts and focus on creating outcomes, rather than worrying about the format. 

Tools such as the seven-step problem solving process above are effective because not only do they feature steps that will help a team solve problems, they also develop skills along the way. Each step asks for people to engage with the process using different skills and in doing so, helps the team learn and grow together. Group processes of varying complexity and purpose can also be found in the SessionLab library of facilitation techniques . Using a tried and tested process and really help ease the learning curve for both those leading such a process, as well as those undergoing the purpose.

Effective teams make decisions about where they should and shouldn’t expend additional effort. By using a problem solving process, you can focus on the things that matter, rather than stumbling towards a solution haphazardly. 

Create a feedback loop

Some skills gaps are more obvious than others. It’s possible that your perception of your active listening skills differs from those of your colleagues. 

It’s valuable to create a system where team members can provide feedback in an ordered and friendly manner so they can all learn from one another. Only by identifying areas of improvement can you then work to improve them. 

Remember that feedback systems require oversight and consideration so that they don’t turn into a place to complain about colleagues. Design the system intelligently so that you encourage the creation of learning opportunities, rather than encouraging people to list their pet peeves.

While practice might not make perfect, it does make the problem solving process easier. If you are having trouble with critical thinking, don’t shy away from doing it. Get involved where you can and stretch those muscles as regularly as possible. 

Problem solving skills come more naturally to some than to others and that’s okay. Take opportunities to get involved and see where you can practice your skills in situations outside of a workshop context. Try collaborating in other circumstances at work or conduct data analysis on your own projects. You can often develop those skills you need for problem solving simply by doing them. Get involved!

Use expert exercises and methods

Learn from the best. Our library of 700+ facilitation techniques is full of activities and methods that help develop the skills you need to be an effective problem solver. Check out our templates to see how to approach problem solving and other organizational challenges in a structured and intelligent manner.

There is no single approach to improving problem solving skills, but by using the techniques employed by others you can learn from their example and develop processes that have seen proven results. 

Try new ways of thinking and change your mindset

Using tried and tested exercises that you know well can help deliver results, but you do run the risk of missing out on the learning opportunities offered by new approaches. As with the problem solving process, changing your mindset can remove blockages and be used to develop your problem solving skills.

Most teams have members with mixed skill sets and specialties. Mix people from different teams and share skills and different points of view. Teach your customer support team how to use design thinking methods or help your developers with conflict resolution techniques. Try switching perspectives with facilitation techniques like Flip It! or by using new problem solving methodologies or models. Give design thinking, liberating structures or lego serious play a try if you want to try a new approach. You will find that framing problems in new ways and using existing skills in new contexts can be hugely useful for personal development and improving your skillset. It’s also a lot of fun to try new things. Give it a go!

Encountering business challenges and needing to find appropriate solutions is not unique to your organization. Lots of very smart people have developed methods, theories and approaches to help develop problem solving skills and create effective solutions. Learn from them!

Books like The Art of Thinking Clearly , Think Smarter, or Thinking Fast, Thinking Slow are great places to start, though it’s also worth looking at blogs related to organizations facing similar problems to yours, or browsing for success stories. Seeing how Dropbox massively increased growth and working backward can help you see the skills or approach you might be lacking to solve that same problem. Learning from others by reading their stories or approaches can be time-consuming but ultimately rewarding.

A tired, distracted mind is not in the best position to learn new skills. It can be tempted to burn the candle at both ends and develop problem solving skills outside of work. Absolutely use your time effectively and take opportunities for self-improvement, though remember that rest is hugely important and that without letting your brain rest, you cannot be at your most effective. 

Creating distance between yourself and the problem you might be facing can also be useful. By letting an idea sit, you can find that a better one presents itself or you can develop it further. Take regular breaks when working and create a space for downtime. Remember that working smarter is preferable to working harder and that self-care is important for any effective learning or improvement process.

Want to design better group processes?

what are the computer problem solving skills

Over to you

Now we’ve explored some of the key problem solving skills and the problem solving steps necessary for an effective process, you’re ready to begin developing more effective solutions and leading problem solving workshops.

