loading

How it works

For Business

Join Mind Tools

Article • 8 min read

The FOCUS Model

A simple, efficient problem-solving approach.

By the Mind Tools Content Team

model for problem solving

Are your business processes perfect, or could you improve them?

In an ever-changing world, nothing stays perfect for long. To stay ahead of your competitors, you need to be able to refine your processes on an ongoing basis, so that your services remain efficient and your customers stay happy.

This article looks the FOCUS Model – a simple quality-improvement tool that helps you do this.

About the Model

The FOCUS Model, which was created by the Hospital Corporation of America (HCA), is a structured approach to Total Quality Management (TQM) , and it is widely used in the health care industry.

The model is helpful because it uses a team-based approach to problem solving and to business-process improvement, and this makes it particularly useful for solving cross-departmental process issues. Also, it encourages people to rely on objective data rather than on personal opinions, and this improves the quality of the outcome.

It has five steps:

  • F ind the problem.
  • O rganize a team.
  • C larify the problem.
  • U nderstand the problem.
  • S elect a solution.

Applying the FOCUS Model

Follow the steps below to apply the FOCUS Model in your organization.

Step 1: Find the Problem

The first step is to identify a process that needs to be improved. Process improvements often follow the Pareto Principle , where 80 percent of issues come from 20 percent of problems. This is why identifying and solving one real problem can significantly improve your business, if you find the right problem to solve.

According to a popular analogy, identifying problems is like harvesting apples. At first, this is easy – you can pick apples up from the ground and from the lower branches of the tree. But the more fruit you collect, the harder it becomes. Eventually, the remaining fruit is all out of reach, and you need to use a ladder to reach the topmost branches.

Start with a simple problem to get the team up to speed with the FOCUS method. Then, when confidence is high, turn your attention to more complex processes.

If the problem isn't obvious, use these questions to identify possible issues:

  • What would our customers want us to improve?
  • How can we improve quality ?
  • What processes don't work as efficiently as they could?
  • Where do we experience bottlenecks in our processes?
  • What do our competitors or comparators do that we could do?
  • What frustrates and irritates our team?
  • What might happen in the future that could become a problem for us?

If you have several problems that need attention, list them all and use Pareto Analysis , Decision Matrix Analysis , or Paired Comparison Analysis to decide which problem to address first. (If you try to address too much in one go, you'll overload team members and cause unnecessary stress.)

Step 2: Organize a Team

Your next step is to assemble a team to address the problem.

Where possible, bring together team members from a range of disciplines – this will give you a broad range of skills, perspectives, and experience to draw on.

Select team members who are familiar with the issue or process in hand, and who have a stake in its resolution. Enthusiasm for the project will be greatest if people volunteer for it, so emphasize how individuals will benefit from being involved.

If your first choice of team member isn't available, try to appoint someone close to them, or have another team member use tools like Perceptual Positioning and Rolestorming to see the issue from their point of view.

Keep in mind that a diverse team is more likely to find a creative solution than a group of people with the same outlook.

Step 3: Clarify the Problem

Before the team can begin to solve the problem, you need to define it clearly and concisely.

According to " Total Quality Management for Hospital Nutrition Services ," a key text on the FOCUS Model, an enthusiastic team may be keen to attack an "elephant-sized" problem, but the key to success is to break it down into "sushi-sized" pieces that can be analyzed and solved more easily.

Use the Drill Down technique to break big problems down into their component parts. You can also use the 5 Whys Technique , Cause and Effect Analysis , and Root Cause Analysis to get to the bottom of a problem.

Record the details in a problem statement, which will then serve as the focal point for the rest of the exercise ( CATWOE can help you do this effectively.) Focus on factual events and measurable conditions such as:

  • Who does the problem affect?
  • What has happened?
  • Where is it occurring?
  • When does it happen?

The problem statement must be objective, so avoid relying on personal opinions, gut feelings, and emotions. Also, be on guard against "factoids" – statements that appear to be facts, but that are really opinions that have come to be accepted as fact.

