• Pharmaceutical Engineering Magazine
  • Online Exclusives
  • Special Reports
  • Facilities & Equipment
  • Information Systems
  • Product Development
  • Production Systems
  • Quality Systems
  • Regulatory Compliance
  • Research + Development
  • Supply Chain Management
  • White Papers
  • iSpeak Blog
  • Editorial Calendar
  • Article of the Year
  • Submit an Article
  • Editorial Team

Quality By Redesign of a Legacy Product Case Study

Article

In recent years, the concept of quality in the pharmaceutical industry has evolved from the idea of testing the quality to designing the quality. The fundamental idea is very simple; it is necessary to understand the material and process variables that determine the final product’s quality from the beginning of product development. Such an approach permits an in-depth understanding of the product and guarantees its quality by adjusting process variables based on known variability of input materials and intermediate manufacturing phases. The strategic thinking is based on the fact that processes might change or drift over time, which gave birth to the well-known quality by design (QbD) approach. 1

The concept of QbD has been successfully implemented in many industries for decades. However, it required time before it could be implemented in the pharmaceutical field, mainly due to the lack of regulatory harmonization among different countries and regions. To ease the implementation of QbD, and generally harmonize the quality concept, ICH released several guidelines, ICH Q8–Q11, 2 ,  3 , 4 , 5   which provide a general framework for QbD application to drug substance and drug product science-and risk-based development and manufacture.

Case Study Review

Since the release of ICH guidelines, several case studies were published on how to apply the key elements of QbD to product development for both chemical and biological/biotechnological entities. 6 , 7 , 8 , 9   Furthermore, in collaboration with the Pharmaceutical Control Services of the Health Department of the Catalan Government, the ISPE Spain Affiliate published a case study about the application of QbD to legacy products. 10 In this article, a case study of QbD applied to a lyophilized injectable drug product is presented. The product has been already marketed by Laboratorio Reig Jofre since 2008 as a generic version of a reference drug product in different markets, including Europe (EU), Israel, South Africa, Hong Kong, Vietnam, and Georgia.

The introduction of a new larger freeze-dryer, which drove an increase in batch size to match the new machine’s full capacity, inspired this project. At the same time, it was determined useful to review knowledge gained during initial development and routine manufacturing (approximately 3–5 batches per week for 8 years), and propose improvements where necessary, applying a risk-based approach throughout the process. This would generate the first set of variations, compared to the already-approved dossiers. Furthermore, at the same manufacturing site, a new manufacturing zone with increased capacity for sterile injectables was to be constructed, with plans to transfer the product to this new manufacturing area, with larger freeze-dryers. This will represent the second group of future variations.

Variation classification depends on each country’s regulation, but in most of the cases, at least several major variations will be necessary. In Europe, these changes are classified as Type II variations (also taking into account that freeze-drying is considered a nonstandard manufacturing process). Approval and implementation of such changes usually require up to 2 years. To reduce this time, and make the product manufactured with the new process and/or in the new facility commercially available sooner, an additional variation can be filed to include a Post-approval Change Management Protocol (PACMP), according to the current European legislation. This document lists the foreseen changes as well as proposes a strategy for evaluating and mitigating potential impact on product quality.

Aemps Collaboration

If supporting data and strategy are sufficiently sound, from both a scientific and a risk management point of view, it is possible the regulatory authorities will downgrade the variation type—in this case from Type II to Type IB, or even IA. If approved, this permits for faster evaluation of the proposed changes with a consequently shorter time for commercial implementation. Although appealing, this approach is not commonly used to introduce future variations. Considering the complexity of the aforementioned changes, it was decided to contact the Spanish national health authority Agencia Española de Medicamentos y Productos Sanitarios (AEMPS) and share with them the details of the project plan and proposed strategy.

The initiative was well accepted by the AEMPS. In an initial meeting, a QbD approach was proposed for the revision and redevelopment of the product. It was accepted that the scope of the subsequent meetings would be the first group of variations, i.e., QbD-based variations and the introduction of a PACMP. At the same meeting, Laboratorio Reig Jofre proposed a working strategy that included several meetings between Laboratorio Reig Jofre and AEMPS to review previous project milestone outcomes and coevaluation of the strategy to be implemented for subsequent milestones. Figure 1 provides a schematic representation of the milestones and proposed meetings.

