loading

How it works

For Business

Join Mind Tools

Article • 7 min read

What Is Problem Solving?

By the Mind Tools Content Team

what is a problem solving

We all spend a lot of our time solving problems, both at work and in our personal lives.

Some problems are small, and we can quickly sort them out ourselves. But others are complex challenges that take collaboration, creativity, and a considerable amount of effort to solve.

At work, the types of problems we face depend largely on the organizations we're in and the jobs we do. A manager in a cleaning company, for example, might spend their day untangling staffing issues, resolving client complaints, and sorting out problems with equipment and supplies. An aircraft designer, on the other hand, might be grappling with a problem about aerodynamics, or trying to work out why a new safety feature isn't working. Meanwhile, a politician might be exploring solutions to racial injustice or climate change.

But whatever issues we face, there are some common ways to tackle them effectively. And we can all boost our confidence and ability to succeed by building a strong set of problem-solving skills.

Mind Tools offers a large collection of resources to help you do just that!

How Well Do You Solve Problems?

Start by taking an honest look at your existing skills. What's your current approach to solving problems, and how well is it working? Our quiz, How Good Is Your Problem Solving? lets you analyze your abilities, and signposts ways to address any areas of weakness.

Define Every Problem

The first step in solving a problem is understanding what that problem actually is. You need to be sure that you're dealing with the real problem – not its symptoms. For example, if performance in your department is substandard, you might think that the problem lies with the individuals submitting work. However, if you look a bit deeper, the real issue might be a general lack of training, or an unreasonable workload across the team.

Tools like 5 Whys , Appreciation and Root Cause Analysis get you asking the right questions, and help you to work through the layers of a problem to uncover what's really going on.

However, defining a problem doesn't mean deciding how to solve it straightaway. It's important to look at the issue from a variety of perspectives. If you commit yourself too early, you can end up with a short-sighted solution. The CATWOE checklist provides a powerful reminder to look at many elements that may contribute to the problem, keeping you open to a variety of possible solutions.

Understanding Complexity

As you define your problem, you'll often discover just how complicated it is. There are likely several interrelated issues involved. That's why it's important to have ways to visualize, simplify and make sense of this tangled mess!

Affinity Diagrams are great for organizing many different pieces of information into common themes, and for understanding the relationships between them.

Another popular tool is the Cause-and-Effect Diagram . To generate viable solutions, you need a solid understanding of what's causing the problem.

When your problem occurs within a business process, creating a Flow Chart , Swim Lane Diagram or a Systems Diagram will help you to see how various activities and inputs fit together. This may well highlight a missing element or bottleneck that's causing your problem.

Quite often, what seems to be a single problem turns out to be a whole series of problems. The Drill Down technique prompts you to split your problem into smaller, more manageable parts.

General Problem-Solving Tools

When you understand the problem in front of you, you’re ready to start solving it. With your definition to guide you, you can generate several possible solutions, choose the best one, then put it into action. That's the four-step approach at the heart of good problem solving.

There are various problem-solving styles to use. For example:

  • Constructive Controversy is a way of widening perspectives and energizing discussions.
  • Inductive Reasoning makes the most of people’s experiences and know-how, and can speed up solution finding.
  • Means-End Analysis can bring extra clarity to your thinking, and kick-start the process of implementing solutions.

Specific Problem-Solving Systems

Some particularly complicated or important problems call for a more comprehensive process. Again, Mind Tools has a range of approaches to try, including:

  • Simplex , which involves an eight-stage process: problem finding, fact finding, defining the problem, idea finding, selecting and evaluating, planning, selling the idea, and acting. These steps build upon the basic, four-step process described above, and they create a cycle of problem finding and solving that will continually improve your organization.
  • Appreciative Inquiry , which is a uniquely positive way of solving problems by examining what's working well in the areas surrounding them.
  • Soft Systems Methodology , which takes you through four stages to uncover more details about what's creating your problem, and then define actions that will improve the situation.

Further Problem-Solving Strategies

Good problem solving requires a number of other skills – all of which are covered by Mind Tools.

For example, we have a large section of resources to improve your Creativity , so that you come up with a range of possible solutions.

By strengthening your Decision Making , you'll be better at evaluating the options, selecting the best ones, then choosing how to implement them.

And our Project Management collection has valuable advice for strengthening the whole problem-solving process. The resources there will help you to make effective changes – and then keep them working long term.

Problems are an inescapable part of life, both in and out of work. So we can all benefit from having strong problem-solving skills.

It's important to understand your current approach to problem solving, and to know where and how to improve.

Define every problem you encounter – and understand its complexity, rather than trying to solve it too soon.

There's a range of general problem-solving approaches, helping you to generate possible answers, choose the best ones, and then implement your solution.

Some complicated or serious problems require more specific problem-solving systems, especially when they relate to business processes.

By boosting your creativity, decision-making and project-management skills, you’ll become even better at solving all the problems you face.

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Book Insights

The Back of the Napkin: Solving Problems and Selling Ideas With Pictures

Infographic

Creative Problem Solving Infographic

Infographic Transcript

Add comment

Comments (0)

Be the first to comment!

what is a problem solving

Get 20% off your first year of Mind Tools

Our on-demand e-learning resources let you learn at your own pace, fitting seamlessly into your busy workday. Join today and save with our limited time offer!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Most Popular

Newest Releases

Article am7y1zt

Pain Points Podcast - How Do I Balance My Work And My Kids?

Article aexy3sj

Pain Points Podcast - How Can I Improve My Company Culture?

Mind Tools Store

About Mind Tools Content

Discover something new today

Pain points podcast - what are the dos and don’ts of interviewing people.

Tips For Giving Great Interviews

Pain Points Podcast - How Do I Set Goals And Stick To Them?

Make Your Goals Stick

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Earning trust and credibility.

What Makes Someone Trustworthy?

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

Introduction to Problem Solving Skills

What is problem solving and why is it important.

Defining problem solving skills

The ability to solve problems is a basic life skill and is essential to our day-to-day lives, at home, at school, and at work. We solve problems every day without really thinking about how we solve them. For example: it’s raining and you need to go to the store. What do you do? There are lots of possible solutions. Take your umbrella and walk. If you don't want to get wet, you can drive, or take the bus. You might decide to call a friend for a ride, or you might decide to go to the store another day. There is no right way to solve this problem and different people will solve it differently.

Problem solving is the process of identifying a problem, developing possible solution paths, and taking the appropriate course of action.

Why is problem solving important? Good problem solving skills empower you not only in your personal life but are critical in your professional life. In the current fast-changing global economy, employers often identify everyday problem solving as crucial to the success of their organizations. For employees, problem solving can be used to develop practical and creative solutions, and to show independence and initiative to employers.

Throughout this case study you will be asked to jot down your thoughts in idea logs. These idea logs are used for reflection on concepts and for answering short questions. When you click on the "Next" button, your responses will be saved for that page. If you happen to close the webpage, you will lose your work on the page you were on, but previous pages will be saved. At the end of the case study, click on the "Finish and Export to PDF" button to acknowledge completion of the case study and receive a PDF document of your idea logs.

What Does Problem Solving Look Like?

IDEAL heuristic strategy for problem solving

The ability to solve problems is a skill, and just like any other skill, the more you practice, the better you get. So how exactly do you practice problem solving? Learning about different problem solving strategies and when to use them will give you a good start. Problem solving is a process. Most strategies provide steps that help you identify the problem and choose the best solution. There are two basic types of strategies: algorithmic and heuristic.

Algorithmic strategies are traditional step-by-step guides to solving problems. They are great for solving math problems (in algebra: multiply and divide, then add or subtract) or for helping us remember the correct order of things (a mnemonic such as “Spring Forward, Fall Back” to remember which way the clock changes for daylight saving time, or “Righty Tighty, Lefty Loosey” to remember what direction to turn bolts and screws). Algorithms are best when there is a single path to the correct solution.

But what do you do when there is no single solution for your problem? Heuristic methods are general guides used to identify possible solutions. A popular one that is easy to remember is IDEAL [ Bransford & Stein, 1993 ] :

  • I dentify the problem
  • D efine the context of the problem
  • E xplore possible strategies
  • A ct on best solution

IDEAL is just one problem solving strategy. Building a toolbox of problem solving strategies will improve your problem solving skills. With practice, you will be able to recognize and use multiple strategies to solve complex problems.

Watch the video

What is the best way to get a peanut out of a tube that cannot be moved? Watch a chimpanzee solve this problem in the video below [ Geert Stienissen, 2010 ].

[PDF transcript]

Describe the series of steps you think the chimpanzee used to solve this problem.

  • [Page 2: What does Problem Solving Look Like?] Describe the series of steps you think the chimpanzee used to solve this problem.

Think of an everyday problem you've encountered recently and describe your steps for solving it.

  • [Page 2: What does Problem Solving Look Like?] Think of an everyday problem you've encountered recently and describe your steps for solving it.

Developing Problem Solving Processes

Problem solving is a process that uses steps to solve problems. But what does that really mean? Let's break it down and start building our toolbox of problem solving strategies.

What is the first step of solving any problem? The first step is to recognize that there is a problem and identify the right cause of the problem. This may sound obvious, but similar problems can arise from different events, and the real issue may not always be apparent. To really solve the problem, it's important to find out what started it all. This is called identifying the root cause .

Example: You and your classmates have been working long hours on a project in the school's workshop. The next afternoon, you try to use your student ID card to access the workshop, but discover that your magnetic strip has been demagnetized. Since the card was a couple of years old, you chalk it up to wear and tear and get a new ID card. Later that same week you learn that several of your classmates had the same problem! After a little investigation, you discover that a strong magnet was stored underneath a workbench in the workshop. The magnet was the root cause of the demagnetized student ID cards.

The best way to identify the root cause of the problem is to ask questions and gather information. If you have a vague problem, investigating facts is more productive than guessing a solution. Ask yourself questions about the problem. What do you know about the problem? What do you not know? When was the last time it worked correctly? What has changed since then? Can you diagram the process into separate steps? Where in the process is the problem occurring? Be curious, ask questions, gather facts, and make logical deductions rather than assumptions.

Watch Adam Savage from Mythbusters, describe his problem solving process [ ForaTv, 2010 ]. As you watch this section of the video, try to identify the questions he asks and the different strategies he uses.

Adam Savage shared many of his problem solving processes. List the ones you think are the five most important. Your list may be different from other people in your class—that's ok!

  • [Page 3: Developing Problem Solving Processes] Adam Savage shared many of his problem solving processes. List the ones you think are the five most important.

“The ability to ask the right question is more than half the battle of finding the answer.” — Thomas J. Watson , founder of IBM

Voices From the Field: Solving Problems

In manufacturing facilities and machine shops, everyone on the floor is expected to know how to identify problems and find solutions. Today's employers look for the following skills in new employees: to analyze a problem logically, formulate a solution, and effectively communicate with others.

In this video, industry professionals share their own problem solving processes, the problem solving expectations of their employees, and an example of how a problem was solved.

Meet the Partners:

  • Taconic High School in Pittsfield, Massachusetts, is a comprehensive, fully accredited high school with special programs in Health Technology, Manufacturing Technology, and Work-Based Learning.
  • Berkshire Community College in Pittsfield, Massachusetts, prepares its students with applied manufacturing technical skills, providing hands-on experience at industrial laboratories and manufacturing facilities, and instructing them in current technologies.
  • H.C. Starck in Newton, Massachusetts, specializes in processing and manufacturing technology metals, such as tungsten, niobium, and tantalum. In almost 100 years of experience, they hold over 900 patents, and continue to innovate and develop new products.
  • Nypro Healthcare in Devens, Massachusetts, specializes in precision injection-molded healthcare products. They are committed to good manufacturing processes including lean manufacturing and process validation.

Making Decisions

Now that you have a couple problem solving strategies in your toolbox, let's practice. In this exercise, you are given a scenario and you will be asked to decide what steps you would take to identify and solve the problem.

Scenario: You are a new employee and have just finished your training. As your first project, you have been assigned the milling of several additional components for a regular customer. Together, you and your trainer, Bill, set up for the first run. Checking your paperwork, you gather the tools and materials on the list. As you are mounting the materials on the table, you notice that you didn't grab everything and hurriedly grab a few more items from one of the bins. Once the material is secured on the CNC table, you load tools into the tool carousel in the order listed on the tool list and set the fixture offsets.

Bill tells you that since this is a rerun of a job several weeks ago, the CAD/CAM model has already been converted to CNC G-code. Bill helps you download the code to the CNC machine. He gives you the go-ahead and leaves to check on another employee. You decide to start your first run.

What problems did you observe in the video?

  • [Page 5: Making Decisions] What problems did you observe in the video?
  • What do you do next?
  • Try to fix it yourself.
  • Ask your trainer for help.

As you are cleaning up, you think about what happened and wonder why it happened. You try to create a mental picture of what happened. You are not exactly sure what the end mill hit, but it looked like it might have hit the dowel pin. You wonder if you grabbed the correct dowel pins from the bins earlier.

You can think of two possible next steps. You can recheck the dowel pin length to make sure it is the correct length, or do a dry run using the CNC single step or single block function with the spindle empty to determine what actually happened.

screenshot of cnc problem

  • Check the dowel pins.
  • Use the single step/single block function to determine what happened.

You notice that your trainer, Bill, is still on the floor and decide to ask him for help. You describe the problem to him. Bill asks if you know what the end mill ran into. You explain that you are not sure but you think it was the dowel pin. Bill reminds you that it is important to understand what happened so you can fix the correct problem. He suggests that you start all over again and begin with a dry run using the single step/single block function, with the spindle empty, to determine what it hit. Or, since it happened at the end, he mentions that you can also check the G-code to make sure the Z-axis is raised before returning to the home position.

ask help from a more experienced person

  • Run the single step/single block function.
  • Edit the G-code to raise the Z-axis.

You finish cleaning up and check the CNC for any damage. Luckily, everything looks good. You check your paperwork and gather the components and materials again. You look at the dowel pins you used earlier, and discover that they are not the right length. As you go to grab the correct dowel pins, you have to search though several bins. For the first time, you are aware of the mess - it looks like the dowel pins and other items have not been put into the correctly labeled bins. You spend 30 minutes straightening up the bins and looking for the correct dowel pins.

Finally finding them, you finish setting up. You load tools into the tool carousel in the order listed on the tool list and set the fixture offsets. Just to make sure, you use the CNC single step/single block function, to do a dry run of the part. Everything looks good! You are ready to create your first part. The first component is done, and, as you admire your success, you notice that the part feels hotter than it should.

You wonder why? You go over the steps of the process to mentally figure out what could be causing the residual heat. You wonder if there is a problem with the CNC's coolant system or if the problem is in the G-code.

  • Look at the G-code.

After thinking about the problem, you decide that maybe there's something wrong with the setup. First, you clean up the damaged materials and remove the broken tool. You check the CNC machine carefully for any damage. Luckily, everything looks good. It is time to start over again from the beginning.

You again check your paperwork and gather the tools and materials on the setup sheet. After securing the new materials, you use the CNC single step/single block function with the spindle empty, to do a dry run of the part. You watch carefully to see if you can figure out what happened. It looks to you like the spindle barely misses hitting the dowel pin. You determine that the end mill was broken when it hit the dowel pin while returning to the start position.

idea at cnc machine

After conducting a dry run using the single step/single block function, you determine that the end mill was damaged when it hit the dowel pin on its return to the home position. You discuss your options with Bill. Together, you decide the best thing to do would be to edit the G-code and raise the Z-axis before returning to home. You open the CNC control program and edit the G-code. Just to make sure, you use the CNC single step/single block function, to do another dry run of the part. You are ready to create your first part. It works. You first part is completed. Only four more to go.

software or hardware problem

As you are cleaning up, you notice that the components are hotter than you expect and the end mill looks more worn than it should be. It dawns on you that while you were milling the component, the coolant didn't turn on. You wonder if it is a software problem in the G-code or hardware problem with the CNC machine.

It's the end of the day and you decide to finish the rest of the components in the morning.

  • You decide to look at the G-code in the morning.
  • You leave a note on the machine, just in case.

You decide that the best thing to do would be to edit the G-code and raise the Z-axis of the spindle before it returns to home. You open the CNC control program and edit the G-code.

While editing the G-code to raise the Z-axis, you notice that the coolant is turned off at the beginning of the code and at the end of the code. The coolant command error caught your attention because your coworker, Mark, mentioned having a similar issue during lunch. You change the coolant command to turn the mist on.

  • You decide to talk with your supervisor.
  • You discuss what happened with a coworker over lunch.

As you reflect on the residual heat problem, you think about the machining process and the factors that could have caused the issue. You try to think of anything and everything that could be causing the issue. Are you using the correct tool for the specified material? Are you using the specified material? Is it running at the correct speed? Is there enough coolant? Are there chips getting in the way?

Wait, was the coolant turned on? As you replay what happened in your mind, you wonder why the coolant wasn't turned on. You decide to look at the G-code to find out what is going on.

From the milling machine computer, you open the CNC G-code. You notice that there are no coolant commands. You add them in and on the next run, the coolant mist turns on and the residual heat issues is gone. Now, its on to creating the rest of the parts.

Have you ever used brainstorming to solve a problem? Chances are, you've probably have, even if you didn't realize it.

You notice that your trainer, Bill, is on the floor and decide to ask him for help. You describe the problem with the end mill breaking, and how you discovered that items are not being returned to the correctly labeled bins. You think this caused you to grab the incorrect length dowel pins on your first run. You have sorted the bins and hope that the mess problem is fixed. You then go on to tell Bill about the residual heat issue with the completed part.

Together, you go to the milling machine. Bill shows you how to check the oil and coolant levels. Everything looks good at the machine level. Next, on the CNC computer, you open the CNC G-code. While looking at the code, Bill points out that there are no coolant commands. Bill adds them in and when you rerun the program, it works.

Bill is glad you mentioned the problem to him. You are the third worker to mention G-code issues over the last week. You noticed the coolant problems in your G-code, John noticed a Z-axis issue in his G-code, and Sam had issues with both the Z-axis and the coolant. Chances are, there is a bigger problem and Bill will need to investigate the root cause .

Talking with Bill, you discuss the best way to fix the problem. Bill suggests editing the G-code to raise the Z-axis of the spindle before it returns to its home position. You open the CNC control program and edit the G-code. Following the setup sheet, you re-setup the job and use the CNC single step/single block function, to do another dry run of the part. Everything looks good, so you run the job again and create the first part. It works. Since you need four of each component, you move on to creating the rest of them before cleaning up and leaving for the day.

It's a new day and you have new components to create. As you are setting up, you go in search of some short dowel pins. You discover that the bins are a mess and components have not been put away in the correctly labeled bins. You wonder if this was the cause of yesterday's problem. As you reorganize the bins and straighten up the mess, you decide to mention the mess issue to Bill in your afternoon meeting.

You describe the bin mess and using the incorrect length dowels to Bill. He is glad you mentioned the problem to him. You are not the first person to mention similar issues with tools and parts not being put away correctly. Chances are there is a bigger safety issue here that needs to be addressed in the next staff meeting.