Need more inspiration? Check out our post on problem solving activities you can use when guiding a group towards a great solution in your next workshop or meeting. Have questions? Did you have a great problem solving technique you use with your team? Get in touch in the comments below. We’d love to chat!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

what are the computer problem solving skills

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

what are the computer problem solving skills

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

LOGO

Your favourite senior outside college

Home » Job Tips » Career Advice » Your Complete Guide to Effective Problem Solving Skills [Tips & Techniques]

Your Complete Guide to Effective Problem Solving Skills [Tips & Techniques]

Privilege Leave

Having effective problem solving skills can be a big boon for your professional life. Most employers look for candidates who are capable of solving problems the right way with less supervision.

Possessing the capacity to confidently and quickly tackle complex issues requires having several key abilities at your disposal. With study and practice, you can learn how best to approach difficult problems in order to solve them successfully.

In this comprehensive guide, we will explore the importance of problem-solving skills, effective problem-solving strategies, and ways to develop and refine your problem-solving techniques.

Table of Contents

What are Problem-Solving Skills?

Problem-solving skills are techniques that enable you to solve any problem effectively. With good problem-solving skills, individuals can adequately determine the source of problems and proffer solutions. This empowers an individual to approach issues from different viable perspectives.

Effective problem solvers are critical thinkers, perceptive, and knowledgeable, which enables them to break down challenging circumstances into manageable components. To excel in your career you need to hone, build, and develop adequate problem-solving skills. You can build personal development skills in order to develop competent problem-solving abilities.

Find and Apply Banner

Must-Have Problem-Solving Techniques

To be an effective problem solver, you must have other creative and smart abilities, below are a few smart and creative skills you can use when solving a problem:

1. Strong Research Skills

To fully understand a problem and create viable solutions, a problem solver must be able to locate and identify the root cause of a problem. As a problem solver, you might need to conduct research using a lot of problem solving methods. You can start by asking your peers for input and using web resources to conduct thorough research.

2. Analyzing and Evaluation

The ability to analyze and evaluate solutions is a typical example of a problem-solving skill. This skill will allow you to investigate several solutions and select the most suitable one for your problem.

3. Effective Communication and Active Listening

After determining the best solution to the problem, the next step would be to communicate it to the relevant stakeholders and develop a plan of action for implementing the solution. The ability to adequately solve a problem requires strong communication skills.

Possessing strong communication skills implies that one should have clear goals and deadlines for addressing a problem. Communication should also include any effects the solution may have on other parts of the organization or external stakeholders.

4. Reliability

As a problem solver, being reliable and adaptable is a trait prized by employers. Those who have the problem solving ability to identify issues, implement solutions efficiently, and do so in a timely manner are held in high regard. It is paramount for problem-solvers to possess adaptability as well because it assures that tasks will be carried out with accuracy and creativity.

Effective Problem-Solving Steps

The following tips will help you develop effective problem-solving skills that any employer would value.

1. Identification and Definition of Problem

To become an effective problem solver, you must know how to identify and recognize problems. Identifying a problem can be tough. You may find yourself asking questions like, “Is there even an issue here?” and if so, “What is its nature?”

To get the clearest understanding possible of any potential problems, take some time to really define exactly what the problems are. Doing this will not only help you grasp them better but also allow you to explain them accurately when communicating with others.

2. Gather Information and Organise the Problem

Once a problem has been identified and defined, it is ideal to gather more facts and information about the problem to get a better understanding of the problem. Gaining additional knowledge about a problem allows you to come up with various approaches to it as well as potential solutions. It involves observing, analyzing, and structuring the issue or situation at hand. During this phase, it is important to gather as much evidence about the problem and its causes in order to make sound judgments when selecting a course of action.

3. Generate Varieties of Potential Solutions to the Problem

Once you have successfully identified and gathered information on the existing problem, your next course of action will be brainstorming and developing different viable solutions to the problem. It is important to consider the perspectives of other teammates because different people in organizations will have diverse skills and perceptions about a problem and, thus, will have different solutions.

4. Careful Analysis and Taking Decision

Before making decisions, you should analyze all the solutions generated and then select the best course of action. To successfully make the right decision, the complexity of decision-making should be considered. This is because many circumstances can prevent a decision from being successful, even if it is the right one.

Remember that while some solutions might seem appropriate, they may not be appropriate to adopt at the stipulated time frame. This might be due to other variables like a lack of resources, the culture of the organization, a limited time frame, etc.