Schematic representation of the project

Scientific Advice Meetings

The formal meetings with AEMPS were categorized as scientific advice meetings. This categorization of the meeting was proposed by AEMPS given that throughout the project, extensive statistical data treatments were foreseen, as well as the use of novel analytical techniques. This way, the data would be evaluated while being generated, making it easier to evaluate the final documentation that would support the formal variations, once applied for. The first formal meeting was organized to review the proposed experimental strategy, mostly the type of experimental designs, variables, and corresponding levels and ranges to be studied, to support the creation of the corresponding design space. For that purpose, all historical data were previously statistically assessed for the whole period since the first commercial batch to provide information about the current manufacturing process’s state of control and identify the improvement needs.

Generally, the manufacturing process was under control. However, it was found necessary to improve the bioburden analysis sampling strategy, because isolated out of specification (OOS) results were obtained for this in-process control. The root cause in all occasions was found to be sample manipulation in a grade C environment. For this purpose, and in collaboration with the filter provider, a new filtration system was designed: a preassembled and gamma-irradiated system that contains sampling bags with aseptic disconnectors to avoid any sample manipulation prior to its analysis. Furthermore, the overall sterility assurance is increased by design.

Quality Assessment

An extensive and comprehensive risk assessment was performed to define the following:

For the freeze-drying process, as an example, it was found necessary to investigate the impact of the variability of the CPPs (such as the shelf temperature and chamber pressure, once the endpoint of the sublimation was guaranteed) on the product quality, for all CQAs that may potentially be affected, such as aspect, reconstitution time, purity (assay and related compounds), and residual moisture content (RMC). The current freeze-drying cycle, as described in the dossier and applied in routine, had only fixed set points, and no structured data were available for any other combination of the set points. Taking into account that energy input changes from one freeze-dryer to another, even with theoretically same set-point values, and that the future freeze dryers (new manufacturing area) will be loaded by an automatic loading and unloading system, thus without trays, the risk of failure (affectation of one or more CQAs) due to the modified energy input was considered high.

A detailed experimental strategy was presented to define the experimental region. AEMPS suggested that a list of all possible Design of Experiments (DoE) were presented, along with the one chosen, to better describe the benefits and drawbacks of each potential DoE matrix. The aim was to find the most appropriate DoE that could maximize the significant information while reducing the number of experimental runs. This was completed also taking into account the duration of freeze-drying processes (more than 2 days, in this case). Further, it was proposed and accepted to study primary drying (sublimation phase) and secondary drying desorption phase) separately. This was done by first assessing the impact of the variability of the CPPs related with secondary drying (temperature and duration) while keeping the primary drying conditions fixed (those corresponding to the already approved and routinely applied for this product).

A total of three runs was necessary (at three different temperatures for secondary drying, with a 10°C difference among runs). The pilot-scale freeze-dryer was equipped with a sample thief, so in each run it was possible to extract samples at different timepoints without disturbing the process and while maintaining the process conditions as unchanged (apart the secondary drying duration) of all samples from the same run. The assessed CQAs were RMC, purity (assay and related compounds), and appearance (to evaluate the possibility of collapse during secondary drying, being the product amorphous). The duration range was set between 3 h and 16 h. The maximum evaluated duration was way above the current routine duration, but it was decided to assess the impact of additional time that may be added due to operational reasons (currently, night shifts have limited number of permitted operations).

Graphical representation of the DoE experimental domain for primary drying

In all the cases, the CQAs complied with the specifications, and no significant variability was observed among runs and extractions. All the results of RMC were comprised between 0.4% and 0.8% (specification: NMT 5%). Likewise, the purity (assay, and individual and total related impurities) was not affected by increasing temperature and process time within the experimental region. No shrinkage was observed, so collapse during secondary drying did not occur. It was also confirmed, in evaluating the reconstitution time, that it may increase due to collapse either in primary or secondary drying. These results permitted the conclusion that the experimental region also represented the design space region for this part of the freeze-drying process at pilot scale. For further studies, i.e., DoE for the primary drying, the center point conditions for the secondary drying temperature and the shortest duration were set as fixed.