In any workplace, following proper safety and cleanup procedures is always important. This is especially crucial in manufacturing where people are constantly working with heavy, costly and sometimes dangerous equipment. When issues and problems arise, it is important that they are addressed in an efficient and timely manner. Effective communication is an important tool because it can prevent problems from recurring, avoid injury to personnel, reduce rework and scrap, and ultimately, reduce cost, and save money.

You now know that the end mill was damaged when it hit the dowel pin. It seems to you that the easiest thing to do would be to edit the G-code and raise the Z-axis position of the spindle before it returns to the home position. You open the CNC control program and edit the G-code, raising the Z-axis. Starting over, you follow the setup sheet and re-setup the job. This time, you use the CNC single step/single block function, to do another dry run of the part. Everything looks good, so you run the job again and create the first part.

At the end of the day, you are reviewing your progress with your trainer, Bill. After you describe the day's events, he reminds you to always think about safety and the importance of following work procedures. He decides to bring the issue up in the next morning meeting as a reminder to everyone.

In any workplace, following proper procedures (especially those that involve safety) is always important. This is especially crucial in manufacturing where people are constantly working with heavy, costly, and sometimes dangerous equipment. When issues and problems arise, it is important that they are addressed in an efficient and timely manner. Effective communication is an important tool because it can prevent problems from recurring, avoid injury to personnel, reduce rework and scrap, and ultimately, reduce cost, and save money. One tool to improve communication is the morning meeting or huddle.

The next morning, you check the G-code to determine what is wrong with the coolant. You notice that the coolant is turned off at the beginning of the code and also at the end of the code. This is strange. You change the G-code to turn the coolant on at the beginning of the run and off at the end. This works and you create the rest of the parts.

Throughout the day, you keep wondering what caused the G-code error. At lunch, you mention the G-code error to your coworker, John. John is not surprised. He said that he encountered a similar problem earlier this week. You decide to talk with your supervisor the next time you see him.

You are in luck. You see your supervisor by the door getting ready to leave. You hurry over to talk with him. You start off by telling him about how you asked Bill for help. Then you tell him there was a problem and the end mill was damaged. You describe the coolant problem in the G-code. Oh, and by the way, John has seen a similar problem before.

Your supervisor doesn't seem overly concerned, errors happen. He tells you "Good job, I am glad you were able to fix the issue." You are not sure whether your supervisor understood your explanation of what happened or that it had happened before.

The challenge of communicating in the workplace is learning how to share your ideas and concerns. If you need to tell your supervisor that something is not going well, it is important to remember that timing, preparation, and attitude are extremely important.

It is the end of your shift, but you want to let the next shift know that the coolant didn't turn on. You do not see your trainer or supervisor around. You decide to leave a note for the next shift so they are aware of the possible coolant problem. You write a sticky note and leave it on the monitor of the CNC control system.

How effective do you think this solution was? Did it address the problem?

In this scenario, you discovered several problems with the G-code that need to be addressed. When issues and problems arise, it is important that they are addressed in an efficient and timely manner. Effective communication is an important tool because it can prevent problems from recurring and avoid injury to personnel. The challenge of communicating in the workplace is learning how and when to share your ideas and concerns. If you need to tell your co-workers or supervisor that there is a problem, it is important to remember that timing and the method of communication are extremely important.

You are able to fix the coolant problem in the G-code. While you are glad that the problem is fixed, you are worried about why it happened in the first place. It is important to remember that if a problem keeps reappearing, you may not be fixing the right problem. You may only be addressing the symptoms.

You decide to talk to your trainer. Bill is glad you mentioned the problem to him. You are the third worker to mention G-code issues over the last week. You noticed the coolant problems in your G-code, John noticed a Z-axis issue in his G-code, and Sam had issues with both the Z-axis and the coolant. Chances are, there is a bigger problem and Bill will need to investigate the root cause .

Over lunch, you ask your coworkers about the G-code problem and what may be causing the error. Several people mention having similar problems but do not know the cause.

You have now talked to three coworkers who have all experienced similar coolant G-code problems. You make a list of who had the problem, when they had the problem, and what each person told you.

When you see your supervisor later that afternoon, you are ready to talk with him. You describe the problem you had with your component and the damaged bit. You then go on to tell him about talking with Bill and discovering the G-code issue. You show him your notes on your coworkers' coolant issues, and explain that you think there might be a bigger problem.

You supervisor thanks you for your initiative in identifying this problem. It sounds like there is a bigger problem and he will need to investigate the root cause. He decides to call a team huddle to discuss the issue, gather more information, and talk with the team about the importance of communication.

Root Cause Analysis

flower root cause of a problem

Root cause analysis ( RCA ) is a method of problem solving that identifies the underlying causes of an issue. Root cause analysis helps people answer the question of why the problem occurred in the first place. RCA uses clear cut steps in its associated tools, like the "5 Whys Analysis" and the "Cause and Effect Diagram," to identify the origin of the problem, so that you can:

  • Determine what happened.
  • Determine why it happened.
  • Fix the problem so it won’t happen again.

RCA works under the idea that systems and events are connected. An action in one area triggers an action in another, and another, and so on. By tracing back these actions, you can discover where the problem started and how it developed into the problem you're now facing. Root cause analysis can prevent problems from recurring, reduce injury to personnel, reduce rework and scrap, and ultimately, reduce cost and save money. There are many different RCA techniques available to determine the root cause of a problem. These are just a few:

  • Root Cause Analysis Tools
  • 5 Whys Analysis
  • Fishbone or Cause and Effect Diagram
  • Pareto Analysis

5 whys diagram root cause

How Huddles Work

group huddle discussion meeting

Communication is a vital part of any setting where people work together. Effective communication helps employees and managers form efficient teams. It builds trusts between employees and management, and reduces unnecessary competition because each employee knows how their part fits in the larger goal.

One tool that management can use to promote communication in the workplace is the huddle . Just like football players on the field, a huddle is a short meeting where everyone is standing in a circle. A daily team huddle ensures that team members are aware of changes to the schedule, reiterated problems and safety issues, and how their work impacts one another. When done right, huddles create collaboration, communication, and accountability to results. Impromptu huddles can be used to gather information on a specific issue and get each team member's input.

The most important thing to remember about huddles is that they are short, lasting no more than 10 minutes, and their purpose is to communicate and identify. In essence, a huddle’s purpose is to identify priorities, communicate essential information, and discover roadblocks to productivity.

Who uses huddles? Many industries and companies use daily huddles. At first thought, most people probably think of hospitals and their daily patient update meetings, but lots of managers use daily meetings to engage their employees. Here are a few examples:

  • Brian Scudamore, CEO of 1-800-Got-Junk? , uses the daily huddle as an operational tool to take the pulse of his employees and as a motivational tool. Watch a morning huddle meeting .
  • Fusion OEM, an outsourced manufacturing and production company. What do employees take away from the daily huddle meeting .
  • Biz-Group, a performance consulting group. Tips for a successful huddle .

Brainstorming

brainstorming small lightbulbs combined become a big idea

One tool that can be useful in problem solving is brainstorming . Brainstorming is a creativity technique designed to generate a large number of ideas for the solution to a problem. The method was first popularized in 1953 by Alex Faickney Osborn in the book Applied Imagination . The goal is to come up with as many ideas as you can in a fixed amount of time. Although brainstorming is best done in a group, it can be done individually. Like most problem solving techniques, brainstorming is a process.

  • Define a clear objective.
  • Have an agreed a time limit.
  • During the brainstorming session, write down everything that comes to mind, even if the idea sounds crazy.
  • If one idea leads to another, write down that idea too.
  • Combine and refine ideas into categories of solutions.
  • Assess and analyze each idea as a potential solution.

When used during problem solving, brainstorming can offer companies new ways of encouraging staff to think creatively and improve production. Brainstorming relies on team members' diverse experiences, adding to the richness of ideas explored. This means that you often find better solutions to the problems. Team members often welcome the opportunity to contribute ideas and can provide buy-in for the solution chosen—after all, they are more likely to be committed to an approach if they were involved in its development. What's more, because brainstorming is fun, it helps team members bond.

  • Watch Peggy Morgan Collins, a marketing executive at Power Curve Communications discuss How to Stimulate Effective Brainstorming .
  • Watch Kim Obbink, CEO of Filter Digital, a digital content company, and her team share their top five rules for How to Effectively Generate Ideas .

Importance of Good Communication and Problem Description

talking too much when describing a problem

Communication is one of the most frequent activities we engage in on a day-to-day basis. At some point, we have all felt that we did not effectively communicate an idea as we would have liked. The key to effective communication is preparation. Rather than attempting to haphazardly improvise something, take a few minutes and think about what you want say and how you will say it. If necessary, write yourself a note with the key points or ideas in the order you want to discuss them. The notes can act as a reminder or guide when you talk to your supervisor.

Tips for clear communication of an issue:

  • Provide a clear summary of your problem. Start at the beginning, give relevant facts, timelines, and examples.
  • Avoid including your opinion or personal attacks in your explanation.
  • Avoid using words like "always" or "never," which can give the impression that you are exaggerating the problem.
  • If this is an ongoing problem and you have collected documentation, give it to your supervisor once you have finished describing the problem.
  • Remember to listen to what's said in return; communication is a two-way process.

Not all communication is spoken. Body language is nonverbal communication that includes your posture, your hands and whether you make eye contact. These gestures can be subtle or overt, but most importantly they communicate meaning beyond what is said. When having a conversation, pay attention to how you stand. A stiff position with arms crossed over your chest may imply that you are being defensive even if your words state otherwise. Shoving your hands in your pockets when speaking could imply that you have something to hide. Be wary of using too many hand gestures because this could distract listeners from your message.

The challenge of communicating in the workplace is learning how and when to share your ideas or concerns. If you need to tell your supervisor or co-worker about something that is not going well, keep in mind that good timing and good attitude will go a long way toward helping your case.

Like all skills, effective communication needs to be practiced. Toastmasters International is perhaps the best known public speaking organization in the world. Toastmasters is open to anyone who wish to improve their speaking skills and is willing to put in the time and effort to do so. To learn more, visit Toastmasters International .

Methods of Communication

different ways to communicate

Communication of problems and issues in any workplace is important, particularly when safety is involved. It is therefore crucial in manufacturing where people are constantly working with heavy, costly, and sometimes dangerous equipment. As issues and problems arise, they need to be addressed in an efficient and timely manner. Effective communication is an important skill because it can prevent problems from recurring, avoid injury to personnel, reduce rework and scrap, and ultimately, reduce cost and save money.

There are many different ways to communicate: in person, by phone, via email, or written. There is no single method that fits all communication needs, each one has its time and place.

In person: In the workplace, face-to-face meetings should be utilized whenever possible. Being able to see the person you need to speak to face-to-face gives you instant feedback and helps you gauge their response through their body language. Be careful of getting sidetracked in conversation when you need to communicate a problem.

Email: Email has become the communication standard for most businesses. It can be accessed from almost anywhere and is great for things that don’t require an immediate response. Email is a great way to communicate non-urgent items to large amounts of people or just your team members. One thing to remember is that most people's inboxes are flooded with emails every day and unless they are hyper vigilant about checking everything, important items could be missed. For issues that are urgent, especially those around safety, email is not always be the best solution.

Phone: Phone calls are more personal and direct than email. They allow us to communicate in real time with another person, no matter where they are. Not only can talking prevent miscommunication, it promotes a two-way dialogue. You don’t have to worry about your words being altered or the message arriving on time. However, mobile phone use and the workplace don't always mix. In particular, using mobile phones in a manufacturing setting can lead to a variety of problems, cause distractions, and lead to serious injury.

Written: Written communication is appropriate when detailed instructions are required, when something needs to be documented, or when the person is too far away to easily speak with over the phone or in person.

There is no "right" way to communicate, but you should be aware of how and when to use the appropriate form of communication for your situation. When deciding the best way to communicate with a co-worker or manager, put yourself in their shoes, and think about how you would want to learn about the issue. Also, consider what information you would need to know to better understand the issue. Use your good judgment of the situation and be considerate of your listener's viewpoint.

Did you notice any other potential problems in the previous exercise?

  • [Page 6:] Did you notice any other potential problems in the previous exercise?

Summary of Strategies

In this exercise, you were given a scenario in which there was a problem with a component you were creating on a CNC machine. You were then asked how you wanted to proceed. Depending on your path through this exercise, you might have found an easy solution and fixed it yourself, asked for help and worked with your trainer, or discovered an ongoing G-code problem that was bigger than you initially thought.

When issues and problems arise, it is important that they are addressed in an efficient and timely manner. Communication is an important tool because it can prevent problems from recurring, avoid injury to personnel, reduce rework and scrap, and ultimately, reduce cost, and save money. Although, each path in this exercise ended with a description of a problem solving tool for your toolbox, the first step is always to identify the problem and define the context in which it happened.

There are several strategies that can be used to identify the root cause of a problem. Root cause analysis (RCA) is a method of problem solving that helps people answer the question of why the problem occurred. RCA uses a specific set of steps, with associated tools like the “5 Why Analysis" or the “Cause and Effect Diagram,” to identify the origin of the problem, so that you can:

Once the underlying cause is identified and the scope of the issue defined, the next step is to explore possible strategies to fix the problem.

If you are not sure how to fix the problem, it is okay to ask for help. Problem solving is a process and a skill that is learned with practice. It is important to remember that everyone makes mistakes and that no one knows everything. Life is about learning. It is okay to ask for help when you don’t have the answer. When you collaborate to solve problems you improve workplace communication and accelerates finding solutions as similar problems arise.

One tool that can be useful for generating possible solutions is brainstorming . Brainstorming is a technique designed to generate a large number of ideas for the solution to a problem. The method was first popularized in 1953 by Alex Faickney Osborn in the book Applied Imagination. The goal is to come up with as many ideas as you can, in a fixed amount of time. Although brainstorming is best done in a group, it can be done individually.

Depending on your path through the exercise, you may have discovered that a couple of your coworkers had experienced similar problems. This should have been an indicator that there was a larger problem that needed to be addressed.

In any workplace, communication of problems and issues (especially those that involve safety) is always important. This is especially crucial in manufacturing where people are constantly working with heavy, costly, and sometimes dangerous equipment. When issues and problems arise, it is important that they be addressed in an efficient and timely manner. Effective communication is an important tool because it can prevent problems from recurring, avoid injury to personnel, reduce rework and scrap, and ultimately, reduce cost and save money.

One strategy for improving communication is the huddle . Just like football players on the field, a huddle is a short meeting with everyone standing in a circle. A daily team huddle is a great way to ensure that team members are aware of changes to the schedule, any problems or safety issues are identified and that team members are aware of how their work impacts one another. When done right, huddles create collaboration, communication, and accountability to results. Impromptu huddles can be used to gather information on a specific issue and get each team member's input.

To learn more about different problem solving strategies, choose an option below. These strategies accompany the outcomes of different decision paths in the problem solving exercise.

  • View Problem Solving Strategies Select a strategy below... Root Cause Analysis How Huddles Work Brainstorming Importance of Good Problem Description Methods of Communication

Communication is one of the most frequent activities we engage in on a day-to-day basis. At some point, we have all felt that we did not effectively communicate an idea as we would have liked. The key to effective communication is preparation. Rather than attempting to haphazardly improvise something, take a few minutes and think about what you want say and how you will say it. If necessary, write yourself a note with the key points or ideas in the order you want to discuss them. The notes can act as a reminder or guide during your meeting.

  • Provide a clear summary of the problem. Start at the beginning, give relevant facts, timelines, and examples.

In person: In the workplace, face-to-face meetings should be utilized whenever possible. Being able to see the person you need to speak to face-to-face gives you instant feedback and helps you gauge their response in their body language. Be careful of getting sidetracked in conversation when you need to communicate a problem.

There is no "right" way to communicate, but you should be aware of how and when to use the appropriate form of communication for the situation. When deciding the best way to communicate with a co-worker or manager, put yourself in their shoes, and think about how you would want to learn about the issue. Also, consider what information you would need to know to better understand the issue. Use your good judgment of the situation and be considerate of your listener's viewpoint.

"Never try to solve all the problems at once — make them line up for you one-by-one.” — Richard Sloma

Problem Solving: An Important Job Skill

Problem solving improves efficiency and communication on the shop floor. It increases a company's efficiency and profitability, so it's one of the top skills employers look for when hiring new employees. Recent industry surveys show that employers consider soft skills, such as problem solving, as critical to their business’s success.

The 2011 survey, "Boiling Point? The skills gap in U.S. manufacturing ," polled over a thousand manufacturing executives who reported that the number one skill deficiency among their current employees is problem solving, which makes it difficult for their companies to adapt to the changing needs of the industry.

In this video, industry professionals discuss their expectations and present tips for new employees joining the manufacturing workforce.

Quick Summary

  • [Quick Summary: Question1] What are two things you learned in this case study?
  • What question(s) do you still have about the case study?
  • [Quick Summary: Question2] What question(s) do you still have about the case study?
  • Is there anything you would like to learn more about with respect to this case study?
  • [Quick Summary: Question3] Is there anything you would like to learn more about with respect to this case study?
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what is a problem solving

Sean is a fact-checker and researcher with experience in sociology, field research, and data analytics.

what is a problem solving

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what is a problem solving

  • Onsite training

3,000,000+ delegates

15,000+ clients

1,000+ locations

  • KnowledgePass
  • Log a ticket

01344203999 Available 24/7

What is Problem Solving? A Complete Guide

Explore the essence of What is Problem Solving as we dissect this fundamental concept. From defining the very nature of problem-solving to understanding the intricate process it entails, this blog covers it all. Uncover the key skills essential for effective problem-solving and strategies to enhance your abilities in this critical skill.

stars

Exclusive 40% OFF

Training Outcomes Within Your Budget!

We ensure quality, budget-alignment, and timely delivery by our expert instructors.

Share this Resource

  • Introduction to Management
  • Personal & Organisational Development
  • Workforce Resource Planning Training
  • Supervisor Training
  • Introduction to Managing Budgets

course

According to Statista , more than 50 per cent of IT Managers preferred candidates with effective Problem Solving skills. In this blog, you will learn what is Problem Solving, its process, key skills and strategies, along with tools and techniques to do so. 

Table of contents  

1) What is Problem Solving definition?  

2) The process of Problem Solving  

3) Key skills for effective Problem Solving  

4) Strategies for enhancing Problem Solving abilities  

5) Problem Solving tools and techniques  

6) Conclusion       

What is Problem Solving definition?  

Management Training

The process of Problem Solving  

The Process of Problem Solving

Understanding the problem   

The first step in Problem Solving is gaining a clear understanding of the issue at hand. Take the time to thoroughly analyse the problem and gather relevant information. Ask yourself questions like:  

1) What is the nature of the problem?  

2) What are the factors contributing to the problem?  

3) What are the desired outcomes?  

4) Are there any constraints or limitations to consider?  

By gaining a comprehensive understanding of the problem, you lay a solid foundation for finding an effective solution.  

Generating possible solutions   

Once you have a clear grasp of the problem, it's time to brainstorm potential solutions. Encourage creativity and think outside the box. Consider all possible options without judgment or criticism. The goal at this stage is to generate a variety of ideas and alternatives.  