Step 4: Understand the Problem

Once the problem statement has been completed, members of the team gather data about the problem to understand it more fully.

Dedicate plenty of time to this stage, as this is where you will identify the fundamental steps in the process that, when changed, will bring about the biggest improvement.

Consider what you know about the problem. Has anyone else tried to fix a similar problem before? If so, what happened, and what can you learn from this?

Use a Flow Chart or Swim Lane Diagram to organize and visualize each step; this can help you discover the stage at which the problem is happening. And try to identify any bottlenecks or failures in the process that could be causing problems.

As you develop your understanding, potential solutions to the problem may become apparent. Beware of jumping to "obvious" conclusions – these could overlook important parts of the problem, and could create a whole new process that fails to solve the problem.

Generate as many possible solutions as you can through normal structured thinking, brainstorming , reverse brainstorming , and Provocation . Don't criticize ideas initially – just come up with lots of possible ideas to explore.

Step 5: Select a Solution

The final stage in the process is to select a solution.

Use appropriate decision-making techniques to select the most viable option. Decision Trees , Paired Comparison Analysis , and Decision Matrix Analysis are all useful tools for evaluating your options.

Once you've selected an idea, use tools such as Risk Analysis , "What If" Analysis , and the Futures Wheel to think about the possible consequences of moving ahead, and make a well-considered go/no-go decision to decide whether or not you should run the project.

People commonly use the FOCUS Model in conjunction with the Plan-Do-Check-Act cycle. Use this approach to implement your solutions in a controlled way.

The FOCUS Model is a simple quality-improvement tool commonly used in the health care industry. You can use it to improve any process, but it is particularly useful for processes that span different departments.

The five steps in FOCUS are as follows:

People often use the FOCUS Model in conjunction with the Plan-Do-Check-Act cycle, which allows teams to implement their solution in a controlled way.

Bataldan, P. (1992). 'Building Knowledge for Improvement: an Introductory Guide to the Use of FOCUS-PDCA,' Nashville: TN Quality Resource Group, Hospital Corporation of America.

Schiller, M., Miller-Kovach, M., and Miller-Kovach, K. (1994). 'Total Quality Management for Hospital Nutrition Services,' Aspen Publishers Inc. Available here .

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Top tips for successful networking.

These Suggestions Will Help You Get Your Approach to Networking Off to a Great Start

Expert Interviews

Great at Work

Morten Hansen

Add comment

Comments (0)

Be the first to comment!

model for problem solving

Team Management

Learn the key aspects of managing a team, from building and developing your team, to working with different types of teams, and troubleshooting common problems.

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article amtbj63

SWOT Analysis

Article a4wo118

SMART Goals

Mind Tools Store

About Mind Tools Content

Discover something new today

How to stop procrastinating.

Overcoming the Habit of Delaying Important Tasks

What Is Time Management?

Working Smarter to Enhance Productivity

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Creating the conditions for high performance.

Building a high-performing team

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

model for problem solving

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

model for problem solving

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

model for problem solving

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

model for problem solving

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

model for problem solving

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

model for problem solving

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Six problem-solving mindsets for very uncertain times

Great problem solvers are made, not born. That’s what we’ve found after decades of problem solving with leaders across business, nonprofit, and policy sectors. These leaders learn to adopt a particularly open and curious mindset, and adhere to a systematic process for cracking even the most inscrutable problems. They’re terrific problem solvers under any conditions. And when conditions of uncertainty are at their peak, they’re at their brilliant best.

Six mutually reinforcing approaches underly their success: (1) being ever-curious about every element of a problem; (2) being imperfectionists , with a high tolerance for ambiguity; (3) having a “dragonfly eye” view of the world, to see through multiple lenses; (4) pursuing occurrent behavior and experimenting relentlessly; (5) tapping into the collective intelligence , acknowledging that the smartest people are not in the room; and (6) practicing “show and tell” because storytelling begets action (exhibit).