5. Implementing the Decision

After a thorough analysis has been made, and you have finally made a decision, the next step is to act on the decision you have chosen. It is important to note that more issues could develop during implementation. Especially if the identification or structuring of the original problem wasn’t done thoroughly.

6. Evaluate the Outcomes of the Decision

Verifying that the decision taken was effective is the focus of this phase of problem-solving. Asking those who were impacted by the changes of an outcome and how they felt about it is an effective way to evaluate the outcome of a decision.

Further, keeping track of results and any extra issues that come up is a good way to hone your problem solving skills. To effectively evaluate the outcome of your decision consider answering these questions below:

  • Have you achieved the objectives of the decision taken?
  • Did any unplanned or unforeseen situation arise in your decision-making process?

7. Improve and Reiterate

To master the art of problem-solving, look for other situations that permit you to use techniques and skills for solving problems. Find more chances to put the skills into action. Also when solving a problem make sure the issue won’t recur and share the lessons learned. This will enhance your problem solving skills. An ideal way to cultivate good problem solving skills is to take on challenging jobs that require cognitive processing such as business marketing or work-from-home jobs in data entry .

How Can I Demonstrate My Problem-Solving Skills?

Employers can learn more about how you might contribute to their team more quickly if you demonstrate your problem-solving abilities in your resume and cover letter.

1. How to Demonstrate Problem Solving Skills on a Resume?

In the ‘Achievements’ section of your resume, it is beneficial to provide concrete examples of how you have successfully solved problems. Emphasize how your knowledge and strategic thinking positively impacted a business situation or project outcome instead of simply saying that you are great at problem-solving.

The ‘Experience’ section allows for more expansion about any relevant projects where your problem-solving abilities were beneficial in completion or success rates. Conversely, if there was an unsuccessful result due to poor decision making then explain what corrective actions were taken as well as lessons learned.

2. How to Demonstrate Problem Solving Skills on Cover Letter?

Your cover letter is an incredible opportunity to expand on your problem solving capabilities. Here, you can give a concise example of when you efficiently handled a difficulty. On the other hand, you might recognize an issue that this potential employer wants to solve and explain how exactly you would address it. For instance, if there’s evidence in a job vacancy concerning improving brand awareness, then identifying ways where you could help promote awareness about the brand through various means will be an advantage for you.

Having problem solving skills is a huge advantage that can be extremely beneficial in both your personal and professional life. Problem-solving gives you the tools to make better decisions, identify solutions for roadblocks, and reach desired goals more easily. To effectively improve your problem solving skills consider taking a human resource management course .

We hope these tips will help build and improve your problem handling skills, let us know in the comment section the different problem you have solved at your workplace.

  • ← Previous
  • Next →

what are the computer problem solving skills

Harshita is an English Literature graduate from the University of Delhi with 3 years of experience in Content Writing and Editing. Dedicated to her craft, she loves creating magic with words. She is a big fan of hoarding cute planners and journals and can be seen watching FRIENDS (almost EVERYTIME) in her spare time. Her meticulous attention to detail makes her stand out from the crowd. A typo epidemic is her worst nightmare!

Related Post

what are the computer problem solving skills

Top Steel Company in India: A Comprehensive List

The steel industry in India stands as a cornerstone of the nation’s economy, driving growth, infrastructure development, and employment opportunities. With a rich history and a promising future, the steel

what are the computer problem solving skills

Top 12 IT Companies in Ahmedabad: [Salary and Employment Benefits]

Ahmedabad is the largest city in Gujarat and has emerged as a thriving hub for information technology (IT) companies in recent years. The city’s robust infrastructure, supportive government policies, and

what are the computer problem solving skills

Top 12 EV Companies in India: The 2024 Guide

The electric vehicle (EV) industry in India is booming and is estimated to hit a market size of $2 trillion by 2030. The growing sector offers opportunities in production, design,

what are the computer problem solving skills

Explore the Top 10+ Advertising Companies in India [Salary & Benefits]

India has one of the world’s fastest-growing advertising markets, with a diverse and vibrant landscape. The Indian advertising industry is expected to grow at a compound annual growth rate (CAGR)

what are the computer problem solving skills

  • Trending Now
  • Foundational Courses
  • Data Science
  • Practice Problem
  • Machine Learning
  • System Design
  • DevOps Tutorial

Welcome to the daily solving of our PROBLEM OF THE DAY with Yash Dwivedi . We will discuss the entire problem step-by-step and work towards developing an optimized solution. This will not only help you brush up on your concepts of DP but also build up problem-solving skills. In this problem, we are given, there are n stairs, and a person standing at the bottom wants to reach the top. The person can climb either 1 stair or 2 stairs at a time. Count the number of ways, the person can reach the top (order does not matter).