Evaluating and selecting the best solution   

After generating a list of possible solutions, it's important to evaluate each option based on its feasibility, effectiveness, and alignment with the desired outcome. Consider the advantages and disadvantages of each and every solution. Assess its practicality and the resources required for implementation.  

Additionally, take into account the potential risks and benefits associated with each solution. Consider any potential consequences or impacts on other aspects. Based on this evaluation, select the solution that appears most viable and promising.  

Implementing the solution   

Once you have chosen the best solution, it's time to put it into action. Develop a detailed plan outlining the necessary steps and allocate the required resources. Determine responsibilities and deadlines to ensure a smooth implementation process.  

During implementation, monitor progress and make any necessary adjustments or adaptations. Stay proactive and address any challenges or obstacles that may arise along the way. Effective communication and collaboration with others involved in the process can greatly contribute to successful implementation.  

Assessing the results   

After implementing the solution, it's essential to assess the results. Evaluate whether the problem has been properly resolved or if further adjustments are required. Analyse the outcomes and compare them against the desired goals and expectations.  

Consider whether the chosen solution has brought about the intended benefits and if any unexpected consequences have emerged. Reflect on the overall effectiveness of the Problem Solving process and identify any lessons learned for future reference.  

Remember, Problem Solving is an iterative process, and it's not uncommon to revisit and refine solutions based on ongoing evaluation and feedback. Embrace a continuous improvement mindset and be open to seeking alternative approaches if necessary.  

By following this Problem Solving process, you can approach challenges systematically and increase your chances of finding effective solutions. Remember that practice and experience play a vital role in honing your skills. 

Master the art of solving problems and become a catalyst for innovation and success with our Problem Solving Training – Sign up now!  

Key skills for effective Problem Solving   

In order to become an effective problem solver, it is crucial to develop a set of key skills that enhance your Problem Solving abilities. These skills enable you to approach challenges with a strategic mindset and find innovative solutions. Let's look at some of these skills:  

Critical thinking   

Critical thinking involves analysing information objectively, considering different perspectives, and making logical judgments. It helps in evaluating problems accurately and identifying appropriate solutions.  

Creativity   

Creativity enables the generation of innovative and unconventional solutions. It involves thinking outside the box, exploring new possibilities, and approaching problems from different angles.  

Analytical skills   

Analytical skills are crucial for breaking down complex problems into smaller, more manageable parts. This ability aids in identifying patterns, relationships, and underlying causes. 

Decision-making   

Sound decision-making skills involve evaluating the pros and cons of each solution and selecting the best course of action. It requires considering the potential risks and benefits of different options.  

By honing these key skills, individuals can become more effective Problem Solvers and tackle challenges with confidence. 

Strategies for enhancing Problem Solving abilities  

Strategies for Problem Solving

Practice critical thinking   

Engage in activities that promote critical thinking, such as solving puzzles, engaging in thought-provoking discussions, and challenging assumptions. This helps sharpen your analytical skills and enhances your ability to think critically when faced with problems.  

Seek feedback and learn from experience   

Seek feedback from mentors, peers, or experts when solving problems. Reflect on past experiences to identify areas for improvement and learn from your successes and failures. Embrace every Problem Solving opportunity as a chance to grow and develop your skills.  

Embrace challenges   

Instead of avoiding challenges, embrace them as opportunities for growth. Approach difficult problems with a positive mindset, viewing them as chances to develop new strategies and expand your expertise in dealing with problems. Embracing challenges fosters resilience and strengthens your Problem Solving abilities.  

Collaborate with others   

Collaboration can enhance Problem Solving outcomes by bringing diverse perspectives and ideas to the table. Engage in group activities to discuss issues, seek input from others, and actively listen to different viewpoints. Collaborating with others broadens your knowledge of dealing with problems and promotes innovative thinking.  

Continuously learn and update knowledge   

Stay updated with the latest information and developments in areas relevant to your tasks. Read books, attend workshops or seminars, and leverage online resources to expand your knowledge base. Continuously learning equips you with a wider range of Problem Solving strategies and enhances your abilities.  

Think outside the box   

Encourage creative thinking by exploring unconventional ideas and solutions. Challenge assumptions and consider alternative approaches. This mindset shift can lead to innovative Problem Solving strategies and help you discover unique solutions to complex problems.  

Implementing these strategies can significantly enhance your Problem Solving abilities. Remember, practice, feedback, collaboration, continuous learning, and creativity are key to becoming a proficient problem solver. 

Problem Solving tools and techniques  

When faced with complex problems, utilising specific tools and techniques can help facilitate the solving process and lead to more effective solutions. Here are some commonly used Problem Solving tools and techniques:  

Root cause analysis   

Root cause analysis is a methodology used to detect the underlying causes of a problem. It involves investigating the problem's symptoms and tracing them back to their fundamental causes. By addressing the root causes, Problem Solvers can prevent the issue from recurring.  

Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis   

SWOT analysis is a planning tool that strategically helps measure the weaknesses and internal strengths of a situation. Moreover, it can find external opportunities and threats. By assessing these factors, Problem Solvers can gain insights into the current state and make informed decisions about potential solutions.  

Fishbone diagrams   

Fishbone diagrams, also known as cause-and-effect diagrams or Ishikawa diagrams, visually represent the possible causes contributing to a problem. By organising causes into categories (such as people, process, equipment, and environment), Problem Solvers can systematically analyse the problem's potential sources.  

Decision matrices   

Decision matrices are used to evaluate and compare different options based on multiple criteria. This tool helps Problem Solvers weigh the importance of various factors and objectively assess each alternative, leading to an informed decision.  

Six Thinking Hats   

Six Thinking Hats is a technique initially developed by Edward de Bono that encourages parallel thinking by exploring different perspectives. Each "hat" represents a different thinking approach (e.g., logical, creative, emotional), allowing Problem Solvers to consider diverse viewpoints and generate innovative solutions.  

These are just a few examples of Problem Solving tools and techniques. Depending on the nature of the problem, other methods, such as brainstorming, mind mapping, flowcharts, or Pareto analysis, can also be applied. Choosing the appropriate tool or technique depends on the specific problem and the desired outcome. 

Navigate conflicts with finesse and foster collaboration with our transformative Conflict Management Training – Sign up today!  

Conclusion  

We hope you read and understand everything about What is Problem Solving. Developing effective skills is crucial for overcoming challenges, making informed decisions, and achieving success. By embracing problems as opportunities and applying strategic approaches, individuals can become proficient Problem Solvers in various domains of life. 

Unlock your management potential and elevate your skills to new heights with our cutting-edge Management Training Courses – Sign up now!  

Frequently Asked Questions

Upcoming business skills resources batches & dates.

Fri 5th Apr 2024

Fri 14th Jun 2024

Fri 23rd Aug 2024

Fri 11th Oct 2024

Fri 13th Dec 2024

Get A Quote

WHO WILL BE FUNDING THE COURSE?

My employer

By submitting your details you agree to be contacted in order to respond to your enquiry

  • Business Analysis
  • Lean Six Sigma Certification

Share this course

Our biggest spring sale.

red-star

We cannot process your enquiry without contacting you, please tick to confirm your consent to us for contacting you about your enquiry.

By submitting your details you agree to be contacted in order to respond to your enquiry.

We may not have the course you’re looking for. If you enquire or give us a call on 01344203999 and speak to our training experts, we may still be able to help with your training requirements.

Or select from our popular topics

  • ITIL® Certification
  • Scrum Certification
  • Change Management Certification
  • Business Analysis Courses
  • Microsoft Azure Certification
  • Microsoft Excel & Certification Course
  • Microsoft Project
  • Explore more courses

Press esc to close

Fill out your  contact details  below and our training experts will be in touch.

Fill out your   contact details   below

Thank you for your enquiry!

One of our training experts will be in touch shortly to go over your training requirements.

Back to Course Information

Fill out your contact details below so we can get in touch with you regarding your training requirements.

* WHO WILL BE FUNDING THE COURSE?

Preferred Contact Method

No preference

Back to course information

Fill out your  training details  below

Fill out your training details below so we have a better idea of what your training requirements are.

HOW MANY DELEGATES NEED TRAINING?

HOW DO YOU WANT THE COURSE DELIVERED?

Online Instructor-led

Online Self-paced

WHEN WOULD YOU LIKE TO TAKE THIS COURSE?

Next 2 - 4 months

WHAT IS YOUR REASON FOR ENQUIRING?

Looking for some information

Looking for a discount

I want to book but have questions

One of our training experts will be in touch shortly to go overy your training requirements.

Your privacy & cookies!

Like many websites we use cookies. We care about your data and experience, so to give you the best possible experience using our site, we store a very limited amount of your data. Continuing to use this site or clicking “Accept & close” means that you agree to our use of cookies. Learn more about our privacy policy and cookie policy cookie policy .

We use cookies that are essential for our site to work. Please visit our cookie policy for more information. To accept all cookies click 'Accept & close'.

Table of Contents

The problem-solving process, how to solve problems: 5 steps, train to solve problems with lean today, what is problem solving steps, techniques, & best practices explained.

What Is Problem Solving? Steps, Techniques, and Best Practices Explained

Problem solving is the art of identifying problems and implementing the best possible solutions. Revisiting your problem-solving skills may be the missing piece to leveraging the performance of your business, achieving Lean success, or unlocking your professional potential. 

Ask any colleague if they’re an effective problem-solver and their likely answer will be, “Of course! I solve problems every day.” 

Problem solving is part of most job descriptions, sure. But not everyone can do it consistently. 

Problem solving is the process of defining a problem, identifying its root cause, prioritizing and selecting potential solutions, and implementing the chosen solution.

There’s no one-size-fits-all problem-solving process. Often, it’s a unique methodology that aligns your short- and long-term objectives with the resources at your disposal. Nonetheless, many paradigms center problem solving as a pathway for achieving one’s goals faster and smarter. 

One example is the Six Sigma framework , which emphasizes eliminating errors and refining the customer experience, thereby improving business outcomes. Developed originally by Motorola, the Six Sigma process identifies problems from the perspective of customer satisfaction and improving product delivery. 

Lean management, a similar method, is about streamlining company processes over time so they become “leaner” while producing better outcomes. 

Trendy business management lingo aside, both of these frameworks teach us that investing in your problem solving process for personal and professional arenas will bring better productivity.

1. Precisely Identify Problems

As obvious as it seems, identifying the problem is the first step in the problem-solving process. Pinpointing a problem at the beginning of the process will guide your research, collaboration, and solutions in the right direction. 

At this stage, your task is to identify the scope and substance of the problem. Ask yourself a series of questions: 

  • What’s the problem? 
  • How many subsets of issues are underneath this problem? 
  • What subject areas, departments of work, or functions of business can best define this problem? 

Although some problems are naturally large in scope, precision is key. Write out the problems as statements in planning sheets . Should information or feedback during a later step alter the scope of your problem, revise the statements. 

Framing the problem at this stage will help you stay focused if distractions come up in later stages. Furthermore, how you frame a problem will aid your search for a solution. A strategy of building Lean success, for instance, will emphasize identifying and improving upon inefficient systems. 

2. Collect Information and Plan 

The second step is to collect information and plan the brainstorming process. This is another foundational step to road mapping your problem-solving process. Data, after all, is useful in identifying the scope and substance of your problems. 

Collecting information on the exact details of the problem, however, is done to narrow the brainstorming portion to help you evaluate the outcomes later. Don’t overwhelm yourself with unnecessary information — use the problem statements that you identified in step one as a north star in your research process. 

This stage should also include some planning. Ask yourself:

  • What parties will ultimately decide a solution? 
  • Whose voices and ideas should be heard in the brainstorming process? 
  • What resources are at your disposal for implementing a solution? 

Establish a plan and timeline for steps 3-5. 

3. Brainstorm Solutions

Brainstorming solutions is the bread and butter of the problem-solving process. At this stage, focus on generating creative ideas. As long as the solution directly addresses the problem statements and achieves your goals, don’t immediately rule it out. 

Moreover, solutions are rarely a one-step answer and are more like a roadmap with a set of actions. As you brainstorm ideas, map out these solutions visually and include any relevant factors such as costs involved, action steps, and involved parties. 

With Lean success in mind, stay focused on solutions that minimize waste and improve the flow of business ecosystems. 

Become a Quality Management Professional

  • 10% Growth In Jobs Of Quality Managers Profiles By 2025
  • 11% Revenue Growth For Organisations Improving Quality

Certified Lean Six Sigma Green Belt

  • 4 hands-on projects to perfect the skills learnt
  • 4 simulation test papers for self-assessment

Lean Six Sigma Expert

  • IASSC® Lean Six Sigma Green Belt and Black Belt certification
  • 13 Projects, 12 Simulation exams, 18 Case Studies & 114 PDUs

Here's what learners are saying regarding our programs:

Xueting Liu

Xueting Liu

Mechanical engineer student at sargents pty. ltd. ,.

A great training and proper exercise with step-by-step guide! I'll give a rating of 10 out of 10 for this training.

Abdus Salam

Abdus Salam

I have completed the Lean Six Sigma Expert Master’s Program from Simplilearn. And after the course, I could take up new projects and perform better. My average pay rate for a research position increased by 21%.

4. Decide and Implement

The most critical stage is selecting a solution. Easier said than done. Consider the criteria that has arisen in previous steps as you decide on a solution that meets your needs. 

Once you select a course of action, implement it. 

Practicing due diligence in earlier stages of the process will ensure that your chosen course of action has been evaluated from all angles. Often, efficient implementation requires us to act correctly and successfully the first time, rather than being hurried and sloppy. Further compilations will create more problems, bringing you back to step 1. 

5. Evaluate

Exercise humility and evaluate your solution honestly. Did you achieve the results you hoped for? What would you do differently next time? 

As some experts note, formulating feedback channels into your evaluation helps solidify future success. A framework like Lean success, for example, will use certain key performance indicators (KPIs) like quality, delivery success, reducing errors, and more. Establish metrics aligned with company goals to assess your solutions.

Master skills like measurement system analysis, lean principles, hypothesis testing, process analysis and DFSS tools with our Lean Six Sigma Green Belt Training Course . Sign-up today!

Become a quality expert with Simplilearn’s Lean Six Sigma Green Belt . This Lean Six Sigma certification program will help you gain key skills to excel in digital transformation projects while improving quality and ultimate business results.

In this course, you will learn about two critical operations management methodologies – Lean practices and Six Sigma to accelerate business improvement.

Our Quality Management Courses Duration And Fees

Explore our top Quality Management Courses and take the first step towards career success

Get Free Certifications with free video courses

Lean Management

Quality Management

Lean Management

PMP Basics

Project Management

Learn from industry experts with free masterclasses, digital marketing.

Digital Marketing Job Search in 2024: Top Things to Do Before You Begin

Unlock Digital Marketing Career Success Secrets for 2024 with Purdue University

Your Gateway to Game-changing Digital Marketing Careers in 2024 with Purdue University

Recommended Reads

Introduction to Machine Learning: A Beginner's Guide

Webinar Wrap-up: Mastering Problem Solving: Career Tips for Digital Transformation Jobs

An Ultimate Guide That Helps You to Develop and Improve Problem Solving in Programming

Free eBook: 21 Resources to Find the Data You Need

ITIL Problem Workaround – A Leader’s Guide to Manage Problems

Your One-Stop Solution to Understand Coin Change Problem

Get Affiliated Certifications with Live Class programs

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

problem solving definition

Problem Solving Skills for the Digital Age

Lucid Content

Reading time: about 6 min

Let’s face it: Things don’t always go according to plan. Systems fail, wires get crossed, projects fall apart.

Problems are an inevitable part of life and work. They’re also an opportunity to think critically and find solutions. But knowing how to get to the root of unexpected situations or challenges can mean the difference between moving forward and spinning your wheels.

Here, we’ll break down the key elements of problem solving, some effective problem solving approaches, and a few effective tools to help you arrive at solutions more quickly.

So, what is problem solving?

Broadly defined, problem solving is the process of finding solutions to difficult or complex issues. But you already knew that. Understanding problem solving frameworks, however, requires a deeper dive.

Think about a recent problem you faced. Maybe it was an interpersonal issue. Or it could have been a major creative challenge you needed to solve for a client at work. How did you feel as you approached the issue? Stressed? Confused? Optimistic? Most importantly, which problem solving techniques did you use to tackle the situation head-on? How did you organize thoughts to arrive at the best possible solution?

Solve your problem-solving problem  

Here’s the good news: Good problem solving skills can be learned. By its nature, problem solving doesn’t adhere to a clear set of do’s and don’ts—it requires flexibility, communication, and adaptation. However, most problems you face, at work or in life, can be tackled using four basic steps.

First, you must define the problem . This step sounds obvious, but often, you can notice that something is amiss in a project or process without really knowing where the core problem lies. The most challenging part of the problem solving process is uncovering where the problem originated.

Second, you work to generate alternatives to address the problem directly. This should be a collaborative process to ensure you’re considering every angle of the issue.

Third, you evaluate and test potential solutions to your problem. This step helps you fully understand the complexity of the issue and arrive at the best possible solution.

Finally, fourth, you select and implement the solution that best addresses the problem.

Following this basic four-step process will help you approach every problem you encounter with the same rigorous critical and strategic thinking process, recognize commonalities in new problems, and avoid repeating past mistakes.

In addition to these basic problem solving skills, there are several best practices that you should incorporate. These problem solving approaches can help you think more critically and creatively about any problem:

You may not feel like you have the right expertise to resolve a specific problem. Don’t let that stop you from tackling it. The best problem solvers become students of the problem at hand. Even if you don’t have particular expertise on a topic, your unique experience and perspective can lend itself to creative solutions.

Challenge the status quo

Standard problem solving methodologies and problem solving frameworks are a good starting point. But don’t be afraid to challenge assumptions and push boundaries. Good problem solvers find ways to apply existing best practices into innovative problem solving approaches.

Think broadly about and visualize the issue

Sometimes it’s hard to see a problem, even if it’s right in front of you. Clear answers could be buried in rows of spreadsheet data or lost in miscommunication. Use visualization as a problem solving tool to break down problems to their core elements. Visuals can help you see bottlenecks in the context of the whole process and more clearly organize your thoughts as you define the problem.  

Hypothesize, test, and try again

It might be cliche, but there’s truth in the old adage that 99% of inspiration is perspiration. The best problem solvers ask why, test, fail, and ask why again. Whether it takes one or 1,000 iterations to solve a problem, the important part—and the part that everyone remembers—is the solution.

Consider other viewpoints

Today’s problems are more complex, more difficult to solve, and they often involve multiple disciplines. They require group expertise and knowledge. Being open to others’ expertise increases your ability to be a great problem solver. Great solutions come from integrating your ideas with those of others to find a better solution. Excellent problem solvers build networks and know how to collaborate with other people and teams. They are skilled in bringing people together and sharing knowledge and information.

4 effective problem solving tools

As you work through the problem solving steps, try these tools to better define the issue and find the appropriate solution.