Here’s how they do it.

1. Be ever-curious

As any parent knows, four-year-olds are unceasing askers. Think of the never-ending “whys” that make little children so delightful—and relentless. For the very young, everything is new and wildly uncertain. But they’re on a mission of discovery, and they’re determined to figure things out. And they’re good at it! That high-energy inquisitiveness is why we have high shelves and childproof bottles.

When you face radical uncertainty, remember your four-year-old or channel the four-year-old within you. Relentlessly ask, “Why is this so?” Unfortunately, somewhere between preschool and the boardroom, we tend to stop asking. Our brains make sense of massive numbers of data points by imposing patterns that have worked for us and other humans in the past. That’s why a simple technique, worth employing at the beginning of problem solving, is simply to pause and ask why conditions or assumptions are so until you arrive at the root of the problem. 1 This approach was originally developed by Sakichi Toyoda, the founder of Toyota.

Natural human biases in decision making, including confirmation, availability, and anchoring biases, often cause us to shut down the range of solutions too early. 2 Daniel Kahneman, Thinking, Fast and Slow , New York, NY: Farrar, Straus and Giroux, 2011. Better—and more creative—solutions come from being curious about the broader range of potential answers.

One simple suggestion from author and economist Caroline Webb to generate more curiosity in team problem solving is to put a question mark behind your initial hypotheses or first-cut answers. This small artifice is surprisingly powerful: it tends to encourage multiple solution paths and puts the focus, correctly, on assembling evidence. We also like thesis/antithesis, or red team/blue team, sessions, in which you divide a group into opposing teams that argue against the early answers—typically, more traditional conclusions that are more likely to come from a conventional pattern. Why is this solution better? Why not that one? We’ve found that better results come from embracing uncertainty. Curiosity is the engine of creativity.

We have to be comfortable with estimating probabilities to make good decisions, even when these guesses are imperfect. Unfortunately, we have truckloads of evidence showing that human beings aren’t good intuitive statisticians.

2. Tolerate ambiguity—and stay humble!

When we think of problem solvers, many of us tend to picture a poised and brilliant engineer. We may imagine a mastermind who knows what she’s doing and approaches a problem with purpose. The reality, though, is that most good problem solving has a lot of trial and error; it’s more like the apparent randomness of rugby than the precision of linear programming. We form hypotheses, porpoise into the data, and then surface and refine (or throw out) our initial guess at the answer. This above all requires an embrace of imperfection and a tolerance for ambiguity—and a gambler’s sense of probabilities.

The real world is highly uncertain. Reality unfolds as the complex product of stochastic events and human reactions. The impact of COVID-19 is but one example: we address the health and economic effects of the disease, and their complex interactions, with almost no prior knowledge. We have to be comfortable with estimating probabilities to make good decisions, even when these guesses are imperfect. Unfortunately, we have truckloads of evidence showing that human beings aren’t good intuitive statisticians. Guesses based on gut instinct can be wildly wrong. That’s why one of the keys to operating in uncertain environments is epistemic humility, which Erik Angner defines as “the realization that our knowledge is always provisional and incomplete—and that it might require revision in light of new evidence.” 3 Erik Angner, “Epistemic humility—knowing your limits in a pandemic,” Behavioral Scientist , April 13, 2020, behavioralscientist.org.

Recent research shows that we are better at solving problems when we think in terms of odds rather than certainties. 4 Annie Duke, Thinking in Terms of Bets: Making Smarter Decisions When You Don’t Have All the Facts , New York, NY: Portfolio/Penguin, 2018. For example, when the Australian research body Commonwealth Scientific and Industrial Research Organisation (CSIRO), which owned a core patent on the wireless internet protocol, sought royalties from major companies, it was initially rebuffed. The CSIRO bet that it could go to court to protect its intellectual property because it estimated that it needed only 10 percent odds of success for this to be a good wager, given the legal costs and likely payoff. It improved its odds by picking the weakest of the IP violators and selecting a legal jurisdiction that favored plaintiffs. This probabilistic thinking paid off and eventually led to settlements to CSIRO exceeding $500 million. 5 CSIRO briefing to US Government, December 5, 2006. A tolerance for ambiguity and a willingness to play the odds helped the organization feel its way to a good solution path.