Input: n = 4 Output:  3 Explanation:  You can reach 4th stair in 3 ways. 3 possible ways are: 1, 1, 1, 1 1, 1, 2 2, 2 Here, note that {1, 1, 2}, {1, 2, 1} and {2, 1, 1} are considered same as their order does not matter.  Give the problem a try before going through the video. All the best!!! Problem Link: https://www.geeksforgeeks.org/problems/count-ways-to-nth-stairorder-does-not-matter1322/1 Solution IDE Link: https://ide.geeksforgeeks.org/online-cpp14-compiler/2fd77a44-ecda-43e5-8eef-856f5a1cded5

Video Thumbnail

Penn State Extension Logo

Pave the Way for Self-regulation and Problem-solving With Social-emotional Learning

Posted: April 3, 2024

Problem-solving is a social-emotional learning (SEL) skill children need for lifelong success. Effective problem-solving skills support children's ability to self-regulate, focus on tasks, think flexibly and creatively, work with others, and generate multiple ways to solve problems. When young children develop and build these skills, it positively impacts their interactions with others, grows their capacity to manage challenges, and boosts a sense of competence.

A group of school-age children are stacking plastic blocks with an educator.

A group of school-age children are stacking plastic blocks with an educator.

The foundation for effective social problem-solving is grounded in self-regulation, or the ability to regulate emotions when interacting with others. It is easier to focus on one's feelings and the feelings and perspectives of others and to work cooperatively toward solutions when a child can self-regulate and calm down. Children develop self-regulation skills over time, with practice and with adult guidance. Equally important is how an adult models emotion regulation and co-regulation. 

"Caregivers play a key role in cultivating the development of emotion regulation through co-regulation, or the processes by which they provide external support or scaffolding as children navigate their emotional experiences" (Paley & Hajal, 2022, p. 1).

When adults model calm and self-regulated approaches to problem-solving, it shows children how to approach problems constructively. For example, an educator says, "I'm going to take a breath and calm down so I can think better." This model helps children see and hear a strategy to support self-regulation.

Problem-solving skills help children resolve conflicts and interact with others as partners and collaborators. Developing problem-solving skills helps children learn and grow empathy for others, stand up for themselves, and build resilience and competence to work through challenges in their world. 

Eight strategies to support problem-solving 

  • Teach about emotions and use feeling words throughout the day. When children have more words to express themselves and their feelings, it is easier to address and talk about challenges when they arise. 
  • Recognize and acknowledge children's feelings throughout the day. For example, when children enter the classroom during circle time, mealtime, and outside time, ask them how they feel. Always acknowledge children's feelings, both comfortable and uncomfortable, to support an understanding that all feelings are OK to experience.  
  • Differentiate between feelings and behaviors. By differentiating feelings from behaviors, educators contribute to children’s understanding that all feelings are OK, but not all behaviors are OK. For example, an educator says, "It looks like you may be feeling mad because you want the red blocks, and Nila is playing with them. It's OK to feel mad but not OK to knock over your friend’s blocks."
  • Support children's efforts to calm down. When children are self-regulated, they can think more clearly. For example, practice taking a breath with children as a self-regulation technique during calm moments. Then, when challenges arise, children have a strategy they have practiced many times and can use to calm down before problem-solving begins.  
  • Encourage children's efforts to voice the problem and their feelings after they are calm. For example, when a challenge arises, encourage children to use the phrase, "The problem is_______, and I feel______." This process sets the stage to begin problem-solving.
  • Acknowledge children's efforts to think about varied ways to solve problems. For example, an educator says, "It looks like you and Nila are trying to work out how to share the blocks. What do you think might work so you can both play with them? Do you have some other ideas about how you could share?"
  • Champion children's efforts as they problem-solve. For example, "You and Nila thought about two ways you could share. One way is to divide the red blocks so you can each build, and the other is to build a tower together. Great thinking, friends!"
  • Create opportunities for activities and play that offer problem-solving practice. For example, when children play together in the block area, it provides opportunities to negotiate plans for play and role-play, build perspective, talk about feelings, and share. The skills children learn during play, along with adult support, enhance children’s ability to solve more complex and challenging social problems and conflicts when they occur in and out of the early learning setting.