Root cause analysis

Similar to pulling weeds from your garden, if you don’t get to the root of the problem, it’s bound to come back. A root cause analysis helps you figure out the root cause behind any disruption or problem, so you can take steps to correct the problem from recurring. The root cause analysis process involves defining the problem, collecting data, and identifying causal factors to pinpoint root causes and arrive at a solution.

root cause analysis example table

Less structured than other more traditional problem solving methods, the 5 Whys is simply what it sounds like: asking why over and over to get to the root of an obstacle or setback. This technique encourages an open dialogue that can trigger new ideas about a problem, whether done individually or with a group. Each why piggybacks off the answer to the previous why. Get started with the template below—both flowcharts and fishbone diagrams can also help you track your answers to the 5 Whys.

5 Whys analysis

Brainstorming

A meeting of the minds, a brain dump, a mind meld, a jam session. Whatever you call it, collaborative brainstorming can help surface previously unseen issues, root causes, and alternative solutions. Create and share a mind map with your team members to fuel your brainstorming session.

Gap analysis

Sometimes you don’t know where the problem is until you determine where it isn’t. Gap filling helps you analyze inadequacies that are preventing you from reaching an optimized state or end goal. For example, a content gap analysis can help a content marketer determine where holes exist in messaging or the customer experience. Gap analysis is especially helpful when it comes to problem solving because it requires you to find workable solutions. A SWOT analysis chart that looks at a problem through the lens of strengths, opportunities, opportunities, and threats can be a helpful problem solving framework as you start your analysis.

SWOT analysis

A better way to problem solve

Beyond these practical tips and tools, there are myriad methodical and creative approaches to move a project forward or resolve a conflict. The right approach will depend on the scope of the issue and your desired outcome.

Depending on the problem, Lucidchart offers several templates and diagrams that could help you identify the cause of the issue and map out a plan to resolve it.  Learn more about how Lucidchart can help you take control of your problem solving process .

Lucidchart, a cloud-based intelligent diagramming application, is a core component of Lucid Software's Visual Collaboration Suite. This intuitive, cloud-based solution empowers teams to collaborate in real-time to build flowcharts, mockups, UML diagrams, customer journey maps, and more. Lucidchart propels teams forward to build the future faster. Lucid is proud to serve top businesses around the world, including customers such as Google, GE, and NBC Universal, and 99% of the Fortune 500. Lucid partners with industry leaders, including Google, Atlassian, and Microsoft. Since its founding, Lucid has received numerous awards for its products, business, and workplace culture. For more information, visit lucidchart.com.

Related articles

what is a problem solving

Sometimes you're faced with challenges that traditional problem solving can't fix. Creative problem solving encourages you to find new, creative ways of thinking that can help you overcome the issue at hand more quickly.

what is a problem solving

Root cause analysis refers to any problem-solving method used to trace an issue back to its origin. Learn how to complete a root cause analysis—we've even included templates to get you started.

Bring your bright ideas to life.

or continue with

what is a problem solving

What Is Problem Solving?

You will often see beach clean-up drives being publicized in coastal cities. There are already dustbins available on the beaches,…

What Is Problem Solving?

You will often see beach clean-up drives being publicized in coastal cities. There are already dustbins available on the beaches, so why do people need to organize these drives? It’s evident that despite advertising and posting anti-littering messages, some of us don’t follow the rules.

Temporary food stalls and shops make it even more difficult to keep the beaches clean. Since people can’t ask the shopkeepers to relocate or prevent every single person from littering, the clean-up drive is needed.  This is an ideal example of problem-solving psychology in humans. ( 230-fifth.com ) So, what is problem-solving? Let’s find out.

What Is Problem-Solving?

At its simplest, the meaning of problem-solving is the process of defining a problem, determining its cause, and implementing a solution. The definition of problem-solving is rooted in the fact that as humans, we exert control over our environment through solutions. We move forward in life when we solve problems and make decisions. 

We can better define the problem-solving process through a series of important steps.

Identify The Problem: 

This step isn’t as simple as it sounds. Most times, we mistakenly identify the consequences of a problem rather than the problem itself. It’s important that we’re careful to identify the actual problem and not just its symptoms. 

Define The Problem: 

Once the problem has been identified correctly, you should define it. This step can help clarify what needs to be addressed and for what purpose.

Form A Strategy: 

Develop a strategy to solve your problem. Defining an approach will provide direction and clarity on the next steps. 

Organize The Information:  

Organizing information systematically will help you determine whether something is missing. The more information you have, the easier it’ll become for you to arrive at a solution.  

Allocate Resources:  

We may not always be armed with the necessary resources to solve a problem. Before you commit to implementing a solution for a problem, you should determine the availability of different resources—money, time and other costs.

Track Progress: 

The true meaning of problem-solving is to work towards an objective. If you measure your progress, you can evaluate whether you’re on track. You could revise your strategies if you don’t notice the desired level of progress. 

Evaluate The Results:  

After you spot a solution, evaluate the results to determine whether it’s the best possible solution. For example, you can evaluate the success of a fitness routine after several weeks of exercise.

Meaning Of Problem-Solving Skill

Now that we’ve established the definition of problem-solving psychology in humans, let’s look at how we utilize our problem-solving skills.  These skills help you determine the source of a problem and how to effectively determine the solution. Problem-solving skills aren’t innate and can be mastered over time. Here are some important skills that are beneficial for finding solutions.

Communication

Communication is a critical skill when you have to work in teams.  If you and your colleagues have to work on a project together, you’ll have to collaborate with each other. In case of differences of opinion, you should be able to listen attentively and respond respectfully in order to successfully arrive at a solution.

As a problem-solver, you need to be able to research and identify underlying causes. You should never treat a problem lightly. In-depth study is imperative because often people identify only the symptoms and not the actual problem.

Once you have researched and identified the factors causing a problem, start working towards developing solutions. Your analytical skills can help you differentiate between effective and ineffective solutions.

Decision-Making

You’ll have to make a decision after you’ve identified the source and methods of solving a problem. If you’ve done your research and applied your analytical skills effectively, it’ll become easier for you to take a call or a decision.

Organizations really value decisive problem-solvers. Harappa Education’s   Defining Problems course will guide you on the path to developing a problem-solving mindset. Learn how to identify the different types of problems using the Types of Problems framework. Additionally, the SMART framework, which is a five-point tool, will teach you to create specific and actionable objectives to address problem statements and arrive at solutions. 

Explore topics & skills such as Problem Solving Skills , PICK Chart , How to Solve Problems & Barriers to Problem Solving from our Harappa Diaries blog section and develop your skills.

Thriversitybannersidenav

What Is Problem Solving? How Software Engineers Approach Complex Challenges

HackerRank AI Promotion

From debugging an existing system to designing an entirely new software application, a day in the life of a software engineer is filled with various challenges and complexities. The one skill that glues these disparate tasks together and makes them manageable? Problem solving . 

Throughout this blog post, we’ll explore why problem-solving skills are so critical for software engineers, delve into the techniques they use to address complex challenges, and discuss how hiring managers can identify these skills during the hiring process. 

What Is Problem Solving?

But what exactly is problem solving in the context of software engineering? How does it work, and why is it so important?

Problem solving, in the simplest terms, is the process of identifying a problem, analyzing it, and finding the most effective solution to overcome it. For software engineers, this process is deeply embedded in their daily workflow. It could be something as simple as figuring out why a piece of code isn’t working as expected, or something as complex as designing the architecture for a new software system. 

In a world where technology is evolving at a blistering pace, the complexity and volume of problems that software engineers face are also growing. As such, the ability to tackle these issues head-on and find innovative solutions is not only a handy skill — it’s a necessity. 

The Importance of Problem-Solving Skills for Software Engineers

Problem-solving isn’t just another ability that software engineers pull out of their toolkits when they encounter a bug or a system failure. It’s a constant, ongoing process that’s intrinsic to every aspect of their work. Let’s break down why this skill is so critical.

Driving Development Forward

Without problem solving, software development would hit a standstill. Every new feature, every optimization, and every bug fix is a problem that needs solving. Whether it’s a performance issue that needs diagnosing or a user interface that needs improving, the capacity to tackle and solve these problems is what keeps the wheels of development turning.

It’s estimated that 60% of software development lifecycle costs are related to maintenance tasks, including debugging and problem solving. This highlights how pivotal this skill is to the everyday functioning and advancement of software systems.

Innovation and Optimization

The importance of problem solving isn’t confined to reactive scenarios; it also plays a major role in proactive, innovative initiatives . Software engineers often need to think outside the box to come up with creative solutions, whether it’s optimizing an algorithm to run faster or designing a new feature to meet customer needs. These are all forms of problem solving.

Consider the development of the modern smartphone. It wasn’t born out of a pre-existing issue but was a solution to a problem people didn’t realize they had — a device that combined communication, entertainment, and productivity into one handheld tool.

Increasing Efficiency and Productivity

Good problem-solving skills can save a lot of time and resources. Effective problem-solvers are adept at dissecting an issue to understand its root cause, thus reducing the time spent on trial and error. This efficiency means projects move faster, releases happen sooner, and businesses stay ahead of their competition.

Improving Software Quality

Problem solving also plays a significant role in enhancing the quality of the end product. By tackling the root causes of bugs and system failures, software engineers can deliver reliable, high-performing software. This is critical because, according to the Consortium for Information and Software Quality, poor quality software in the U.S. in 2022 cost at least $2.41 trillion in operational issues, wasted developer time, and other related problems.

Problem-Solving Techniques in Software Engineering

So how do software engineers go about tackling these complex challenges? Let’s explore some of the key problem-solving techniques, theories, and processes they commonly use.

Decomposition

Breaking down a problem into smaller, manageable parts is one of the first steps in the problem-solving process. It’s like dealing with a complicated puzzle. You don’t try to solve it all at once. Instead, you separate the pieces, group them based on similarities, and then start working on the smaller sets. This method allows software engineers to handle complex issues without being overwhelmed and makes it easier to identify where things might be going wrong.

Abstraction

In the realm of software engineering, abstraction means focusing on the necessary information only and ignoring irrelevant details. It is a way of simplifying complex systems to make them easier to understand and manage. For instance, a software engineer might ignore the details of how a database works to focus on the information it holds and how to retrieve or modify that information.

Algorithmic Thinking

At its core, software engineering is about creating algorithms — step-by-step procedures to solve a problem or accomplish a goal. Algorithmic thinking involves conceiving and expressing these procedures clearly and accurately and viewing every problem through an algorithmic lens. A well-designed algorithm not only solves the problem at hand but also does so efficiently, saving computational resources.

Parallel Thinking

Parallel thinking is a structured process where team members think in the same direction at the same time, allowing for more organized discussion and collaboration. It’s an approach popularized by Edward de Bono with the “ Six Thinking Hats ” technique, where each “hat” represents a different style of thinking.

In the context of software engineering, parallel thinking can be highly effective for problem solving. For instance, when dealing with a complex issue, the team can use the “White Hat” to focus solely on the data and facts about the problem, then the “Black Hat” to consider potential problems with a proposed solution, and so on. This structured approach can lead to more comprehensive analysis and more effective solutions, and it ensures that everyone’s perspectives are considered.

This is the process of identifying and fixing errors in code . Debugging involves carefully reviewing the code, reproducing and analyzing the error, and then making necessary modifications to rectify the problem. It’s a key part of maintaining and improving software quality.

Testing and Validation

Testing is an essential part of problem solving in software engineering. Engineers use a variety of tests to verify that their code works as expected and to uncover any potential issues. These range from unit tests that check individual components of the code to integration tests that ensure the pieces work well together. Validation, on the other hand, ensures that the solution not only works but also fulfills the intended requirements and objectives.

Explore verified tech roles & skills.

The definitive directory of tech roles, backed by machine learning and skills intelligence.

Explore all roles

Evaluating Problem-Solving Skills

We’ve examined the importance of problem-solving in the work of a software engineer and explored various techniques software engineers employ to approach complex challenges. Now, let’s delve into how hiring teams can identify and evaluate problem-solving skills during the hiring process.

Recognizing Problem-Solving Skills in Candidates

How can you tell if a candidate is a good problem solver? Look for these indicators:

  • Previous Experience: A history of dealing with complex, challenging projects is often a good sign. Ask the candidate to discuss a difficult problem they faced in a previous role and how they solved it.
  • Problem-Solving Questions: During interviews, pose hypothetical scenarios or present real problems your company has faced. Ask candidates to explain how they would tackle these issues. You’re not just looking for a correct solution but the thought process that led them there.
  • Technical Tests: Coding challenges and other technical tests can provide insight into a candidate’s problem-solving abilities. Consider leveraging a platform for assessing these skills in a realistic, job-related context.

Assessing Problem-Solving Skills

Once you’ve identified potential problem solvers, here are a few ways you can assess their skills:

  • Solution Effectiveness: Did the candidate solve the problem? How efficient and effective is their solution?
  • Approach and Process: Go beyond whether or not they solved the problem and examine how they arrived at their solution. Did they break the problem down into manageable parts? Did they consider different perspectives and possibilities?
  • Communication: A good problem solver can explain their thought process clearly. Can the candidate effectively communicate how they arrived at their solution and why they chose it?
  • Adaptability: Problem-solving often involves a degree of trial and error. How does the candidate handle roadblocks? Do they adapt their approach based on new information or feedback?

Hiring managers play a crucial role in identifying and fostering problem-solving skills within their teams. By focusing on these abilities during the hiring process, companies can build teams that are more capable, innovative, and resilient.

Key Takeaways

As you can see, problem solving plays a pivotal role in software engineering. Far from being an occasional requirement, it is the lifeblood that drives development forward, catalyzes innovation, and delivers of quality software. 

By leveraging problem-solving techniques, software engineers employ a powerful suite of strategies to overcome complex challenges. But mastering these techniques isn’t simple feat. It requires a learning mindset, regular practice, collaboration, reflective thinking, resilience, and a commitment to staying updated with industry trends. 

For hiring managers and team leads, recognizing these skills and fostering a culture that values and nurtures problem solving is key. It’s this emphasis on problem solving that can differentiate an average team from a high-performing one and an ordinary product from an industry-leading one.

At the end of the day, software engineering is fundamentally about solving problems — problems that matter to businesses, to users, and to the wider society. And it’s the proficient problem solvers who stand at the forefront of this dynamic field, turning challenges into opportunities, and ideas into reality.

This article was written with the help of AI. Can you tell which parts?

Get started with HackerRank

Over 2,500 companies and 40% of developers worldwide use HackerRank to hire tech talent and sharpen their skills.

Recommended topics

  • Hire Developers
  • Problem Solving

Abstract, futuristic image generated by AI

What Factors Actually Impact a Developer’s Decision to Accept an Offer?

What is problem solving and why is it important

what is a problem solving

By Wayne Stottler , Kepner-Tregoe

  • Problem Solving & Decision Making Over time, developing and refining problem solving skills provides the ability to solve increasingly complex problems Learn More

For over 60 years, Kepner-Tregoe has been helping companies across industries and geographies to develop and mature their problem-solving capabilities through KT’s industry leading approach to training and the implementation of best practice processes. Considering that problem solving is a part of almost every person’s daily life (both at home and in the workplace), it is surprising how often we are asked to explain what problem solving is and why it is important.

Problem solving is at the core of human evolution. It is the methods we use to understand what is happening in our environment, identify things we want to change and then figure out the things that need to be done to create the desired outcome. Problem solving is the source of all new inventions, social and cultural evolution, and the basis for market based economies. It is the basis for continuous improvement, communication and learning.

If this problem-solving thing is so important to daily life, what is it?

Problem-solving is the process of observing what is going on in your environment; identifying things that could be changed or improved; diagnosing why the current state is the way it is and the factors and forces that influence it; developing approaches and alternatives to influence change; making decisions about which alternative to select; taking action to implement the changes; and observing impact of those actions in the environment.

Each step in the problem-solving process employs skills and methods that contribute to the overall effectiveness of influencing change and determine the level of problem complexity that can be addressed. Humans learn how to solve simple problems from a very early age (learning to eat, make coordinated movements and communicate) – and as a person goes through life problem-solving skills are refined, matured and become more sophisticated (enabling them to solve more difficult problems).

Problem-solving is important both to individuals and organizations because it enables us to exert control over our environment.

Fixing things that are broken

Some things wear out and break over time, others are flawed from day-1. Personal and business environments are full of things, activities, interactions and processes that are broken or not operating in the way they are desired to work. Problem-solving gives us a mechanism for identifying these things, figuring out why they are broken and determining a course of action to fix them.

Addressing risk

Humans have learned to identify trends and developed an awareness of cause-and-effect relationships in their environment. These skills not only enable us to fix things when they break but also anticipate what may happen in the future (based on past-experience and current events). Problem-solving can be applied to the anticipated future events and used to enable action in the present to influence the likelihood of the event occurring and/or alter the impact if the event does occur.

Improving performance

Individuals and organizations do not exist in isolation in the environment. There is a complex and ever-changing web of relationships that exist and as a result, the actions of one person will often have either a direct impact on others or an indirect impact by changing the environment dynamics. These interdependencies enable humans to work together to solve more complex problems but they also create a force that requires everyone to continuously improve performance to adapt to improvements by others. Problem-solving helps us understand relationships and implement the changes and improvements needed to compete and survive in a continually changing environment.

Seizing opportunity

Problem solving isn’t just about responding to (and fixing) the environment that exists today. It is also about innovating, creating new things and changing the environment to be more desirable. Problem-solving enables us to identify and exploit opportunities in the environment and exert (some level of) control over the future.

Problem solving skills and the problem-solving process are a critical part of daily life both as individuals and organizations. Developing and refining these skills through training, practice and learning can provide the ability to solve problems more effectively and over time address problems with a greater degree of complexity and difficulty. View KT’s Problem Solving workshop known to be the gold standard for over 60 years.

Blog Image 1

We are experts in:

For inquiries, details, or a proposal!

Subscribe to the KT Newsletter

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

How to Solve Problems

  • Laura Amico

what is a problem solving

To bring the best ideas forward, teams must build psychological safety.

Teams today aren’t just asked to execute tasks: They’re called upon to solve problems. You’d think that many brains working together would mean better solutions, but the reality is that too often problem-solving teams fall victim to inefficiency, conflict, and cautious conclusions. The two charts below will help your team think about how to collaborate better and come up with the best solutions for the thorniest challenges.

  • Laura Amico is a former senior editor at Harvard Business Review.

Partner Center

For enquiries call:

+1-469-442-0620

banner-in1

What is Problem Solving? Process, Techniques, Examples

Home Blog others What is Problem Solving? Process, Techniques, Examples

Play icon

Whether tackling a technical issue at work or finding our way around a roadblock unnoticed by Google Maps, problem-solving is a daily occurrence for most people. But how prepared are you to overcome life's challenges? Do you rely on a structured process to ensure successful outcomes, or do you navigate through problems impulsively? 

Here's the crux: the strength of your problem-solving skills significantly impacts the ease and success of your life, both professionally and personally. Practical problem-solving is a valuable career and life skill. You're in the right place if you're eager to enhance your problem-solving abilities efficiently. 

In this blog post, I will delve into what is problem solving the steps, techniques, and exercises of the problem-solving process. Whether seeking to troubleshoot technical issues or navigate life's complexities, mastering organized problem-solving can elevate your capabilities and lead to more favorable outcomes. 