To embrace imperfectionism with epistemic humility, start by challenging solutions that imply certainty. You can do that in the nicest way by asking questions such as “What would we have to believe for this to be true?” This brings to the surface implicit assumptions about probabilities and makes it easier to assess alternatives. When uncertainty is high, see if you can make small moves or acquire information at a reasonable cost to edge out into a solution set. Perfect knowledge is in short supply, particularly for complex business and societal problems. Embracing imperfection can lead to more effective problem solving. It’s practically a must in situations of high uncertainty, such as the beginning of a problem-solving process or during an emergency.

Good problem solving typically involves designing experiments to reduce key uncertainties. Each move provides additional information and builds capabilities.

Would you like to learn more about our Strategy & Corporate Finance Practice ?

3. take a dragonfly-eye view.

Dragonfly-eye perception is common to great problem solvers. Dragonflies have large, compound eyes, with thousands of lenses and photoreceptors sensitive to different wavelengths of light. Although we don’t know exactly how their insect brains process all this visual information, by analogy they see multiple perspectives not available to humans. The idea of a dragonfly eye taking in 360 degrees of perception 6 Philip Tetlock and Dan Gardner, Superforecasting: The Art and Science of Prediction , New York, NY: Crown, 2015. is an attribute of “superforecasters”—people, often without domain expertise, who are the best at forecasting events.

Think of this as widening the aperture on a problem or viewing it through multiple lenses. The object is to see beyond the familiar tropes into which our pattern-recognizing brains want to assemble perceptions. By widening the aperture, we can identify threats or opportunities beyond the periphery of vision.

Consider the outbreak of HIV in India in the early 1990s—a major public-health threat. Ashok Alexander, director of the Bill & Melinda Gates Foundation’s India Aids Initiative, provided a brilliant example of not just vision but also dragonfly vision. Facing a complex social map with a rapidly increasing infection rate, he widened the problem’s definition, from a traditional epidemiological HIV transmission model at known “hot spots,” to one in which sex workers facing violence were made the centerpiece.

This approach led to the “Avahan solution,” which addressed a broader set of leverage points by including the sociocultural context of sex work. The solution was rolled out to more than 600 communities and eventually credited with preventing 600,000 infections. The narrow medical perspective was sensible and expected, but it didn’t tap into the related issue of violence against sex workers, which yielded a richer solution set. Often, a secret unlocks itself only when one looks at a problem from multiple perspectives, including some that initially seem orthogonal.

The secret to developing a dragonfly-eye view is to “anchor outside” rather than inside when faced with problems of uncertainty and opportunity. Take the broader ecosystem as a starting point. That will encourage you to talk with customers, suppliers, or, better yet, players in a different but related industry or space. Going through the customer journey with design-thinking in mind is another powerful way to get a 360-degree view of a problem. But take note: when decision makers face highly constrained time frames or resources, they may have to narrow the aperture and deliver a tight, conventional answer.

Want better strategies? Become a bulletproof problem solver

Want better strategies? Become a bulletproof problem solver

4. pursue occurrent behavior.

Occurrent behavior is what actually happens in a time and place, not what was potential or predicted behavior. Complex problems don’t give up their secrets easily. But that shouldn’t deter problem solvers from exploring whether evidence on the facets of a solution can be observed, or running experiments to test hypotheses. You can think of this approach as creating data rather than just looking for what has been collected already. It’s critical for new market entry—or new market creation. It also comes in handy should you find that crunching old data is leading to stale solutions.