The following experimental task was the assessment of the impact of primary drying CPPs variability on selected CQAs, such as appearance (collapse) and reconstitution time. At the same time, with primary drying being the longest step, it was decided to evaluate the impact on the duration, with the aim of choosing the shortest, and thus most cost and energy-effective process, while guaranteeing quality. Figure 2 provides the Doehlert DoE experimental domain representation. 11 , 12  This kind of DoE permits the study of two factors, pressure and temperature; in this example, at different number of levels, five and three, respectively. It is also possible to extend the experimental domain in different directions, and new factors may be added, if necessary. The estimation of main effects and all first-order interactions, as well as quadratic effects, is possible without confounding effects. The central point conditions coincided with the currently established conditions that had been set during the initial development, based on the thermal characteristics of the solution, such as glass transition of the freeze concentrate and the collapse temperature, assessed by differential scanning calorimetry and freeze-drying microscopy, respectively. These conditions were used for the three replicates to assess model quality.

After the nine experimental runs, and analysis of the corresponding CQAs, it was concluded that the experimental region could also describe the design space for the primary drying part of the freeze-drying process at pilot scale. As no statistically significant differences were found as outcomes of all cycles, it was not possible to model the CQAs as function of the CPPs. However, significant differences, in the range 16 h to 30 h, were observed in terms of process duration, as a function of pressure and temperature.

Along with the freeze-drying studies, experimental strategy was also applied to elucidate the impact of variability on other unit operations, such as compounding. In this case, CPPs that were varied systematically were stirring speed and temperature, to evaluate their impact of solubilization kinetics, foam formation, and degradation. Also, the new sterilizing filtration system was subject to experimental studies, in collaboration with the filter provider.

Data Evaluation

Once all the experimental work regarding the manufacturing process was finished, a comprehensive data evaluation was performed. It permitted the reassessment of the initial risk designation for each unit operation, taking into account the new findings. The aim was to describe the mitigation actions, including the pilot-scale design space (for freeze-drying) and normal operating ranges (for other unit operations), and to propose a formal risk-based control strategy for the scale-up exercise, for all unit operations.

After defining the control strategy and corresponding sampling plan, a full industrial-scale batch was manufactured to verify the newly developed process and corresponding design space. For freeze-drying, the proposed strategy for design space scale-up consisted of applying a cycle at the upper edge of the design space (P4 + T3, Figure 2) for primary drying, and at the lowest temperature and shortest duration of secondary drying. The rationale is based on the fact that all other, less aggressive, primary drying conditions (combinations of pressure and temperature) will yield satisfactory results if the upper edge is proven acceptable. For secondary drying, the combination of temperature and duration was chosen as possibly worst case in terms of desorption effectiveness and uniformity throughout the freeze-dryer. In all the cases, the endpoint of each phase was guaranteed by appropriate process analytical tools, the same as those used at pilot scale. For all unit operations, process data were collected continuously and compared with the corresponding acceptable ranges.

The analytical results, related with all CQAs, complied with specifications and were comparable with those at pilot scale. This confirmed that the design space could also be successfully applied at the industrial scale. At this stage, the first phase of manufacturing process validation 13 was considered finished and data were shared with AEMPS during the second formal meeting. At the same time, a process performance qualification (PPQ) strategy proposal was submitted for preevaluation. It was based on the risk reassessment after process scale-up. The number of full-scale batches to be manufactured was defined as at least three, where the final number of batches necessary to define all process phases as qualified would be based on statistical evaluation of the data to assess intra and interbatch variability and process capability. 14

PPQ Exercise

An extensive sampling plan was proposed for secondary drying (RMC mapping), the only manufacturing phase where the residual risk of lack of uniformity among vials was still considered medium. Given the batch size, the number of samples (315 per N batches) was very high, considering the analysis by Karl Fisher titration. Therefore, an alternative analytical method, based on near-infrared spectroscopy, was developed and validated. It permits analyzing hundreds of samples in a very short time without any sample manipulation, allowing effective evaluation of manufacturing process quality without errors due to sample manipulation. Furthermore, as the analysis is not destructive, it can be used to follow the evolution of the same sample during stability studies, or to correlate RMC and other CQAs.