What is Problem Solving? And Its Importance

First, let me help you understand what is problem solving. Problem-solving is a comprehensive process involving identifying issues, prioritizing based on urgency and severity, analyzing root causes, gathering pertinent Information, devising and assessing solutions, making informed decisions, and planning and executing implementation strategies. 

This skill set also encompasses critical thinking, effective communication, active listening, creativity, research, data analysis, risk assessment, continuous learning, and decision-making abilities. Effective problem-solving strategies mitigate potential losses or damages and enhance self-confidence and reputation. Problem-solving is essential in personal and professional contexts as it allows individuals and teams to navigate obstacles, make informed decisions, and drive progress. 

Importance: 

  • Enhances Decision-Making: Effective problem solving leads to better decision-making by evaluating various options and selecting the most suitable solution. 
  • Promotes Innovation: Problem solving encourages innovation and creativity as individuals seek new approaches to tackle challenges. 
  • Improves Efficiency: By resolving issues efficiently, problem solving helps streamline processes and optimize resource allocation. 
  • Builds Resilience: Successfully overcoming obstacles builds confidence and resilience, enabling  
  • individuals and teams to tackle future challenges with greater confidence.  

Problem-solving Process 

Now that we have a clear understanding of the problem solving definition as to what is problem solving let us now navigate the problem solving process. Effective problem-solving is a valuable skill sought after by employers in various fields. Here's a breakdown of a common problem-solving process, presented in a pointwise manner: 

1. Identifying the Problem 

The first step in the problem-solving process is clearly defining the issue. This involves gathering relevant Information, observing patterns or trends, and understanding the impact of the problem on stakeholders. 

2. Analyzing the Situation 

Once the problem is identified, it's essential to analyze its root causes and contributing factors. This may involve conducting research, gathering data, and exploring different perspectives to comprehensively understand the situation. 

3. Generating Solutions 

With a clear understanding of the problem solving methods, brainstorming potential solutions is the next step. Encouraging creativity and considering various alternatives can lead to innovative ideas. Evaluating each solution based on feasibility, effectiveness, and alignment with goals and values is crucial. 

4. Evaluating Options 

After generating a list of potential solutions, it's essential to carefully evaluate each option. This involves weighing the pros and cons, considering potential risks and benefits, and assessing the likelihood of success. Consulting with relevant stakeholders or experts can provide valuable insights during this stage. 

5. Selecting the Best Solution 

Based on the evaluation, one or more solutions are the most viable options. It's essential to prioritize solutions that address the root cause of the problem and have the most significant potential for long-term success. Communicating the chosen solution effectively to stakeholders is crucial for garnering support and buy-in. 

6. Implementing the Solution 

Once a solution is selected, it's time to put it into action. This involves developing a detailed action plan, allocating resources, and assigning responsibilities. Effective communication, coordination, and monitoring are essential during the implementation phase to ensure smooth execution and timely resolution of the problem. 

7. Monitoring and Reviewing 

After implementing the solution, it's essential to monitor its progress and evaluate its effectiveness over time. This may involve collecting feedback, analyzing performance metrics, and making adjustments as needed. Continuous monitoring and review allow for ongoing improvement and refinement of the problem-solving process.  

How to Solve Problems in 5 Simple Steps? 

Here's a breakdown of the 5 problem-solving steps for your understanding: 

1. Define the Problem (Understand & Gather Information)  

  • Identify the Issue: Clearly understand what the problem is. What isn't working, or what needs improvement? 
  • Gather Information: Talk to people involved, collect data, and research relevant details to get a well-rounded picture of the situation. 
  • Ask Why? Don't just focus on symptoms. Ask "why" several times to identify the root cause of the problem. 

Example: Let's say customer complaints about slow website loading times have increased. 

2. Brainstorm Solutions (Think Creatively & Be Open-Minded)  

  • Think Outside the Box: Don't settle for the first solution that comes to mind. Brainstorm a variety of options, even seemingly unconventional ones. 
  • Consider All Angles: Evaluate the problem from different perspectives. What are potential solutions from a technical standpoint? From a user experience point of view? 
  • Build on Ideas: Don't shut down ideas prematurely. Encourage others to build upon and refine suggestions collaboratively. 

Example: Potential solutions for slow website loading times could include optimizing images, upgrading server capacity, or implementing a content delivery network (CDN). 

3. Evaluate & Choose a Solution (Consider Feasibility & Impact)  

  • Weigh the Pros & Cons: Analyze the feasibility, resource requirements, and potential risks and benefits of each solution. 
  • Align with Goals: Ensure the chosen solution directly addresses the root cause of the problem and aligns with your overall objectives. 
  • Prioritize Impact: Choose the solution with the most significant potential to achieve a positive outcome and lasting improvement. 

Example: Upgrading server capacity might be a very effective solution, but it could be expensive. Optimizing images is a more feasible solution that could yield significant improvement. 

4. Implement the Solution (Take Action & Communicate Clearly)  

  • Develop a Plan: Create a clear action plan outlining the steps involved in implementing the chosen solution. Assign tasks and set deadlines. 
  • Communication is Key: Clearly communicate the plan to everyone involved, including stakeholders and team members. 
  • Monitor Progress: Track the implementation process and make adjustments as needed based on the results. 

Example: The website optimization plan might involve tasks like image resizing, code minification, and implementing caching mechanisms. 

5. Evaluate the Outcome (Learn & Adapt)  

  • Measure Success: Assess whether the implemented solution effectively resolved the problem. Did it meet your goals? 
  • Lessons Learned: Reflect on what worked well and what could be improved during the problem-solving process. 
  • Continuous Improvement: Use this experience to refine your problem-solving approach and enhance your skills for future challenges. Enroll in free online certification courses for professional development and skill enhancement. 

Example: After website optimization, monitor website loading times and customer feedback to see if the issue has been resolved. If not, repeat the process, considering new solutions based on the learnings from this attempt. 

Remember, problem-solving is an iterative process. Be prepared to adapt your approach as you gather more Information and evaluate the effectiveness of your solutions.  

Essential Things to Consider in Each of the Problem-solving Steps

Creative problem solving requires careful consideration at each stage. Here are vital things to focus on: 

1. Identifying & Defining the Problem 

  • Gather Information: Consult stakeholders, review data, and gain insights from various perspectives. 
  • Identify Root Cause: Address the underlying reason, not just symptoms. 
  • Define Scope: Clearly outline the problem's boundaries to maintain focus. 

2. Analyzing the Problem 

  • Consider Multiple Perspectives: Explore diverse angles to uncover potential factors. 
  • Brainstorm Freely: Foster creativity without judgment to generate innovative ideas. 
  • Analyze Impact: Evaluate the severity and consequences of the problem if left unresolved. 
  • Think Creatively: Explore unconventional solutions beyond initial ideas. 
  • Consider Feasibility: Assess the practicality and resource requirements of each option. 
  • Identify Potential Risks & Benefits: Weigh the pros and cons to select the most balanced approach. 

4. Evaluating and Selecting a Solution 

  • Align with Goals: Ensure the chosen solution addresses the core issue and aligns with objectives. 
  • Consider Long-Term Impact: Choose solutions with lasting benefits beyond immediate results. 
  • Team Input: Involve team members to gain diverse perspectives during evaluation. 

5. Implementing the Solution  

  • Develop a Clear Plan: Outline implementation steps with clear timelines and responsibilities. 
  • Communication is Key: Ensure all stakeholders understand the plan to facilitate smooth execution. 
  • Monitor Progress: Track implementation and adjust as needed based on results. 

6. Evaluating the Outcome  

  • Measure Effectiveness: Assess if the solution effectively resolves the problem or needs refinement. 
  • Lessons Learned: Identify successes and areas for improvement to enhance future problem-solving efforts. 

Problem Solving Examples

Let us look at problem solving example scenarios in a typical workplace: , example 1: project deadline challenge .

  • Situation: You're a project manager leading a team that is developing a new marketing campaign website. The launch date is approaching, but a critical developer is unexpectedly out sick for a week. 
  • Action: You immediately assess the workload and delegate tasks among the remaining team members. You identify an opportunity to streamline a design element, reducing development time. You also reach out to a freelancer with a proven track record to fill in for the missing developer on specific tasks. 
  • Result: The team successfully launches the website on time and within budget. The streamlined design element is praised by stakeholders for its user-friendliness. 
  • Highlight: This example showcases your problem-solving skills, leadership, adaptability, and ability to manage resources effectively under pressure. 

Example 2: Client Communication Breakdown 

  • Situation: You're a Customer Service Representative for an e-commerce company. A regular customer expresses extreme dissatisfaction with a recent purchase due to a malfunctioning product and a negative experience with a previous representative. 
  • Action: You actively listen to the customer's concerns, apologizing for the inconvenience. You then troubleshoot the product issue and offer a solution (replacement or refund). Additionally, you acknowledge the previous negative experience and offer to ensure better communication going forward. 
  • Result: The customer is satisfied with the resolution and expresses appreciation for your attentiveness and problem-solving approach. They remain a loyal customer of the company. 
  • Highlight: This example demonstrates your active listening skills, empathy, ability to de-escalate situations, and commitment to customer satisfaction. 

By following these examples of problem-solving skills, you can effectively tackle challenges and achieve successful outcomes. Also, explore KnowledgeHut’ s best online courses for further skill enhancement. 

Problem Solving Techniques

Effective problem-solving techniques are essential for tackling challenges and achieving desired outcomes. Here are some problem solving tools and techniques commonly used in problem-solving: 

  • Brainstorming : Encourages the generation of a wide range of ideas and solutions in a non-judgmental environment. This technique promotes creativity and can uncover innovative approaches to problems. 
  • Root Cause Analysis : Focuses on identifying the underlying causes of a problem rather than just addressing its symptoms. By pinpointing root causes, solutions can be targeted more effectively to prevent recurrence. 
  • Fishbone Diagram (Ishikawa Diagram): Provides a visual representation of the various factors contributing to a problem, categorized into branches such as people, process, equipment, environment, and management. This technique helps analyze complex issues and identify potential causes. 
  • SWOT Analysis : Evaluates the strengths, weaknesses, opportunities, and threats associated with a problem or situation. This technique helps assess the internal and external factors influencing the problem and guides decision-making. 
  • Pareto Analysis: Focuses on identifying and prioritizing the most significant causes contributing to a problem. By allocating resources to address the vital few rather than the trivial many, this technique maximizes impact and efficiency. 
  • 5 Whys : Involves asking "why" repeatedly to trace the root cause of a problem. This iterative questioning technique helps uncover more profound layers of causation beyond surface-level symptoms. 
  • Decision Matrix Analysis: Helps evaluate multiple options by systematically comparing their pros and cons against predetermined criteria. This technique facilitates objective decision-making by considering various factors and their relative importance. 

By incorporating these problem-solving techniques in the workplace, you can approach problems systematically, generate creative solutions, and develop a well-rounded plan for achieving success.  

Conquering challenges is a key to professional success, and practical problem-solving equips you to do just that. By following a structured approach, you can transform from a bystander to a solution-oriented individual. This involves gathering Information to clearly define the problem and identify its root cause. Analyzing the situation from various angles and brainstorming freely unlock creative solutions. Evaluating potential solutions ensures you choose the one that aligns with your goals and is feasible to implement. Clear communication and a well-defined plan are crucial for successful execution. Finally, reflecting on the outcome allows you to learn and continuously improve your problem-solving skills, making you an invaluable asset in any environment. 

Frequently Asked Questions (FAQs)

The best method involves identifying the problem, brainstorming solutions, evaluating options, implementing the chosen solution, and assessing outcomes for improvement.

The principles include defining the problem, generating alternatives, evaluating options, implementing solutions, and reviewing outcomes for continuous improvement.

Different types include analytical problem-solving, creative problem-solving, critical thinking, decision-making, and systematic problem-solving.

The significant elements include understanding the problem, devising a plan, executing the plan, and evaluating the results.

The skills encompass critical thinking, decision-making, and analytical reasoning. These abilities aid in identifying, analyzing, and resolving problems effectively. 

Profile

KnowledgeHut .

KnowledgeHut is an outcome-focused global ed-tech company. We help organizations and professionals unlock excellence through skills development. We offer training solutions under the people and process, data science, full-stack development, cybersecurity, future technologies and digital transformation verticals.

Avail your free 1:1 mentorship session.

Something went wrong

Course advisor icon

  • Our Mission

3 Simple Strategies to Improve Students’ Problem-Solving Skills

These strategies are designed to make sure students have a good understanding of problems before attempting to solve them.

Two students in math class

Research provides a striking revelation about problem solvers. The best problem solvers approach problems much differently than novices. For instance, one meta-study showed that when experts evaluate graphs , they tend to spend less time on tasks and answer choices and more time on evaluating the axes’ labels and the relationships of variables within the graphs. In other words, they spend more time up front making sense of the data before moving to addressing the task.

While slower in solving problems, experts use this additional up-front time to more efficiently and effectively solve the problem. In one study, researchers found that experts were much better at “information extraction” or pulling the information they needed to solve the problem later in the problem than novices. This was due to the fact that they started a problem-solving process by evaluating specific assumptions within problems, asking predictive questions, and then comparing and contrasting their predictions with results. For example, expert problem solvers look at the problem context and ask a number of questions:

  • What do we know about the context of the problem?
  • What assumptions are underlying the problem? What’s the story here?
  • What qualitative and quantitative information is pertinent?
  • What might the problem context be telling us? What questions arise from the information we are reading or reviewing?
  • What are important trends and patterns?

As such, expert problem solvers don’t jump to the presented problem or rush to solutions. They invest the time necessary to make sense of the problem.

Now, think about your own students: Do they immediately jump to the question, or do they take time to understand the problem context? Do they identify the relevant variables, look for patterns, and then focus on the specific tasks?

If your students are struggling to develop the habit of sense-making in a problem- solving context, this is a perfect time to incorporate a few short and sharp strategies to support them.

3 Ways to Improve Student Problem-Solving

1. Slow reveal graphs: The brilliant strategy crafted by K–8 math specialist Jenna Laib and her colleagues provides teachers with an opportunity to gradually display complex graphical information and build students’ questioning, sense-making, and evaluating predictions.

For instance, in one third-grade class, students are given a bar graph without any labels or identifying information except for bars emerging from a horizontal line on the bottom of the slide. Over time, students learn about the categories on the x -axis (types of animals) and the quantities specified on the y -axis (number of baby teeth).

The graphs and the topics range in complexity from studying the standard deviation of temperatures in Antarctica to the use of scatterplots to compare working hours across OECD (Organization for Economic Cooperation and Development) countries. The website offers a number of graphs on Google Slides and suggests questions that teachers may ask students. Furthermore, this site allows teachers to search by type of graph (e.g., scatterplot) or topic (e.g., social justice).

2. Three reads: The three-reads strategy tasks students with evaluating a word problem in three different ways . First, students encounter a problem without having access to the question—for instance, “There are 20 kangaroos on the grassland. Three hop away.” Students are expected to discuss the context of the problem without emphasizing the quantities. For instance, a student may say, “We know that there are a total amount of kangaroos, and the total shrinks because some kangaroos hop away.”

Next, students discuss the important quantities and what questions may be generated. Finally, students receive and address the actual problem. Here they can both evaluate how close their predicted questions were from the actual questions and solve the actual problem.

To get started, consider using the numberless word problems on educator Brian Bushart’s site . For those teaching high school, consider using your own textbook word problems for this activity. Simply create three slides to present to students that include context (e.g., on the first slide state, “A salesman sold twice as much pears in the afternoon as in the morning”). The second slide would include quantities (e.g., “He sold 360 kilograms of pears”), and the third slide would include the actual question (e.g., “How many kilograms did he sell in the morning and how many in the afternoon?”). One additional suggestion for teams to consider is to have students solve the questions they generated before revealing the actual question.

3. Three-Act Tasks: Originally created by Dan Meyer, three-act tasks follow the three acts of a story . The first act is typically called the “setup,” followed by the “confrontation” and then the “resolution.”

This storyline process can be used in mathematics in which students encounter a contextual problem (e.g., a pool is being filled with soda). Here students work to identify the important aspects of the problem. During the second act, students build knowledge and skill to solve the problem (e.g., they learn how to calculate the volume of particular spaces). Finally, students solve the problem and evaluate their answers (e.g., how close were their calculations to the actual specifications of the pool and the amount of liquid that filled it).

Often, teachers add a fourth act (i.e., “the sequel”), in which students encounter a similar problem but in a different context (e.g., they have to estimate the volume of a lava lamp). There are also a number of elementary examples that have been developed by math teachers including GFletchy , which offers pre-kindergarten to middle school activities including counting squares , peas in a pod , and shark bait .

Students need to learn how to slow down and think through a problem context. The aforementioned strategies are quick ways teachers can begin to support students in developing the habits needed to effectively and efficiently tackle complex problem-solving.

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • *New* Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

what is a problem solving

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

What Is Creative Problem-Solving & Why Is It Important?

Business team using creative problem-solving

  • 01 Feb 2022

One of the biggest hindrances to innovation is complacency—it can be more comfortable to do what you know than venture into the unknown. Business leaders can overcome this barrier by mobilizing creative team members and providing space to innovate.

There are several tools you can use to encourage creativity in the workplace. Creative problem-solving is one of them, which facilitates the development of innovative solutions to difficult problems.

Here’s an overview of creative problem-solving and why it’s important in business.

Access your free e-book today.

What Is Creative Problem-Solving?

Research is necessary when solving a problem. But there are situations where a problem’s specific cause is difficult to pinpoint. This can occur when there’s not enough time to narrow down the problem’s source or there are differing opinions about its root cause.

In such cases, you can use creative problem-solving , which allows you to explore potential solutions regardless of whether a problem has been defined.

Creative problem-solving is less structured than other innovation processes and encourages exploring open-ended solutions. It also focuses on developing new perspectives and fostering creativity in the workplace . Its benefits include:

  • Finding creative solutions to complex problems : User research can insufficiently illustrate a situation’s complexity. While other innovation processes rely on this information, creative problem-solving can yield solutions without it.
  • Adapting to change : Business is constantly changing, and business leaders need to adapt. Creative problem-solving helps overcome unforeseen challenges and find solutions to unconventional problems.
  • Fueling innovation and growth : In addition to solutions, creative problem-solving can spark innovative ideas that drive company growth. These ideas can lead to new product lines, services, or a modified operations structure that improves efficiency.

Design Thinking and Innovation | Uncover creative solutions to your business problems | Learn More

Creative problem-solving is traditionally based on the following key principles :

1. Balance Divergent and Convergent Thinking

Creative problem-solving uses two primary tools to find solutions: divergence and convergence. Divergence generates ideas in response to a problem, while convergence narrows them down to a shortlist. It balances these two practices and turns ideas into concrete solutions.

2. Reframe Problems as Questions

By framing problems as questions, you shift from focusing on obstacles to solutions. This provides the freedom to brainstorm potential ideas.

3. Defer Judgment of Ideas

When brainstorming, it can be natural to reject or accept ideas right away. Yet, immediate judgments interfere with the idea generation process. Even ideas that seem implausible can turn into outstanding innovations upon further exploration and development.

4. Focus on "Yes, And" Instead of "No, But"

Using negative words like "no" discourages creative thinking. Instead, use positive language to build and maintain an environment that fosters the development of creative and innovative ideas.