References: 

Paley, B., & Hajal, N. J. (2022). Conceptualizing emotion regulation and coregulation as family-level phenomena. Clinical Child and Family Psychology Review ,  25 (1), 19-43.

Social Media

  • X (Twitter)
  • Degrees & Programs
  • College Directory

Information for

  • Faculty & Staff
  • Visitors & Public

COMMENTS

  1. The Problem Solving Cycle in Computer Science: A Complete Guide

    Building Problem Solving Skills. In the field of computer science, problem-solving is a fundamental skill that is crucial for success. Whether you are a computer scientist, programmer, or student, developing strong problem-solving skills will greatly benefit your work and studies.

  2. How to think like a programmer

    Simplest means you know the answer (or are closer to that answer). After that, simplest means this sub-problem being solved doesn't depend on others being solved. Once you solved every sub-problem, connect the dots. Connecting all your "sub-solutions" will give you the solution to the original problem. Congratulations!

  3. What is Problem Solving? An Introduction

    Problem solving, in the simplest terms, is the process of identifying a problem, analyzing it, and finding the most effective solution to overcome it. For software engineers, this process is deeply embedded in their daily workflow. It could be something as simple as figuring out why a piece of code isn't working as expected, or something as ...

  4. What is Computational Thinking?

    Computational thinking skills, in the outermost circle, are the cognitive processes necessary to engage with computational tools to solve problems. These skills are the foundation to engage in any computational problem solving and should be integrated into early learning opportunities in K-3. Computational thinking practices, in the middle ...

  5. Problem Solving Using Computational Thinking

    Computational Thinking allows us to take complex problems, understand what the problem is, and develop solutions. We can present these solutions in a way that both computers and people can understand. The course includes an introduction to computational thinking and a broad definition of each concept, a series of real-world cases that ...

  6. Computer Science Skills: Computational Thinking Explained

    There are many problem-solving skills involved in computer science, including those needed to design, develop, and debug software. Computational thinking is a way of describing these skills. Computational thinking refers to the thought processes involved in defining a problem and its solution so that the solution can be expertly carried out by ...

  7. Problem-Solving Skills for Software Developers: Why & How to Improve

    To train the problem-solving side of your brain, these four tips and strategies can help you improve your abilities: 1. Make problem-solving a part of your life. Never restrict yourself to working on problems only during work hours. Don't make it a chore, but, instead, do things that make problem-solving look fun.

  8. Computational Thinking for Problem Solving

    Computational thinking is a problem-solving process in which the last step is expressing the solution so that it can be executed on a computer. However, before we are able to write a program to implement an algorithm, we must understand what the computer is capable of doing -- in particular, how it executes instructions and how it uses data.

  9. Problem-Solving Strategies for Software Engineers

    Problem solving is one of the most essential soft skills to have in technical positions, and luckily, there are plenty of ways to get better at tackling challenges and finding solutions. Next month, we're hosting an exclusive three-part livestream series all about developing core soft skills: problem solving, planning, setting priorities, and ...

  10. Hands-on Tutorial: How To Improve Your Problem-Solving Skills As A

    Programming is ultimately problem-solving. We only apply the programming language to express how we've thought about a problem and the approach we're using to solve it. The worst thing you could do is to start chipping away at the problem once it's presented. This is where most newbie programmers get stuck and give up.

  11. How to Develop Problem Solving Skills in Programming

    The way to approach problems is the key to improving the skills. To find a solution, a positive mindset helps to solve problems quickly. If you think something is impossible, then it is hard to achieve. When you feel free and focus with a positive attitude, even complex problems will have a perfect solution.

  12. Computer Science Fundamentals

    Computer Science Fundamentals ... investigate different problem-solving techniques, persist in the face of challenging tasks, and learn about internet safety. See course details Grade 1. Course B. ... develop problem-solving skills, and work through fun challenges! Make games and creative projects to share with friends, family, and teachers. ...