The PPQ exercise was executed in accordance with what had been agreed upon with AEMPS. For this purpose, three full industrial-scale batches were sufficient to qualify all manufacturing phases. The freeze-drying process that was applied for PPQ, and later in routine manufacturing, was within the design space, close to the conditions of the scale-up batch (pressure 10% lower; temperature 12.5% lower), to minimize the duration and permit for a safety margin. For the PPQ exercise, two freeze-dryers were used (one for each full-scale batch of bulk solution) to assess the impact of different freeze-dryers on the process and product quality. All CPPs were demonstrated to be under control; likewise, the CQAs complied with the specifications. The RMC mapping showed very good uniformity (0.4% to 0.8%, specification NMT 5%). The two freeze-dryers showed statistically significant differences in terms of RMC, but after the evaluation, it was concluded that there was no practical difference, i.e., no impact on product quality, between the processes performed in the two freeze-dryers. This permitted to further downgrade the residual risk identified for secondary drying to low. Thus, the control strategy proposed for routine manufacturing for this CQA was reduced to only three vials, randomly sampled from any of the positions in the freeze-dryer.

Variations Evaluation

After executing the three PPQ batches, the data were summarized and shared during a third and final formal meeting with AEMPS. At the same time, the Continued Verification Strategy and a proposal of a PACMP were presented to AEMPS. The PACMP was prepared to anticipate the following:

For each proposed future change (second group of variations), the exact aim was defined and agreed upon, as well as the failure mode and possible effects on the product quality. For every identified failure mode, necessary actions and experimental strategy were defined and the deliverables established, with the aim of downgrading the corresponding variation type. After adjusting the final text of the PACMP, it was submitted along with all other variations for evaluation. Given that the submitted documentation was previously evaluated during the formal meetings, the number of allegations was very reduced and these were focused on the dossier sections where the data were included, rather than the content or quality of the provided information. All variations, including the introduction of the design space, the routine use of PAT tools (such as endpoint determination for each batch by Pirani vacuum gauge), novel analytical techniques, and the PACMP were approved for routine implementation in only 6 months, significantly faster than in traditional applications where no previous communication with AEMPS is established.

This was an example of a win-win strategy. The same group of variations was presented in other European agencies (national procedures) and worldwide. The evaluation time was significantly longer in other European countries, with several groups of allegations in each of them, mostly focused on the definition of criticality and PACMP. In all cases, the variations were approved. On the other hand, in most non-EU countries, the evaluation was significantly different due to lack of expertise about QbD terminology and principles, and/or absence of regulatory harmonization. Although the same documentation, adapted to regional requirements, was provided in all cases, it was not possible to obtain the approval of the PACMP in most non-EU countries.

It is clear that better harmonization among regions and countries is still required so innovation can be implemented in the life cycle management of pharmaceutical products. Therefore, any initiative in this field, such as the announced ICH Q12 guidance, 15  will be very helpful.

Related Articles

Figure 1: Process-centric vs. data-centric approach.

In the context of data integrity, data flows are essential. The FDA, PIC/S, and WHO have all emphasized the importance and benefits of data flows in their guidance on data integrity. The key to data integrity compliance is a well-functioning data governance system 1

Enhanced Intervention Detection in Aseptic Fill Using AI/ML

We will show how continuous, real-time capturing of data with immediate data analysis by an ML algorithm can improve control over a critical quality attribute. The ML-analyzed data provides the evidence for validation of the change by demonstrating more control over the process along with a decrease in process risks.

A Proposal for a Comprehensive Quality Overall Summary

When working with the common technical dossier (CTD), the structure of Module 2 “follows the scope and outline of the Body of Data in Module 3,” 1

To use all available functions on this website, JavaScript must be enabled in your browser.

 alt=

Perfect Parts for High-Quality Finished Products

Since 1950 Mi-Me has specialized in the production of precision blanked parts: arc welded contacts, assembled parts, co-molded parts, etc. exported to major markets worldwide.

product quality case study

The new premises of Mi-Me in Bornate Sopra (Bergamo) was inaugurated in 2001: a futuristic complex which is also striking for the 1,800 photovoltaic panels installed on its roof.