Creative Problem-Solving and Design Thinking

Whereas creative problem-solving facilitates developing innovative ideas through a less structured workflow, design thinking takes a far more organized approach.

Design thinking is a human-centered, solutions-based process that fosters the ideation and development of solutions. In the online course Design Thinking and Innovation , Harvard Business School Dean Srikant Datar leverages a four-phase framework to explain design thinking.

The four stages are:

The four stages of design thinking: clarify, ideate, develop, and implement

  • Clarify: The clarification stage allows you to empathize with the user and identify problems. Observations and insights are informed by thorough research. Findings are then reframed as problem statements or questions.
  • Ideate: Ideation is the process of coming up with innovative ideas. The divergence of ideas involved with creative problem-solving is a major focus.
  • Develop: In the development stage, ideas evolve into experiments and tests. Ideas converge and are explored through prototyping and open critique.
  • Implement: Implementation involves continuing to test and experiment to refine the solution and encourage its adoption.

Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

Creative Problem-Solving Tools

While there are many useful tools in the creative problem-solving process, here are three you should know:

Creating a Problem Story

One way to innovate is by creating a story about a problem to understand how it affects users and what solutions best fit their needs. Here are the steps you need to take to use this tool properly.

1. Identify a UDP

Create a problem story to identify the undesired phenomena (UDP). For example, consider a company that produces printers that overheat. In this case, the UDP is "our printers overheat."

2. Move Forward in Time

To move forward in time, ask: “Why is this a problem?” For example, minor damage could be one result of the machines overheating. In more extreme cases, printers may catch fire. Don't be afraid to create multiple problem stories if you think of more than one UDP.

3. Move Backward in Time

To move backward in time, ask: “What caused this UDP?” If you can't identify the root problem, think about what typically causes the UDP to occur. For the overheating printers, overuse could be a cause.

Following the three-step framework above helps illustrate a clear problem story:

  • The printer is overused.
  • The printer overheats.
  • The printer breaks down.

You can extend the problem story in either direction if you think of additional cause-and-effect relationships.

4. Break the Chains

By this point, you’ll have multiple UDP storylines. Take two that are similar and focus on breaking the chains connecting them. This can be accomplished through inversion or neutralization.

  • Inversion: Inversion changes the relationship between two UDPs so the cause is the same but the effect is the opposite. For example, if the UDP is "the more X happens, the more likely Y is to happen," inversion changes the equation to "the more X happens, the less likely Y is to happen." Using the printer example, inversion would consider: "What if the more a printer is used, the less likely it’s going to overheat?" Innovation requires an open mind. Just because a solution initially seems unlikely doesn't mean it can't be pursued further or spark additional ideas.
  • Neutralization: Neutralization completely eliminates the cause-and-effect relationship between X and Y. This changes the above equation to "the more or less X happens has no effect on Y." In the case of the printers, neutralization would rephrase the relationship to "the more or less a printer is used has no effect on whether it overheats."

Even if creating a problem story doesn't provide a solution, it can offer useful context to users’ problems and additional ideas to be explored. Given that divergence is one of the fundamental practices of creative problem-solving, it’s a good idea to incorporate it into each tool you use.

Brainstorming

Brainstorming is a tool that can be highly effective when guided by the iterative qualities of the design thinking process. It involves openly discussing and debating ideas and topics in a group setting. This facilitates idea generation and exploration as different team members consider the same concept from multiple perspectives.

Hosting brainstorming sessions can result in problems, such as groupthink or social loafing. To combat this, leverage a three-step brainstorming method involving divergence and convergence :

  • Have each group member come up with as many ideas as possible and write them down to ensure the brainstorming session is productive.
  • Continue the divergence of ideas by collectively sharing and exploring each idea as a group. The goal is to create a setting where new ideas are inspired by open discussion.
  • Begin the convergence of ideas by narrowing them down to a few explorable options. There’s no "right number of ideas." Don't be afraid to consider exploring all of them, as long as you have the resources to do so.

Alternate Worlds

The alternate worlds tool is an empathetic approach to creative problem-solving. It encourages you to consider how someone in another world would approach your situation.

For example, if you’re concerned that the printers you produce overheat and catch fire, consider how a different industry would approach the problem. How would an automotive expert solve it? How would a firefighter?

Be creative as you consider and research alternate worlds. The purpose is not to nail down a solution right away but to continue the ideation process through diverging and exploring ideas.

Which HBS Online Entrepreneurship and Innovation Course is Right for You? | Download Your Free Flowchart

Continue Developing Your Skills

Whether you’re an entrepreneur, marketer, or business leader, learning the ropes of design thinking can be an effective way to build your skills and foster creativity and innovation in any setting.

If you're ready to develop your design thinking and creative problem-solving skills, explore Design Thinking and Innovation , one of our online entrepreneurship and innovation courses. If you aren't sure which course is the right fit, download our free course flowchart to determine which best aligns with your goals.

what is a problem solving

About the Author

More From Forbes

Leveraging the prompt engineering technique known as least-to-most prompting can spur generative ai to solve knotty problems.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

Using the least-to-most prompting strategy is advantageous and a keystone in prompt engineering.

In today’s column, I am continuing my ongoing coverage of prompt engineering strategies and tactics that aid in getting the most out of using generative AI apps such as ChatGPT, GPT-4, Bard, Gemini, Claude, etc. The focus here is on a sturdy prompting technique known as Least-to-Most (LTM). I will be sharing with you the ins and outs of this approach and showcasing various examples so that you can immediately go hands-on with the technique.

If you are interested in prompt engineering overall, you might find of interest my comprehensive guide on over thirty other keystone prompting strategies, see the discussion at the link here .

Here’s how I am going to cover the least-to-most prompting approach. First, I will explain the underlying basis for the technique. Second, I will provide the keystone research that has identified the technique and performed empirical studies to gauge the efficacy of the approach. Third, I will describe how the technique can be used in your daily use of generative AI.

Allow me a moment to explain the overarching matter at hand.

How Least-to-Most and Most-to-Least Are Used In Human Learning

Think for a moment about problem-solving.

There are a wide variety of ways to solve problems. Of those many ways possible, I am going to focus on two problem-solving approaches that are cousins of each other. You almost surely have experienced the two methods that I am going to tell you about.

Apple Just Released A Major Upgrade For Samsung Galaxy Watch 6, Pixel Watch

Trump posts 175 million bond thanks to billionaire don hankey, caitlin clark erupts for 41 points as iowa advances to final four with revenge win over lsu.

One of the approaches is known as least-to-most (LTM), while the other related approach is referred to as most-to-least (MTL). The crux of the two approaches is that a problem solver might be guided by someone assisting them such as a teacher or instructor, doing so either on a light-handed basis at the start of problem-solving and then ratcheting up if needed (that’s least-to-most aka LTM), or the instructor might be heavy-handed at the beginning and decrease their involvement as things hopefully progress appropriately (that’s the most-to-least aka MTL).

Which do you prefer?

Go ahead, say aloud your answer, I’ll wait.

Well, I would guess that your answer might be that the circumstances at hand dictate which of those two is best applied. Sometimes you might desire a heavy hand from an instructor, such as in situations where making a mistake might be costly or you are nervous about being able to deal with a knotty problem. I dare say an always-on heavy-handed approach would be a bit much if it was applied indiscriminately. There are bound to be other settings where you prefer a lighter touch at the get-go. Then, if things are going foul, you might want a heavier hand for guidance and getting you back on track.

Teachers are often taught about the LTM and MTL when they learn about best practices for teaching. They are supposed to discover how they can make use of LTM and MTL. When should a student be guided by LTM versus MTL? Are some students more likely to welcome LTM or MTL when being taught? And so on.

A slew of pedagogically oriented research has examined the LTM versus MLT considerations. For example, a research study entitled “A Comparison of Most-to-Least and Least-to-Most Prompting on the Acquisition of Solitary Play Skills” by Myrna Libby, Julie Weiss, Stacie Bancroft, William Ahearn, Behavioral Analysis in Practice, 2008, said this about the two approaches (excerpts):

  • “The purpose of the current study was to conduct a comparative analysis of common prompting techniques for teaching behavior chains. The goal was to develop a strategy for identifying the most effective and efficient prompting procedure for learners who require systematic prompting to acquire new skills.”
  • “Most-to-least prompting consists of a teacher placing his or her hands over the learner's hands to guide the learner through the initial training trials. A less intrusive prompt, such as guiding the learner at the wrist, is used on subsequent training trials. The intrusiveness of the prompt continues to be faded as long as the learner is demonstrating success during training trials.”
  • “With least-to-most fading, the teacher allows the learner a brief opportunity to respond independently on each training trial and then delivers the least intrusive prompt if needed. Increasingly more intrusive prompts are then delivered as necessary for the learner to complete each training trial.”

I’d like to briefly highlight some of the key features of undertaking the LTM or MTL.

First, you might not ever invoke LTM or MTL at all. The jolting idea is that perhaps the level of guidance should be even-handed throughout a problem-solving task. You might use a light touch throughout and not opt to proceed into a heavier touch. You might use a heavy touch throughout and never let up. By and large, the use of LTM or MTL usually implies that you are in fact going to proceed in either a ratcheted-up or ratcheted-down progression. Maybe that isn’t always the case, though at times it can be quite fruitful.

Second, if you do opt to use LTM or MTL, you typically make a choice upfront as to which one you are going to employ. Perhaps you examine the setting and size up the circumstances. After sizing things, you decide henceforth for that situation you are going to use LTM, or maybe instead you decide the MTL is the right selection. It all depends.

Third, a somewhat hidden facet that might not be obvious is that you are going to potentially interject or intervene on a stepwise basis. This implies that the problem solver will be dissecting a problem into a series of steps, oftentimes a series of subproblems to be solved. The instructor lets the problem solver take a step or two and then judges how they are doing. If the solver seems to need help, you adjust your handedness from lighter to heavier or heavier to lighter, based on whether LTM or MTL is being invoked. As they say these days, you would rinse and repeat those actions.

I am going to now shift gears and see how this approach can be applied to the use of generative AI, especially as a prompting strategy when the AI is being asked to solve problems.

One thing I want to emphasize is that I am not somehow suggesting that today’s AI acts like humans or has become sentient. It is assuredly not. You see, I don’t like anthropomorphizing AI. What we are going to do here is merely reuse a practice that works for humans and see if we can get the practice to improve the results when using generative AI.

Dealing With Knotty Problems Beyond Chain-Of-Thought Approaches

I have extensively covered that an important prompting strategy consists of using chain-of-thought (CoT) oriented prompts, see my explanations and examples at the link here and the link here .

The use of CoT is relatively straightforward. You tell generative AI in your prompt that you want the AI to proceed on a step-by-step basis. The advantage is that you will get to see how the AI is tackling the problem and thus be able to assess whether you are willing to believe whatever answer is generated. The other benefit is that empirical research suggests that the AI will do a better job at solving a problem, partially due to taking the time to do a stepwise process rather than otherwise computationally rushing to get you an answer right away.

How does that comport with the LTM and MTL?

From my remarks above, I’m sure that you keenly observed that the CoT approach drives generative AI toward undertaking problem-solving on a stepwise basis. The moment we get into any stepwise problem-solving mode, you perhaps are now thinking about what an instructor or teacher might do related to the problem-solving process. A teacher or instructor would conventionally make use of the handy-dandy LTM or MTL.

You, the user, are in a sense a potential teacher or instructor for the generative AI, at least to the extent that you might intervene during the problem-solving process and act to provide further guidance to the AI. I am not saying that you necessarily know the answer being generated, and instead, you are simply applying your human judgment to provide a semblance of guidance to the AI.

A twist to this is that rather than you the user being the presumed instructor or teacher, you can have the generative AI act in that capacity in a kind of dual role. Here’s what I mean. You give a problem to the AI and ask that the problem be solved. The AI proceeds as you’ve requested. You also tell the AI to in a sense police itself along the way. The AI gives guidance to itself.

That’s a head-scratcher, for sure.

Can the AI be both acting as a problem-solver and an LTM/MTL guidance advisor at the same time?

Admittedly, this can be dicey. There is a solid chance that the AI is merely going to rubberstamp whatever is going on with the problem-solving aspects. The nice thing about the human teacher guiding a human student is that they have separate perspectives. If you try to do an LTM or MTL with yourself, the odds are that you might not do as well as using a third party to guide you.

The case for generative AI is usually notably different. I’ve generally found that generative AI can somewhat bifurcate problem-solving per se from the advice about problem-solving. Not always. You will need to be on your toes. Do not fall into a mental trap that just because you give a prompt telling the AI to do this it will work flawlessly. I can pretty much guarantee it won’t.

Research On Least-To-Most For Generative AI Is Informative

I will next describe research about the use of least-to-most aka LTM when prompting generative AI.

Interestingly, the LTM path seems to have caught on, while the MTL is not as widely explored. I urge that you use either LTM or MTL at your discretion. I am going to herein focus on the LTM. The MTL is pretty much the same and all you need to do is slightly reword the templated prompt accordingly.

In an AI research study entitled “Unleashing The Potential Of Prompt Engineering In Large Language Models: A Comprehensive Review” by Banghao Chen, Zhaofeng Zhang, Nicolas Langren, Shengxin Zhu, Guangdong, arXiv , October 27, 2023, the researchers said this about LTM (excerpts):

  • “The concept of ‘least to most prompting’ is an advanced method that involves starting with a minimal prompt and gradually increasing its complexity to elicit more sophisticated responses from the language model.
  • “The foundational premise of this approach is the decomposition of intricate problems into a succession of more rudimentary subproblems, which are then sequentially addressed. The resolution of each subproblem is expedited by leveraging solutions derived from antecedent subproblems.”
  • “Upon rigorous experimentation in domains including symbolic manipulation, compositional generalization, and mathematical reasoning, findings from substantiate that the least-to-most prompting paradigm exhibits the capacity to generalize across challenges of greater complexity than those initially presented in the prompts. They found that LLMs seem to respond effectively to this method, demonstrating its potential for enhancing the reasoning capabilities of these models.”

There are numerous ways that LTM is undertaken.

The research above notes that one means of doing LTM consists of first using a minimalist prompt and then proceeding to increase the complexity of your prompts as you further tackle a given problem at hand. That’s a fine way to proceed.

Another means or mode consists of telling the AI to proceed on an LTM basis. As I stated above, you can ask the generative AI to serve as its light-to-heavy-handed advisor. That’s a fine way to proceed too.

An in-depth examination of LTM for generative AI was undertaken in a research paper entitled “Least-to-Most Prompting Enables Complex Reasoning In Large Language Models” by Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, Ed Chi, ICLR 2023, arXiv, April 16, 2023, which included these key points (excerpts):

  • “To tackle such easy-to-hard generalization issues, we propose least-to-most prompting.”
  • “It consists of two stages: first decomposing a complex problem into a list of easier subproblems, and then sequentially solving these subproblems, whereby solving a given subproblem is facilitated by the answers to previously solved subproblems.”
  • “The term least-to-most prompting is borrowed from educational psychology where it is used to denote the technique of using a progressive sequence of prompts to help a student to learn a new skill.”
  • “Our empirical findings, which encompass symbolic manipulation, compositional generalization, and mathematical reasoning, reveal that least-to-most prompting significantly surpasses standard prompting and chain-of-thought prompting.”

A reassuring outcome of the research study was that their empirical findings supported the hunch that this LTM prompting does appear to boost your generated results from the AI. Thus, we can make use of the approach and do so with the strident belief that the effort is worthwhile.

For those of you deeply interested in these kinds of prompting approaches, you might enjoy taking a look at my analysis of chain-of-thought factored decomposition, see the link here , which is a particular CoT technique that in many ways parallels the LTM approach.

Before we get into further specifics about this prompting technique, it would be useful to make sure we are all on the same page about the nature and importance of prompt engineering. Let’s do that.

The Nature And Importance Of Prompt Engineering

Please be aware that composing well-devised prompts is essential to getting robust results from generative AI and large language models (LLMs). It is highly recommended that anyone avidly using generative AI should learn about and regularly practice the fine art and science of devising sound prompts. I purposefully note that prompting is both art and science. Some people are wanton in their prompting, which is not going to get you productive responses. You want to be systematic leverage the science of prompting, and include a suitable dash of artistry, combining to get you the most desirable results.

My golden rule about generative AI is this:

  • The use of generative AI can altogether succeed or fail based on the prompt that you enter.

If you provide a prompt that is poorly composed, the odds are that the generative AI will wander all over the map and you won’t get anything demonstrative related to your inquiry. Similarly, if you put distracting words into your prompt, the odds are that the generative AI will pursue an unintended line of consideration. For example, if you include words that suggest levity, there is a solid chance that the generative AI will seemingly go into a humorous mode and no longer emit serious answers to your questions.

Be direct, be obvious, and avoid distractive wording.

Being copiously specific should also be cautiously employed. You see, being painstakingly specific can be off-putting due to giving too much information. Amidst all the details, there is a chance that the generative AI will either get lost in the weeds or will strike upon a particular word or phrase that causes a wild leap into some tangential realm. I am not saying that you should never use detailed prompts. That’s silly. I am saying that you should use detailed prompts in sensible ways, such as telling the generative AI that you are going to include copious details and forewarn the AI accordingly.

You need to compose your prompts in relatively straightforward language and be abundantly clear about what you are asking or what you are telling the generative AI to do.

A wide variety of cheat sheets and training courses for suitable ways to compose and utilize prompts has been rapidly entering the marketplace to try and help people leverage generative AI soundly. In addition, add-ons to generative AI have been devised to aid you when trying to come up with prudent prompts, see my coverage at the link here .

AI Ethics and AI Law also stridently enter into the prompt engineering domain. For example, whatever prompt you opt to compose can directly or inadvertently elicit or foster the potential of generative AI to produce essays and interactions that imbue untoward biases, errors, falsehoods, glitches, and even so-called AI hallucinations (I do not favor the catchphrase of AI hallucinations, though it has admittedly tremendous stickiness in the media; here’s my take on AI hallucinations at the link here ).

There is also a marked chance that we will ultimately see lawmakers come to the fore on these matters, possibly devising and putting in place new laws or regulations to try and scope and curtail misuses of generative AI. Regarding prompt engineering, there are likely going to be heated debates over putting boundaries around the kinds of prompts you can use. This might include requiring AI makers to filter and prevent certain presumed inappropriate or unsuitable prompts, a cringe-worthy issue for some that borders on free speech considerations. For my ongoing coverage of these types of AI Ethics and AI Law issues, see the link here and the link here , just to name a few.

All in all, be mindful of how you compose your prompts.

By being careful and thoughtful you will hopefully minimize the possibility of wasting your time and effort. There is also the matter of cost. If you are paying to use a generative AI app, the usage is sometimes based on how much computational activity is required to fulfill your prompt request or instruction. Thus, entering prompts that are off-target could cause the generative AI to take excessive computational resources to respond. You end up paying for stuff that either took longer than required or that doesn’t satisfy your request and you are stuck for the bill anyway.

I like to say at my speaking engagements that prompts and dealing with generative AI is like a box of chocolates. You never know exactly what you are going to get when you enter prompts. The generative AI is devised with a probabilistic and statistical underpinning which pretty much guarantees that the output produced will vary each time. In the parlance of the AI field, we say that generative AI is considered non-deterministic.