Most of the problem-solving teams we are involved with have twin dilemmas of uncertainty and complexity, at times combined as truly “wicked problems.” 7 A term coined in a now famous 1973 article: Horst W. J. Rittel and Melvin Webber, “Dilemmas in a general theory of planning,” Policy Sciences , 1973, Number 4, pp. 155–69. For companies ambitious to win in the great unknown in an emerging segment—such as electric cars or autonomous vehicles, where the market isn’t fully established—good problem solving typically involves designing experiments to reduce key uncertainties, not just relying on existing data. Each move (such as buying IP or acquiring a component supplier) and each experiment (including on-road closed tests) not only provides additional information to make decisions but also builds capabilities and assets that support further steps. Over time, their experiments, including alliances and acquisitions, come to resemble staircases that lead to either the goal or to abandonment of the goal. Problem-solving organizations can “bootstrap” themselves into highly uncertain new spaces, building information, foundational assets, and confidence as they take steps forward.

Risk-embracing problem solvers find a solution path by constantly experimenting. Statisticians use the abbreviation EVPI—the expected value of perfect information—to show the value of gaining additional information that typically comes from samples and experiments, such as responses to price changes in particular markets. A/B testing is a powerful tool for experimenting with prices, promotions, and other features and is particularly useful for digital marketplaces and consumer goods. Online marketplaces make A/B testing easy. Yet most conventional markets also offer opportunities to mimic the market’s segmentation and use it to test different approaches.

The mindset required to be a restless experimenter is consistent with the notion in start-ups of “failing fast.” It means that you get product and customer affirmation or rejection quickly through beta tests and trial offerings. Don’t take a lack of external data as an impediment—it may actually be a gift, since purchasable data is almost always from a conventional way of meeting needs, and is available to your competitors too. Your own experiments allow you to generate your own data; this gives you insights that others don’t have. If it is difficult (or unethical) to experiment, look for the “natural experiments” provided by different policies in similar locations. An example would be to compare outcomes in twin cities, such as Minneapolis–St. Paul.

It’s a mistake to think that your team has the smartest people in the room. They aren’t there. They’re invariably somewhere else. Nor do they need to be there if you can access their intelligence via other means.

5. Tap into collective intelligence and the wisdom of the crowd

Chris Bradley, a coauthor of Strategy Beyond the Hockey Stick , 8 Chris Bradley, Marin Hirt, and Sven Smit, Strategy Beyond the Hockey Stick: People, Probabilities, and Big Moves to Beat the Odds , Hoboken, NJ: Wiley, 2018. observed that “it’s a mistake to think that on your team you have the smartest people in the room. They aren’t there. They’re invariably somewhere else.” 9 For more from Chris Bradley, in a conversation with Rob McLean, see “ Want better strategies? Become a bulletproof problem solver ,” August 2019. Nor do they need to be there if you can access their intelligence via other means. In an ever-changing world where conditions can evolve unpredictably, crowdsourcing invites the smartest people in the world to work with you. For example, in seeking a machine-learning algorithm to identify fish catch species and quantities on fishing boats, the Nature Conservancy (TNC) turned to Kaggle and offered a $150,000 prize for the best algorithm. This offer attracted 2,293 teams from all over the world. TNC now uses the winning algorithm to identify fish types and sizes caught on fishing boats in Asia to protect endangered Pacific tuna and other species.

Crowdsourced problem solving is familiar in another guise: benchmarking. When Sir Rod Carnegie was CEO of Conzinc Riotinto Australia (CRA), he was concerned about the costs of unscheduled downtime with heavy trucks, particularly those requiring tire changes. He asked his management team who was best in the world at changing tires; their answer was Formula One, the auto racing competition. A team traveled to the United Kingdom to learn best practice for tire changes in racetrack pits and then implemented what it learned thousands of miles away, in the Pilbara region of Western Australia. The smartest team for this problem wasn’t in the mining industry at all.