Mi-Me production is divided into two areas: Bihler’s bending machines and Bruderer’s vertical shearing machines. A Keyence IM system has been installed on each of the two lines.

After having initially produced metal wire forms, Mi-Me subsequently focused on metal stamped parts with precious metal coating. In 1964, the company moved from its premises in Lecco to Presezzo (Bergamo) where, in the ‘80s, it took an important step forward by beginning a collaboration with a long-established German producer of electrical contacts. The new plant in Bonate Sopra (Bergamo) was inaugurated in 2001, and where the executive headquarters moved to in 2011. Thanks to a recent expansion, the area now covers approximately 20,000 square meters: a futuristic complex for the 1,800 photovoltaic panels installed on its roof. Today, Mi-Me generates a revenue stream of over 28 million dollars, has over 110 employees, and 80% of its sales are in North America. Placed in the sector of high level subcontracting, the company produces customer-designed precision complex stamped parts destined for a wide variety of industries: from the electricity and electronics sectors, to the home electrical appliance and automotive fields. By using sophisticated CAD / CAM systems, the R&D department designs all the tools necessary for the production of parts ordered by customers.

“Our mission is to provide products and services which meet our customers’ requirements, expectations and needs,” says Antonio Felotti, Quality Control Manager at Mi-Me. “This is achieved through high-quality, raw materials chosen in accordance with reference standards, the use of advanced equipment, attention to technical details from the design process to the manufacturing stage, and our efficient storage and shipping services.” In particular, Mi-Me has implemented and actively maintains an Integrated System of Quality- Environment in compliance with the requirements of the automotive ISO / TS 16949 (UNI EN ISO 9001) and UNI EN ISO 14001 standards. Also, precisely in this area, the company has recently adopted two dimensional measurement systems, KEYENCE’s IM-Series. The Instant Measurement system was designed on the concept of doing away with archaic measurement practices that were limitations of the technology of their time. Imagine yourself walking up to a glass stage, placing a handful of parts in any orientation anywhere on the stage, and pressing a button. The system has the ability to identify the part and measure up to 99 dimensions per part on up to 99 parts on the stage at once. The system will automatically adjust the lighting, focus, and orientation the program to match each part on the stage, compares it to pre-programmed tolerances, measures with +/- 5 micron accuracy, produces a pass or fail for each dimension, and saves the data locally or to a network. Finally with one more button press, it prints out a full inspection report. All of this being accomplished in 3 seconds.

The measure concept of the IM-Series combines the flexibility of a vision system with the precision of telecentric lenses, which provide a great depth of field and capture a full-frame picture of the target element.

“We use the KEYENCE Instant Measurement (IM) system especially on flat pieces,” explains Mr. Felotti. “Our choice was motivated by the characteristics of speed and accuracy provided by the IM-Series. We went from total measurement time on flat pieces of 15-20 minutes to finishing batches in 3 minutes. The IM system allows us to measure 5-10 parts at a time without requiring any type of reset.” Before buying the two IM measurement systems, Mi-Me was using a camera system. “However, our measurement processes required a reset after placing the piece, as they needed to recognize an origin and an alignment to be able to start a measurement series,” emphasizes Mr. Felotti. “That kind of operation required a quality operator with a greater degree of expertise. In addition, it took longer to place the part. However, for a company like ours that works at a high speed and with a high volume of parts, speed was crucial also during inspection.”