My point is that, unlike other apps or systems that you might use, you cannot fully predict what will come out of generative AI when inputting a particular prompt. You must remain flexible. You must always be on your toes. Do not fall into the mental laziness of assuming that the generative AI output will always be correct or apt to your query. It won’t be.

Write that down on a handy snip of paper and tape it onto your laptop or desktop screen.

Exploring The Practical Day-to-Day Use Of LTM

We are ready to dig more deeply into the LTM prompting strategy.

In the research study that I cited above as an in-depth examination of LTM, they provided various examples including one about Elsa and Anna and their collected apples. Elsa has five apples, while Anna has two more apples than Elsa. The problem to be solved is how many apples they have in total. I’m sure you recognize this as a typical arithmetic word problem that you had while in school.

Let’s take a look at this example.

They entered a prompt that offered no particular suggestions about how to solve the problem and wanted to see how the problem would be solved:

  • Prompt : “Q: Elsa has 5 apples. Anna has 2 more apples than Elsa. How many apples do they have together?”
  • Generative AI generated response : “A: Anna has 2 more apples than Elsa. So Anna has 2 + 5 = 7 apples. So Elsa and Anna have 5 + 7 = 12 apples together. The answer is: 12.”

The answer is correct. I’m sure you already figured out the answer in your head. Proof that the math you learned in school has finally paid off.

Next, they used an overarching prompt to invoke an LTM approach, which then spurred the generative AI accordingly. You can see what happened as a result:

  • Generative AI generated response : “A: Let’s break down this problem: 1. How many apples does Anna have? 2. How many apples do they have together?”
  • “1. Anna has 2 more apples than Elsa. So Anna has 2 + 5 = 7 apples.”
  • “2. Elsa and Anna have 5 + 7 = 12 apples together.”
  • “The answer is: 12.”

Here’s what the researchers said about this:

  • “The demonstration exemplar consists of two parts. The first part (starting from “Let’s break down this problem”) shows how the original problem can be decomposed into simpler subproblems, and the second part shows how the subproblems are solved in sequence. Note that this prompt combines decomposition and subproblem solving into a single pass. One may instead design two different prompts respectively for decomposition and subproblem solving, as the least-to-most prompts in the previous sections, to further improve performance.” (ibid).
  • “We also construct a chain-of-thought prompt as our baseline. It is derived from the least to-most prompt by removing the decomposition part. Overall, least-to-most prompting only slightly improves chain-of-thought prompting: from 60.97% to 62.39%. However, least-to-most prompting essentially improves chain-of-thought prompting in solving problems which need at least 5 steps to be solved: from 39.07% to 45.23%.” (ibid).

I’d like to provide some commentary about this.

In this case, the apple problem is quite obviously a simple one. I’m not knocking the problem. I’m merely emphasizing that with simple problems the odds are that using a LTM is probably not going to make a whale of a difference. As you likely observed, the correct answer was derived in both the case of not using LTM and when using LTM.

My recommendation is that you should aim to use LTM or MTL mainly when you have a tough problem. If the problem consists of a lot of steps and is hard to solve, I consider that type of problem to be a more suitable candidate. Just my suggestion. You can use LTM or MTL whenever you like.

Let’s next take a look at some homegrown examples of what happens when you use an LTM prompt while in a conversation with generative AI. I am going to use ChatGPT to showcase my examples. ChatGPT is a sensible choice in this case due to its immense popularity as a generative AI app. An estimated one hundred million weekly active users are said to be utilizing ChatGPT. That’s a staggering number.

A few quick comments before we launch into using ChatGPT.

If you are going to try to do the same prompts that I show here, realize that the probabilistic and statistical properties will likely produce slightly different results than what I show here. That’s the nature of generative AI and how it is devised.

You also should expect that different generative AI apps will respond in different ways. Not all generative AI apps are the same. The key is that sometimes a particular prompt will work in one generative AI app and not another. You will need to undertake a series of trial-and-error attempts to ferret this out.

There is also the timing factor. A prompt that worked today might not work the same way tomorrow. Most of the generative AI apps are continually being updated. The updates might alter internal facets that could change how the AI reacts to your prompting.

We are ready to get underway with ChatGPT.

Here we go.

We will start by using the apple problem again.

I present the problem and do not make use of any prompting adornments. I just say what the problem is and ask my question. This will be our baseline in this instance.

  • My entered prompt : “Elsa has 5 apples. Anna has 2 more apples than Elsa. How many apples do they have together?”
  • ChatGPT generated response : “Let's start by finding out how many apples Anna has. Since Anna has 2 more apples than Elsa, we add 2 to Elsa's 5 apples. Elsa's apples: 5. Anna's apples: 5 + 2 = 7. Total apples = Elsa's apples + Anna's apples = 5 + 7. Total apples = 12”

I will next use a prompt that invokes LTM. This is one such example. There are a multitude of ways to word this kind of prompt.

  • My entered prompt: “I want you to solve problems using a problem-solving technique known as least-to-most problem-solving. This means that you are to divide a problem into a series of subproblems, and then solve each of the subproblems one at a time. As you do so, provide advice to yourself that is guiding your problem-solving process. Start with light advice in terms of advisement, and then proceed to rachet up the advisement as you get into further steps. Make sure to show me the steps, subproblems, and the least-to-most advice. Tell me if you understand these instructions. Here is the first problem that I want you to solve: Elsa has 5 apples. Anna has 2 more apples than Elsa. How many apples do they have together?”
  • ChatGPT generated response:

“Yes, I understand the instructions. I will solve the problem using the least-to-most problem-solving technique.

“Step 1: Define the problem”

“Advice: Make sure to carefully define the problem based on the information provided.”

“We're tasked with determining the total number of apples Elsa and Anna have combined. Elsa initially possesses 5 apples, while Anna holds 2 more apples than Elsa.”

“Step 2: Identify subproblems”

“Advice: The problem requires using the number of apples that Elsa has to calculate the number of apples that Anna has.”

“To solve this problem, we need to ascertain Anna's apple count, given that it's dependent on Elsa's count. Then, we'll sum up their individual apple counts to derive the total.”

“Step 3: Solve subproblems”

“Advice: Divide the problem into subproblems. Solve each subproblem. Combine the results.”

“Subproblem 1: Calculate Anna's apples”

“Elsa has 5 apples. Anna, having 2 more apples than Elsa, must possess 5 + 2 = 7 apples.”

“Step 4: Perform calculations”

“Advice: Recap the results calculated so far.”

“Elsa's apples: 5”

“Anna's apples: 7”

“Step 5: Review”

“Advice: Review the progress made and doublecheck the interim results.”

“Anna's apple count stands at 7.”

“Step 6: Combine results”

“Advice: Summarize what has been calculated. Perform the final needed calculation.”

“Now, let's aggregate the apple counts of Elsa and Anna to determine the total.”

“Total apples: 5 + 7 = 12”

“Step 7: Conclusion”

“Advice: Indicate the final answer.”

“Thus, the combined total of Elsa and Anna's apples amounts to 12.”

“Step 8: Reflect on the journey

Advice: “By breaking down the problem into manageable steps and maintaining a disciplined approach, we arrived at the solution without any unnecessary distractions. This reinforces the importance of clarity and attentiveness in problem-solving endeavors.”

End of ChatGPT response

The good news is that the LTM prompting got us quite a lengthy depiction of the problem being solved. The bad news in this instance is that the problem was easy-peasy and we’ve basically used a bazooka to try and deal with an ant. The odds are we would be disturbed at the verboseness of this response to such a minuscule problem.

In any case, both the unadorned approach and the adorned approach landed on the same and correct answer.

I will try a somewhat more involved problem and see how the approach better presents itself.

Here’s the deal. I am contemplating taking a trip to Europe. I would like ChatGPT to help me with the planning of the trip. Let’s see what can be done:

  • My entered prompt: “I am thinking of taking a trip to Europe for about two weeks and am hoping to keep my spending to $3,000. I like Italy and France. Consider that planning for the potential trip is a type of problem to be solved. Use the least-to-most problem-solving technique that I described to you.”

“Yes, I understand the instructions. I will solve a problem using the least-to-most problem-solving technique, dividing the problem into subproblems and providing commentary guiding the process.”

“Let's begin.”

“Problem: Planning a vacation to Europe”

“Advice: Start by clarifying the main objective of the trip. Consider factors like interests, budget, and time constraints.”

“Decision: The main goal is to plan a vacation to Europe.”

“Subproblem 1: Decide on the destination”

“Advice: Let's start by narrowing down the options for the destination based on the expressed preferences.”

“Decision: Visit both Italy and France.”

“Subproblem 2: Determine the duration of the trip”

“Advice: Decide how long the stay in Europe will be.”

“Decision: “A two-week trip seems reasonable to visit both countries.”

“Subproblem 3: Set a budget”

“Advice: Review the budgeted amount.”

“Decision: The budget of $3000 will be for the entire trip, including flights, accommodation, and daily expenses.”

“Subproblem 4: Plan the itinerary”

“Advice: Create a draft itinerary of places to visit and activities to do.”

“Decision: Spend the first week in Italy, visiting Rome, Florence, and Venice, then head to Paris for the second week.”

“Subproblem 5: Book flights and accommodation”

“Advice: With the itinerary in place, book flights and accommodation.”

“Decision: Search for flights and hotels that fit within the budget and align with travel dates and destinations.”

“Subproblem 6: Plan activities and tours”

“Advice: Research and book activities and tours for each destination.”

“Decision: Prioritize iconic landmarks and cultural experiences, such as visiting the Colosseum in Rome and taking a wine tour in Tuscany.”

Subproblem 7: Arrange transportation within Europe

“Advice: Figure out how to get around within Europe, whether by train, bus, or rental car.”

“Decision: Purchase a Eurail pass for train travel between cities and use public transportation or walk for shorter distances.”

“Subproblem 8: Pack and prepare for the trip”

“Advice: Pack appropriately and take care of any necessary preparations before departure.”

“Decision: Make a packing list, gather essential documents like passports and travel insurance, and notify my bank of my travel plans.”

“This completes the least-to-most problem-solving process for planning a vacation to Europe. Each subproblem was identified, analyzed, and addressed in sequence, leading to a comprehensive plan for the trip.”

You can see how ChatGPT was generating advice for itself during the planning of my trip to Europe.

I found this useful since the advice served as an explanation associated with each of the decision steps that were made. Note that the problem to be solved in this instance was not a precise one, namely that, unlike the arithmetic word problem, there isn’t a specific right answer per se.

Generally, the LTM or MTL will be more applicable to problems that involve a precise answer. Open-ended problems are not as likely to benefit, though there is still an advantage to using these techniques even in that use case.

I had mentioned earlier that another means of using LTM would be for the user to make use of a series of prompts that are increasingly advising on generative AI. I opted to try this out and redid my European planning trip in that mode.

I asked generative AI to present me with its first-shot solution. I then gave my preferences about the cities to be visited and had the AI redo the solution. After seeing that response, I added more advice of my own, such as that I prefer trains over buses, I don’t like going to museums but do like going to natural landscapes like parks, and so on. I increasingly made my prompts more heavy-handed.

I’m elated to say that my potential trip to Europe is now well-planned. All I need to do is figure out the specific dates and make sure I’m clear at work to make the trip.

Wish me luck!

The famous American architect, R. Buckminster Fuller, said this about solving problems: “When I am working on a problem, I never think about beauty but when I have finished, if the solution is not beautiful, I know it is wrong.”

One potential means of solving problems and garnering beautiful or robust solutions is said to be via the use of problem-solving techniques such as least-to-most and most-to-least. You should consider using the LTM or MTL as a prompting approach when using generative AI.

My erstwhile suggestion is that you practice the LTM prompting technique first and try to hone the approach as befits your personal prompting style. Make it part of your personal repertoire. Some people are aware of various prompting strategies but don’t exercise them enough to feel comfortable using them. As they say, the best way to get to Carnegie Hall and the best way to be proficient in prompting is due to three vital words, practice, practice, practice.

A final word for today’s discussion will be a memorable quote from the distinguished Albert Einstein. Of the many clever and insightful remarks he had made, here’s one that you might not know and yet has a beauty all its own: “It's not that I'm so smart, it's just that I stay with problems longer” (per Einstein).

What is the lesson learned?

Make sure to stay with your prompting endeavors long enough that they become second nature. Try out a wide variety of prompting techniques. Be deeply versed. And, by the way, I’m guessing that Einstein would have been doing the same.

Lance Eliot

  • Editorial Standards
  • Reprints & Permissions
  • Link copied

Supporting next-generation educational programs that combine the metaverse experience with a problem-solving mindset

Supporting next-generation educational programs that combine the metaverse experience with a problem-solving mindset

Multidisciplinary professional services organization

Show resources

カーボンニュートラル社会の実現 エネルギービジネスの変革に向けたカウントダウン(pdf), creating social value - ey is fulfilling its corporate responsibilities through ey ripples, in which it leverages the professional knowledge of its people across various fields to carry out pro bono activities that benefit society., ey japan is playing its part by operating a next-generation educational program utilizing the latest technologies..

  • Controlling a self-made avatar within the metaverse provides children with an opportunity to think about how to communicate with others.
  • Using design thinking to find the best solutions to a problem.
  • Showing how a pro bono project for EY Ripples leverages how EY does business to create a positive impact in society.

Experiencing the metaverse and creating avatars using VR headsets and tablets

Experiencing the metaverse and creating avatars using VR headsets and tablets

The workshop enabled children to create and control their own avatars and to think about different ways to communicate with others.

This next-generation educational program is being carried out in conjunction with Education A³ of Fukuoka City (Representative Director: Yuichi Kusaba ) which is a Certified NPO Corporation. Education A³ is working to eliminate disparities within children’s education, particularly in the Fukuoka area, by operating alternative schools for children who are unable to attend mainstream education. The program aims to help these children nurture problem-solving abilities and ways of thinking that differ from what they would learn in mainstream classes.

It has four sessions and caters to students across a variety of age ranges, from the third grade of elementary school to high school. The first session was held at EY Digital Hub Fukuoka, facility established by EY to lead Japan’s digital transformation. Members of EY Strategy and Consulting’s Technology Consulting team provided a communication experience using the metaverse and virtual reality (VR).

The children were each provided with tablets to enter a virtual recreation of Fukuoka City’s Torikai Hachimangu shrine. They explored the shrine and its grounds using an avatar (a virtual character of themselves) which they created and took part in an information-gathering activity. They also used VR headsets to be more immersed in the virtual world, where they worked on clearing missions.

EY Japan also supported the building of the metaverse version of Torikai Hachimangu shrine that was used in the program. For c.1800 years, the shrine has been a center of faith and communication within the region so we gave thought to how to optimize the shrine in a way that would be relevant to the modern world.

EY Japan is also proposing and developing projects which unite cutting-edge technologies, including the metaverse, with our support for companies and organizations that are exploring new initiatives or are interested in merging real and digital environments. Building a metaverse version of Torikai Hachimangu shrine is just one example of our work.

The team from EY Japan used the same approach to create the metaverse experience for children as they do when giving a client demonstration in their everyday roles. Firstly, it was important that the children had a visceral experience of the metaverse by using a VR headset. Today, children are often referred to as digital natives and can quickly familiarize themselves with how to operate technology, with younger children tending to master it the fastest. One of the children at the session commented: “When I entered the metaverse, it was surprising at the start. But then it was fun, and I thought that modern technology is amazing.”

Yuichi Kusaba, Representative Director, Education A³

A particular highlight for the children was the time spent creating their own avatars. They were completely free to choose items such as their avatar’s face, hairstyle and clothing, making the avatar an aspirational model, rather than an accurate likeness of each child. Operating an avatar within the metaverse provided children who are unable to attend school with an opportunity to think about how to communicate with others.

Experiencing the opportunities for work and play in the metaverse helps to give children hope for the future. I also think that in an era of rapid change children can learn an important skill through early exposure to design thinking: they learn how to develop their own solution to a given problem. Yuichi Kusaba, Representative Director, Education A³

Working toward design thinking that gets to the heart of problem solving

Working toward design thinking that gets to the heart of problem solving

The design thinking workshop was a valuable learning opportunity, not only for the children but also for the EY team. We were able to adjust the workshop content based on the children’s level of engagement, and establish our fundamental approach to design thinking.

The second and subsequent sessions were held as online workshops about design thinking. Team members from EY wavespace™, an innovation support hub that facilitates collaboration between various stakeholders, provided opportunities to learn how to think in a way that gets to the heart of a problem and, in turn, to its solution.

Design thinking is a method of applying the thought patterns used by designers in business situations: finding the fundamental solution to an issue can be a source of innovation. Design includes elements of planning and conceptualization and design thinking is included in programs at major US universities as a method for innovative thinking.

The EY team acted as facilitators and led discussions on issues familiar to children. They helped organize the many ideas suggested by the children to solve the problem and encouraged them to continue their discussions. The children in each group then presented their proposed solution.

This was the children’s first experience of design thinking. The second and subsequent sessions focused on junior high school students, who exchanged opinions using an online conferencing system and an online whiteboard tool to post and develop ideas. Many of the children appeared to initially find this difficult so the team responded by adjusting the difficulty of the program. When the children gained a better understanding of the scenario, they were able to contribute and get more involved.

One of the participants commented, “This was the first time do this. I don’t usually get opportunities to think so deeply about a topic, so it was really fun.” Building a basic approach to design thinking with content easily understood by junior high school students also proved a learning experience for the EY Japan team.

As adults tend to view things through existing frameworks, it was striking how the children could come up with novel ideas that were free of bias.

Yosuke Amano , EY  wavespace™ Tokyo Leader

The children discussed creating new snacks suitable for field trips, generating far more innovative ideas than adults would.

A success that aligns with EY’s Purpose and how we do business

We want to combine new technologies like the metaverse with design thinking to enable children to find their own solutions to a problem.” This was the thinking behind the program and it was a project that also resonates with EY’s global shared purpose of Building a better working world. Innovation is generated through the intersection of many different approaches so, as well as being a pro bono project for the EY Ripples program, this was also an initiative that leveraged how EY does business to impact society. In this way, the program was a great success.

Yosuke Amano , EY  wavespace™ Tokyo Leader

Yosuke Amano , EY wavespace™ Tokyo Leader

EY wavespace™

EY wavespace™   brings together business, design and technology, enabling companies to accelerate transformation, drive innovation and create measurable outcomes. With human-centered design and collaboration at our core methodologies, we support our clients reimagine what’s possible and reframe their thinking to solve problems together.

EY is fulfilling its corporate responsibilities through EY Ripples, and EY Japan is playing its part by operating a next-generation educational program utilizing the latest technologies.

About this article

Connect with us

Our locations

EY Client Portal

Legal and privacy

EY refers to the global organization, and may refer to one or more, of the member firms of Ernst & Young Global Limited, each of which is a separate legal entity. Ernst & Young Global Limited, a UK company limited by guarantee, does not provide services to clients.