  13. What Are Problem-Solving Skills? Definition and Examples

    Problem-solving skills are the ability to identify problems, brainstorm and analyze answers, and implement the best solutions. An employee with good problem-solving skills is both a self-starter and a collaborative teammate; they are proactive in understanding the root of a problem and work with others to consider a wide range of solutions ...

  14. 7 Problem-Solving Skills That Can Help You Be a More ...

    Although problem-solving is a skill in its own right, a subset of seven skills can help make the process of problem-solving easier. These include analysis, communication, emotional intelligence, resilience, creativity, adaptability, and teamwork. 1. Analysis. As a manager, you'll solve each problem by assessing the situation first.

  15. What Are Problem-Solving Skills? Definitions and Examples

    When employers talk about problem-solving skills, they are often referring to the ability to handle difficult or unexpected situations in the workplace as well as complex business challenges. Organizations rely on people who can assess both kinds of situations and calmly identify solutions. Problem-solving skills are traits that enable you to ...

  16. How to improve your problem solving skills and strategies

    6. Solution implementation. This is what we were waiting for! All problem solving strategies have the end goal of implementing a solution and solving a problem in mind. Remember that in order for any solution to be successful, you need to help your group through all of the previous problem solving steps thoughtfully.

  17. Problem-Solving Skills for IT Support Roles: Tips and Examples

    4. Learn from the experience. 5. Showcase your skills. 6. Improve your skills. 7. Here's what else to consider. If you are interested in advancing to IT support roles, you need to show your ...

  18. How to Develop Problem Solving Skills: 4 Tips

    1. Creativity: Effective problem solving requires the ability to brainstorm solutions and think outside the box to arrive at new approaches to longstanding problems. 2. Teamwork: Addressing a group problem or systemic social problem requires you to work collaboratively and supportively with other team members. 3.

  19. Full article: A framework to foster problem-solving in STEM and

    ABSTRACT. Background: Recent developments in STEM and computer science education put a strong emphasis on twenty-first-century skills, such as solving authentic problems. These skills typically transcend single disciplines. Thus, problem-solving must be seen as a multidisciplinary challenge, and the corresponding practices and processes need to be described using an integrated framework.

  20. How to Improve Your Problem Solving Skills for Computer ...

    To refresh your knowledge and skills, you can use textbooks, online courses, or tutorials. Practicing computer graphics problems or challenges is the best way to improve your problem solving ...

  21. Empowering Problem-solving in Computer Science: A Need Analysis for a

    students' problem-solving skills in computer science. The mobile learning application design . is essential to guarantee longevity and engagement and emphasizing the intera ctivity and .

  22. Best Problem Solving Courses & Certificates Online [2024]

    Problem Solving Using Computational Thinking: University of Michigan. Computational Thinking for Problem Solving: University of Pennsylvania. Computer Science: Programming with a Purpose: Princeton University. Introduction to Mathematical Thinking: Stanford University. Solving Problems with Creative and Critical Thinking: IBM.

  23. Problem-solving skills: definitions and examples

    Problem-solving skills are vital at all levels in many careers, and effective problem-solving may also require job- or industry-specific technical skills. ... In many industries, from computer programming to nursing, you become better at solving problems when you have the right technical knowledge. Extra training, part-time courses and online ...

  24. Problem Solving Skills: Meaning, Steps, Techniques (2023)

    As a problem solver, you might need to conduct research using a lot of problem solving methods. You can start by asking your peers for input and using web resources to conduct thorough research. 2. Analyzing and Evaluation. The ability to analyze and evaluate solutions is a typical example of a problem-solving skill.

  25. PROBLEM OF THE DAY : 06/04/2024

    Welcome to the daily solving of our PROBLEM OF THE DAY with Yash Dwivedi.We will discuss the entire problem step-by-step and work towards developing an optimized solution. This will not only help you brush up on your concepts of DP but also build up problem-solving skills. In this problem, we are given, there are n stairs, and a person standing at the bottom wants to reach the top.

  26. Pave the Way for Self-regulation and Problem-solving With Social

    Problem-solving is a social-emotional learning (SEL) skill children need for lifelong success. Effective problem-solving skills support children's ability to self-regulate, focus on tasks, think flexibly and creatively, work with others, and generate multiple ways to solve problems. When young children develop and build these skills, it positively impacts their interactions with others, grows ...