The absence of reset operations allowed by KEYENCE’s IM systems led, in turn, to a greater ease of use. “Since Quality Control prepared the measurement program, even a production worker without specific knowledge can perform the dimensional inspection,” reports Mr. Felotti. “Just place the parts and press a button; the machine automatically measures all of the specified dimensions and locates any pieces that are out of tolerance. Once the necessary program is set, the operation is very easy.” Mi-Me typically measures dimensions with tolerances of about +/- 0.01 mm. It should be noted that, in the case of pieces out of tolerance, re-machining is not possible. Since inspection is performed during production according to determined control plans, thus at defined frequencies and samples, it is crucial to immediately detect any possible defects. “As soon as a defect is identified, the operator must stop the machine,” says Felotti. “We can therefore experience a short period of production down time, but not the whole day or the entire order, which is costly. The KEYENCE system allows us to immediately detect defects.” “After becoming familiarized with the IM system, we compared it to the other offers we had received,” adds Mr. Felotti. “We liked the KEYENCE solution also for the high-quality/price ratio. In addition, KEYENCE has kept its promise by providing excellent after-sales service and especially during installation. We are now totally independent in the programming of parts.” Mi-Me production is divided into two areas: Bihler’s bending machines and Bruderer’s vertical shearing machines, which produce parts with different characteristics. A KEYENCE IM system has been installed on each of the two lines. Mi-Me is now definitively moving from traditional 3D inspections to the new technology of KEYENCE’s dimensional inspection. Where possible, the company is also remodulating some of the parts’ dimensions precisely in view of redesigning the control plans according to the new tools. The ease of use and capabilities of the IM-Series results in a substantial cost saving compared to traditional measurement processes.

IM-8000 Series Image Dimension Measurement System Catalog

Quick delivery+Comprehensive Support Available! Call us to learn more.

Oregon State Flag

tag, as divs are not allowed in 's --> Product Environmental Footprint Case Studies

How to recognize an official Oregon website

Official websites use .gov.

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock icon ( ) or https:// means you’ve safely connected to the .gov website.

Only share sensitive information on official, secure websites.

Your browser is out-of-date! It has known security flaws and may not display all features of this and other websites. Learn how

QC Case Study – Outdoor Leisure Products Inspections

Get an inside look at an expert qc program for leisure products inspections, let us send you this in-depth case study where you’ll get a detailed account of leisure products inspections:.

The client, one of America’s largest pool and outdoor leisure products brands, received a tailored program that delivered real result. InTouch’s quality program for outdoor leisure products inspections significantly improved and standardized quality level across suppliers, as well as saving the client money and headaches by preventing defects in goods that otherwise would have shipped without verification.

For an insider’s look at this InTouch QC program just fill out the form on this page and click “Submit” now!

Know anyone that might like this case study? Please share it using the buttons below:

Share on Facebook

Logo

Case Study: Proxy-Clean® Products and Hydro Xtreme Enhance Water Quality on U.S. Farms

product quality case study

Opportunity

Founded in 1991, Proxy-Clean® Products is the premier manufacturer of water quality products for the food animal industry. Its chemicals are used primarily for poultry and swine applications, such as cleaning and descaling water lines and conditioning water consumed by animals. Proxy-Clean Products also provides chemicals for cleaning equipment and surfaces within hatcheries and swine nursery facilities.

Clean water is especially important on farms, as it promotes increased consumption that can lead to better performance overall. Clean water is also essential for long term water line maintenance and functionality.

Most animal agricultural facilities treat the water as it goes into each individual barn simply because the dosing equipment available on the market cannot accommodate the large volume of water that feeds the entire farm. This results in farmers buying and maintaining several smaller dosing units for each barn, along with overseeing the chemical needs for each individual barn. In addition, some dosing equipment on farms relies on squeeze tubes that wear out over time. Better functioning equipment is essential for reliable and consistent dispensing.

product quality case study

As Proxy-Clean is continually dedicated to improving its offerings and meeting the needs of its customers, the company was looking for a way to further drive performance on farms and decrease the workload of customers trying to treat their water. In addition, customers had been requesting a dosing unit for many years that could treat the water on the entire farm from a central location. Identifying a reliable, accurate dispenser capable of handling large volumes of water would help ensure consistent delivery of Proxy-Clean chemicals to animals.

In 2018, Hydro Systems, a leader in chemical dosing and dispensing solutions, had its Hydro Xtreme electronic diaphragm pump installed on turkey farms to be used with Proxy-Clean’s chemicals. Since then, several large poultry integrators, both broiler and breeder, have also invested in the equipment.