EY | Assurance | Consulting | Strategy and Transactions | Tax

EY is a global leader in assurance, consulting, strategy and transactions, and tax services. The insights and quality services we deliver help build trust and confidence in the capital markets and in economies the world over. We develop outstanding leaders who team to deliver on our promises to all of our stakeholders. In so doing, we play a critical role in building a better working world for our people, for our clients and for our communities.

EY refers to the global organization, and may refer to one or more, of the member firms of Ernst & Young Global Limited, each of which is a separate legal entity. Ernst & Young Global Limited, a UK company limited by guarantee, does not provide services to clients. For more information about our organization, please visit ey.com.

© 2020 EYGM Limited. All Rights Reserved.

EYG/OC/FEA no.

This material has been prepared for general informational purposes only and is not intended to be relied upon as accounting, tax, or other professional advice. Please refer to your advisors for specific advice.

EY logo

Welcome to EY.com

In addition to cookies that are strictly necessary to operate this website, we use the following types of cookies to improve your experience and our services: Functional cookies to enhance your experience (e.g. remember settings), and  Performance cookies to measure the website's performance and improve your experience . , and Marketing/Targeting cookies , which are set by third parties, allow us to execute marketing campaigns, manage our relationship with you, build a profile of your interests and provide you with content or service offerings in accordance with your preferences. 

We have detected that Do Not Track/Global Privacy Control is enabled in your browser; as a result, Marketing/Targeting cookies , which are set by third parties that allow us to execute marketing campaigns, manage our relationship with you, build a profile of your interests and provide you with content or service offerings in accordance with your preferences are automatically disabled.

You may withdraw your consent to cookies at any time once you have entered the website through a link in the privacy policy, which you can find at the bottom of each page on the website.

Review our  cookie policy  for more information.

Customize cookies

I decline optional cookies

  • Share full article

For more audio journalism and storytelling, download New York Times Audio , a new iOS app available for news subscribers.

The Culture Desk logo

  • April 2, 2024   •   7:05 Beyoncé’s New Album Reviewed
  • March 30, 2024   •   9:00 Solving the ‘3 Body Problem’
  • March 29, 2024   •   5:26 The Latest on Sean Combs’s Legal Woes
  • March 28, 2024   •   9:10 Before Beyoncé: Black Artists Who Crossed Over to Country
  • March 27, 2024   •   3:50 A Boxing Novel That Brings the Heat
  • March 22, 2024   •   7:47 New Music for Your Weekend
  • March 21, 2024   •   6:57 A Surreal New TV Series About Life, Love and Fruit
  • March 20, 2024   •   9:37 Curl Up With a Delicious Recipe
  • March 15, 2024   •   7:20 Kacey Musgraves Finds Inner Peace on Her New Album
  • March 14, 2024   •   5:47 5 Minutes to Love Jazz Flute
  • March 12, 2024   •   3:45 Tuxedos Stole the Show at This Year’s Oscars
  • March 11, 2024   •   9:13 Oscar Highlights: The Good, the Ken and the Naked

Solving the ‘3 Body Problem’

Unpacking netflix’s new hit with the times’s cosmic affairs correspondent..

Produced by Alex Barron

Edited by Lynn Levy

Engineered by Efim Shapiro

Featuring Dennis Overbye

The show “3 Body Problem” premiered on March 21 and quickly became one of Netflix’s most-watched titles. It is an adventure story about a group of scientists contending with an extraterrestrial threat. But despite its science fiction trappings, the show is often based in real — and complex — scientific concepts, whether string theory or nanomaterials. In this episode, Dennis Overbye, The Times’s cosmic affairs correspondent, breaks down some of the more brain-bending science behind “3 Body Problem.”

On today’s episode

what is a problem solving

Dennis Overbye is the cosmic affairs correspondent for The Times, covering physics and astronomy.

what is a problem solving

The New York Times Audio app is home to journalism and storytelling, and provides news, depth and serendipity. If you haven’t already, download it here — available to Times news subscribers on iOS — and sign up for our weekly newsletter.

Dennis Overbye is the cosmic affairs correspondent for The Times, covering physics and astronomy. More about Dennis Overbye

Advertisement

Netflix's hit sci-fi series '3 Body Problem' is based on a real math problem that is so complex it's impossible to solve

  • The three-body problem is a centuries-old physics question that puzzled Isaac Newton .
  • It describes the orbits of three bodies, like planets or stars, trapped in each other's gravity.
  • The problem is unsolvable and led to the development of chaos theory.

Insider Today

While Netflix's "3 Body Problem" is a science-fiction show, its name comes from a real math problem that's puzzled scientists since the late 1600s.

In physics, the three-body problem refers to the motion of three bodies trapped in each other's gravitational grip — like a three-star system.

It might sound simple enough, but once you dig into the mathematics, the orbital paths of each object get complicated very quickly.

Two-body vs. three- and multi-body systems

A simpler version is a two-body system like binary stars. Two-body systems have periodic orbits, meaning they are mathematically predictable because they follow the same trajectory over and over. So, if you have the stars' initial positions and velocities, you can calculate where they've been or will be in space far into the past and future.

However, "throwing in a third body that's close enough to interact leads to chaos," Shane Ross, an aerospace and ocean engineering professor at Virginia Tech, told Business Insider. In fact, it's nearly impossible to precisely predict the orbital paths of any system with three bodies or more.

While two orbiting planets might look like a ven diagram with ovular paths overlapping, the paths of three bodies interacting often resemble tangled spaghetti. Their trajectories usually aren't as stable as systems with only two bodies.

All that uncertainty makes what's known as the three-body problem largely unsolvable, Ross said. But there are certain exceptions.

The three-body problem is over 300 years old

The three-body problem dates back to Isaac Newton , who published his "Principia" in 1687.

In the book, the mathematician noted that the planets move in elliptical orbits around the sun. Yet the gravitational pull from Jupiter seemed to affect Saturn's orbital path.

Related stories

The three-body problem didn't just affect distant planets. Trying to understand the variations in the moon's movements caused Newton literal headaches, he complained.

But Newton never fully figured out the three-body problem. And it remained a mathematical mystery for nearly 200 years.

In 1889, a Swedish journal awarded mathematician Henri Poincaré a gold medal and 2,500 Swedish crowns, roughly half a year's salary for a professor at the time, for his essay about the three-body problem that outlined the basis for an entirely new mathematical theory called chaos theory .

According to chaos theory, when there is uncertainty about a system's initial conditions, like an object's mass or velocity, that uncertainty ripples out, making the future more and more unpredictable.

Think of it like taking a wrong turn on a trip. If you make a left instead of a right at the end of your journey, you're probably closer to your destination than if you made the mistake at the very beginning.

Can you solve the three-body problem?

Cracking the three-body problem would help scientists chart the movements of meteors and planets, including Earth, into the extremely far future. Even comparatively small movements of our planet could have large impacts on our climate, Ross said.

Though the three-body problem is considered mathematically unsolvable, there are solutions to specific scenarios. In fact, there are a few that mathematicians have found.

For example, three bodies could stably orbit in a figure eight or equally spaced around a ring. Both are possible depending on the initial positions and velocities of the bodies.

One way researchers look for solutions is with " restricted " three-body problems, where two main bodies (like the sun and Earth) interact and a third object with much smaller mass (like the moon) offers less gravitational interference. In this case, the three-body problem looks a lot like a two-body problem since the sun and Earth comprise the majority of mass in the system.

However, if you're looking at a three-star system, like the one in Netflix's show "3 Body Problem," that's a lot more complicated.

Computers can also run simulations far more efficiently than humans, though due to the inherent uncertainties, the results are typically approximate orbits instead of exact.

Finding solutions to three-body problems is also essential to space travel, Ross said. For his work, he inputs data about the Earth, moon, and spacecraft into a computer. "We can build up a whole library of possible trajectories," he said, "and that gives us an idea of the types of motion that are possible."

what is a problem solving

  • Main content

Receive great stories from around the world directly in your inbox.

Stay up to date about Global Voices and our mission. See our Privacy Policy for details. Newsletter powered by Mailchimp ( Privacy Policy  and  Terms ).

  • bahasa Indonesia

See all those languages up there? We translate Global Voices stories to make the world's citizen media available to everyone.

  • What Is Global Voices?
  • Partner with Global Voices
  • Translation Services
  • Arts & Culture
  • Breaking News
  • Citizen Media
  • Development
  • Digital Activism
  • Economics & Business
  • Environment
  • Ethnicity & Race
  • Freedom of Speech
  • Human Rights
  • Humanitarian Response
  • International Relations
  • Media & Journalism
  • Migration & Immigration
  • Photography
  • War & Conflict
  • Women & Gender

Solving the problem of animal cruelty in Trinidad & Tobago needs more than just legislation

' class=

Translations

what is a problem solving

Feature image of malnourished puppy via Canva Pro .

In April 2020, during the height of the COVID-19 pandemic, the black dog of Embacadere , a town on the outskirts of Trinidad’s southern city of San Fernando, pierced the hearts and minds of Trinidad and Tobago social media users after a video of three men brutally performing its hanging emerged on Facebook. Outrage was swift and widespread, with many activists calling for harsh punishment over what they felt was a needlessly cruel and despicable act.

It was not, however, the only one. The websites and social media channels of any local animal NGO or adoption group are typically awash with stories that are seemingly refreshed on a monthly, if not weekly, basis. Accounts of beatings, perpetually leashed dogs, and even kittens being shaken out of boxes from truck windows beg the question as to whether there is an epidemic of domestic animal abuse in Trinidad and Tobago. Even a quick Google search turns up a series of newspaper articles crying out for justice.

While the majority of animal crimes in the country are not as overtly cruel as the case of the black dog, one cannot deny that domestic animals are largely protected only by the good graces of animal lovers. Sara Maynard, a founding member of the Animal Welfare Network ( AWN ) and operations manager of the Trinidad and Tobago Society for the Prevention of Cruelty to Animals ( TTSPCA ), says TTSPCA shelters are currently running at full capacity, where they previously ran at three-quarter. “It is common to see boxes [of abandoned animals] left outside [our gates],” she laments.

These experiences are echoed by Elspeth Duncan, who runs a Tobago-based animal rescue/welfare NGO called Venus, Doggess of Love . Sadly, she says, “People see [neglect] as normal.” She recounts a situation involving a severely malnourished dog. “I went to the police with a picture [of the dog] and said, ‘What do you think?’ No flicker, no horror, nothing. And that is because it’s normal to see a mangy dog with tufts of fur and [assume] it is just a stray.”

Physical beatings or choppings are uncommon, but not unheard of. Duncan shared the story of an eight-month-old Siberian Husky that, in 2022, was shot with a pellet gun, then dragged to the road and beaten to death with a shovel. Poisonings are another unfortunate scene; dogs and cats are often at the mercy of disgruntled neighbours or farmers. Furthermore, when animals are either dumped or roam freely, they are at heightened risk of being poisoned.

Trinidad's Caroni Swamp , a popular location for dumping animals — especially when young — has been the location of mass cat poisonings over the years, and homeowners across the country can testify to neighbours poisoning their dogs or cats if they escape the confines of their yard. Duncan says that poisoning is perceived as “almost like getting rid of rats,” especially in Tobago, where the safety of livestock, a common income earner, is prioritised. There is also collateral damage to the bird population in areas where poison has been set down.

Animal activists have been campaigning for years to have animal protections properly enshrined in law. Shortly after the gruesome fate of the black dog, amendments were made to the Summary Offences Act (SOA) via the Miscellaneous Amendments Bill, and proclaimed by then-President Paula-Mae Weekes on May 11, 2020.

The key legislative amendments related to Sections 79, 80 and 83 of the SOA , with the major change being an increase in penalties for acts of cruelty toward animals. Offenders would face fines of up to TTD 100,000 (just under USD 15,000) and a year's jail time, up from TTD 400 (just under USD 60) and two months’ jail time.

Alongside this was an amendment to the Animals (Diseases and Importation) Act , which was intended to supersede the SOA provisions with more direct language and harsher penalties. The amendment, which was made after consultation with a coalition of activists, updated the then 65-year-old law with fines of up to TTD 200,000 (just under USD 30,000) and five years’ imprisonment for animal abuse and cruelty.

The Bill was championed by then Minister of Agriculture Clarence Rambharat, and was passed in Parliament on July 2, 2020, coming into effect in June the following year. While the Animals Act does not cover the full spectrum of cruelty like the laws in the United States and United Kingdom do, it covers the most important aspects.

In October 2020, the offenders involved in the hanging of the black dog were charged with its unlawful and malicious killing under Section 16 of the SOA, and sentenced to pay the then paltry TTD 400 fine or serve three months in prison. In court, their lawyer argued that they had acted out of compassion, a claim hotly contested on social media. Notably, they were not charged with an animal cruelty offence, contrary to Section 79 of the Act.

The contradicting legal provisions on animal cruelty and welfare insert a level of uncertainty into the law, which makes enforcement and protection difficult. As it stands, while the Animals Act repealed the animal cruelty provisions of the SOA, no amendments have been made to the penalties available therein for the Section 16 offence of the unlawful killing of an animal, creating an unfortunate legal anomaly in which one can cruelly ill-treat an animal and face a maximum fine of TTD 200,000 or five years in prison ( Animals Act ), or unlawfully and maliciously kill an animal and face a maximum penalty of TTD 1,000 or one year’s imprisonment (SOA).

While reflecting on that outcome in relation to the murder of the Husky, Duncan lamented in an editorial , “With legal outcomes like that, how can we have hope that justice will ever be served in [Trinidad and Tobago] when human beings commit such unimaginable atrocities against members of the animal kingdom?” Even with the strong arm of the Animals Act in place, some fear that — in the case of the Husky, at least – justice may have been evaded : a trial date was last set for August 2022, but nothing further has been heard since.

Since the Animals Act has come into effect, no offenders have been prosecuted for animal cruelty under this law — and since those who killed the black dog were charged under the SOA's Section 16 instead of Section 79, it is likely that Section 16 — as yet un-repealed — could be once again called into use.

Despite the TTSPCA's formal request for the regulations of the Animals Act — which falls under the purview of the Ministry of Agriculture, Land, and Fisheries — nothing has been forthcoming, even though standards of care were developed by the Animal Welfare Advisory Committee since 2020. Regulations would flesh out otherwise vague provisions in the current parent Act and make provisions to deal with specific, animal-related issues. They could also be more focused and easier to alter, as opposed to an Act of Parliament, which must go through the entire legislative process.

For the time being, activists must work with the current legislation. Though they consider it a hard-won victory, they are all too aware that legislation is only effective if enforced. According to activist Nalini Dial, president of Animals are Humans Too, “We have the legislation, but that’s it. Just sitting there.”

Dial worked with then-Commissioner of Police Gary Griffith to bring an animal cruelty unit to fruition. Under his direction, the Trinidad and Tobago Police Service (TTPS) made a commitment in April 2019 to enforce relevant laws relating to the cruel and inhumane treatment of animals, and promised to assign officers to work with communities and animal welfare groups to intervene under the law.

This promise was reinforced following a meeting with Animals are Humans Too in October 2019, at which Griffith noted that he had assigned two police officers per division — across all nine divisions — to assist animal welfare organisations in investigating and enforcing laws against animal cruelty. At the time, they were operating under the unamended SOA.

However, plans for the operationalisation for a specialised Animal Cruelty Unit never materialised during Griffith's tenure and have seemingly been abandoned since his departure from office. While Dial attests that the former commissioner “also suggested a court to deal with animal crimes only,” she maintains that “the police never really had officers interested in animal cruelty … they do not see it as a crime.”

Duncan, meanwhile, urges members of the public to drop any misgivings they may have towards the police with regard to animal crimes, as she was able to successfully report several. In one instance, she secured a police escort to feed a dog that had been leashed in its owner’s yard for days on end. In another, after an owner moved to a new home and left his dog leashed in the old yard, police intervened, though they were unable to locate the owner to place a formal charge.

“Do not be afraid!” Duncan says. “Be respectful and go with somebody if you must. Until people start reporting, police will not take it seriously. Don’t do nothing because of a myth that police will do nothing.”

Beyond legislation and enforcement, both of which are sorely lacking, long-term animal welfare also requires government investment and action that goes beyond legislative changes. These include creating a cultural shift, special funding and resourcing to reduce instances of animal neglect, and a multi-stakeholder approach to deal with issues that include police training and sensitisation. Animal welfare does not end at legislation and enforcement. If all the law does is charge offenders, the well-being of the animal after removal from the abusive home is not factored in. These pets often become burdens on already under-resourced shelters or get abandoned entirely. The state, therefore, needs to play a greater role in rehabilitation and care.

Veterinarian Dr. Shirelle Sammy says that not only does spaying and neutering pets curb overpopulation, it can also prevent roaming behaviours, provide long-term health benefits and ultimately, reduce animals’ suffering. Maynard agrees: “If you’re not producing unwanted litters, you won’t have animals dumped or poisoned.” In conjunction with AWN, the TTSPCA hosts a year-round spaying and neutering facility at a cost of TTD 300 (USD 40) per animal, working with vets country-wide — but education is key.

To this end, the TTSPCA has been collecting data on animal abuse, and much of it happens because of ignorance, for example, hunters starving their dogs prior to the season opening, because they think it will make them better trappers or people adopting pets without understanding how to care for them.

Another aspect of animal abuse is noise. Ear-splitting music at Carnival time, for instance, or explosions of fireworks at various celebrations throughout the year are major sources of stress for wild and domestic animals alike. Dial is one of the many voices calling for the government to either mandate the use of noiseless fireworks or ban them completely.

If Mahatma Gandhi was right , and a nation's moral progress can be judged by the way its animals are treated, Trinidad and Tobago can only improve from here.

The Bridge

The Bridge features personal essays, commentary, and creative non-fiction that illuminate differences in perception between local and international coverage of news events, from the unique perspective of members of the Global Voices community. Views expressed do not necessarily represent the opinion of the community as a whole. All Posts

  • Trinidad & Tobago

Creative Commons License

Support our work

Global Voices stands out as one of the earliest and strongest examples of how media committed to building community and defending human rights can positively influence how people experience events happening beyond their own communities and national borders.

Please consider making a donation to help us continue this work.

Recent Caribbean Stories

' src=

Half a century after first flight, Trinidad & Tobago Carnival designer Peter Minshall's seminal hummingbird continues to bring joy

' src=

Brian Heap, a generous teacher and inspiring figure in Jamaican theater, dies at age 73

' src=

Guyana’s rainforests play a central role in expanded eco-tourism efforts

Top world stories.

' src=

‘We march bravely': Transgender Day of Visibility marked in North Macedonia

' src=

Ukrainian men running from mobilization: An uncomfortable topic no-one wants to discuss

' src=

What is behind the suicides of LGBTQ+ people in refugee camps in the Netherlands?

Start the conversation.

Authors, please log in »

Name (required)

Email (will not be published) (required)

Subscribe to comments on this post via email

  • All comments are reviewed by a moderator . Do not submit your comment more than once or it may be identified as spam.
  • Please treat others with respect . Comments containing hate speech, obscenity, and personal attacks will not be approved.

Global Voices is supported by the efforts of our volunteer contributors, foundations, donors and mission-related services. For more information please read our Fundraising Ethics Policy .

Special thanks to our many sponsors and funders .

Please support our important work:

-->