Hydro Xtreme is designed to better manage fluctuations in water pressure, temperature and environmental factors. Compared to peristaltic pumps, it offers a longer lifespan, more precise chemical dilution and eliminates the need for costly squeeze tubes or additional controllers for water meters and pump circuits. Without squeeze tubes, farms can rest assured that Hydro Xtreme will function reliably over time without the need for frequent maintenance.

Hydro Xtreme also comes equipped with a built-in microprocessor system control so that a separate controller is not required to operate the pump and water meter system. The equipment is easy to turn on and off, stores the set perimeters even when off, stays primed during downtime and requires minimal training.

Providing animals with access to a clean water supply is essential on farms, especially in antibiotic-free environments. Combining reliable dispensing equipment with effective chemicals that remove heavy soils from water lines helps farms achieve cleaner water that supports animal health.

Using Hydro Xtreme and Proxy-Clean Products’ chemicals together results in numerous benefits for farms, including:

According to Proxy-Clean Products, farms using Proxy-Clean and Hydro Xtreme together have reported that they have achieved the best farm water quality they’ve ever seen. Better water quality often leads to increased water consumption, as well as feed consumption, making this total solution a worthwhile investment for farms.

Benifits One

Customer Service and Technical Support

Call 1-800-543-7184 Monday-Friday 8am - 5pm EST

PSG a dover company logo

Explore Other PSG Brands

PSG Biotech

Quattroflow

For new product, event and industry updates:

By entering your email you agree to receive marketing messages from PSG Hydro. You may unsubscribe at any time.

Hydro Resources

Solution Center

Regulatory Information

Sales Terms & Conditions

product quality case study

© 2023 PSG All Rights Reserved | A Dover Company | Privacy Policy | Cookies | Terms of Use

IMAGES

  1. 😀 Quality case study. The Business Case For Quality: Case Studies And

    product quality case study

  2. Effect of Product Quality and Service Quality toward Customer

    product quality case study

  3. Quality Management Case Study

    product quality case study

  4. (PDF) Cases of Quality: Case Studies of the Approval and Evaluation of

    product quality case study

  5. 37+ Case Study Templates

    product quality case study

  6. PPT

    product quality case study

VIDEO

  1. Organizing My New Unicorn Pencil Case 🦄🔮#schoolsupplies

  2. 5 TIKTOK Trend-winning products to make you 200,000 + income in June

  3. Rock Pharmacy Rocked? Ivey Case Study Solution Analysis

  4. Product Research

  5. The Bitter Sisters Brewery Pivoting to Address the Pandemic Ivey Case Study Solution Analysis

  6. The Cost of Quality

COMMENTS

  1. Quality By Redesign of a Legacy Product Case Study

    Such an approach permits an in-depth understanding of the product and guarantees its quality by adjusting process variables based on known variability of input materials and intermediate manufacturing phases

  2. Quality Logo Products. Quality Logo Products (QLP) is a…

    Quality Logo Products (QLP) is a national distributor of promotional products and marketing giveaways based in Aurora, IL. QLP maintains a call center staff with 70+ experts in the field of corporate advertising

  3. Case Studies : Perfect Parts for High-Quality Finished Products

    KEYENCE America products for value added solutions; Perfect Parts for High-Quality Finished Products. In particular, Mi-Me has implemented and actively maintains an Integrated System of Quality- Environment in

  4. Department of Environmental Quality : Product Environmental Footprint Case Studies

    In response, the Washington Department of Ecology and Oregon Department of Environmental Quality, working with the Oregon Sustainability Board, commissioned four diverse case studies of businesses with

  5. Download our outdoor leisure products inspections case study

    Download the InTouch 'outdoor leisure products inspections QC case study' & learn how we implement QC, supplier visits, and project management for this product

  6. (PDF) The Fuzzy Failure Mode and Effect Analysis (FMEA) Method to Improve Roofing Product

    This research was conducted at PT XYZ with the aim to reduce the risk of failure of zinc products and propose improvements to the risk of product failure to improve the quality of zinc products

  7. Case Study: Proxy-Clean® Products and Hydro Xtreme Enhance Water

    Additionally,Founded in 1991, Proxy-Clean® Products is the premier manufacturer of water quality products for the food animal industry