Of course, while crowdsourcing can be useful when conventional thinking yields solutions that are too expensive or incomplete for the challenge at hand, it has its limitations. Good crowdsourcing takes time to set up, can be expensive, and may signal to your competitors what you are up to. Beware of hidden costs, such as inadvertently divulging information and having to sieve through huge volumes of irrelevant, inferior suggestions to find the rare gem of a solution.

Accept that it’s OK to draw on diverse experiences and expertise other than your own. Start with brainstorming sessions that engage people from outside your team. Try broader crowdsourcing competitions to generate ideas. Or bring in deep-learning talent to see what insights exist in your data that conventional approaches haven’t brought to light. The broader the circles of information you access, the more likely it is that your solutions will be novel and creative.

Rookie problem solvers show you their analytic process and math to convince you they are clever. Seasoned problem solvers show you differently.

6. Show and tell to drive action

We started our list of mindsets with a reference to children, and we return to children now, with “show and tell.” As you no doubt remember—back when you were more curious!—show and tell is an elementary-school activity. It’s not usually associated with problem solving, but it probably piqued your interest. In fact, this approach is critical to problem solving. Show and tell is how you connect your audience with the problem and then use combinations of logic and persuasion to get action.

The show-and-tell mindset aims to bring decision makers into a problem-solving domain you have created. A team from the Nature Conservancy, for instance, was presenting a proposal asking a philanthropic foundation to support the restoration of oyster reefs. Before the presentation, the team brought 17 plastic buckets of water into the boardroom and placed them around the perimeter. When the foundation’s staff members entered the room, they immediately wanted to know what the buckets were for. The team explained that oyster-reef restoration massively improves water quality because each oyster filters 17 buckets of water per day. Fish stocks improve, and oysters can also be harvested to help make the economics work. The decision makers were brought into the problem-solving domain through show and tell. They approved the funding requested and loved the physical dimension of the problem they were part of solving.

Rookie problem solvers show you their analytic process and mathematics to convince you that they are clever. That’s sometimes called APK, the anxious parade of knowledge. But seasoned problem solvers show you differently. The most elegant problem solving is that which makes the solution obvious. The late economist Herb Simon put it this way: “Solving a problem simply means representing it so as to make the solution transparent.” 10 Herbert Simon, The Sciences of the Artificial , Cambridge, MA: MIT Press, 1969.

To get better at show and tell, start by being clear about the action that should flow from your problem solving and findings: the governing idea for change. Then find a way to present your logic visually so that the path to answers can be debated and embraced. Present the argument emotionally as well as logically, and show why the preferred action offers an attractive balance between risks and rewards. But don’t stop there. Spell out the risks of inaction, which often have a higher cost than imperfect actions have.

The mindsets of great problem solvers are just as important as the methods they employ. A mindset that encourages curiosity, embraces imperfection, rewards a dragonfly-eye view of the problem, creates new data from experiments and collective intelligence, and drives action through compelling show-and-tell storytelling creates radical new possibilities under high levels of unpredictability. Of course, these approaches can be helpful in a broad range of circumstances, but in times of massive uncertainty, they are essential.

Charles Conn is an alumnus of McKinsey’s Sydney office and is a board member of Patagonia and former CEO of the Rhodes Trust. Robert McLean is an alumnus of the Sydney office and is the advisory-board chair of the Nature Conservancy Australia. They are the authors of Bulletproof Problem Solving: The One Skill That Changes Everything (Wiley, 2018).

This article was edited by David Schwartz, an executive editor in the Tel Aviv office.

Explore a career with us

Related articles.

Want better strategies? Become a bulletproof problem solver

Strategy to beat the odds

Dwight Eisenhower

Dwight Eisenhower: Lessons from the ‘balancer in chief’

Logo for Open Oregon Educational Resources

10 Modeling Problem Solving

We’ve discussed in previous chapters how part of a tutor’s task is to model good learning habits. When tutors are organized, use good time management, and leverage resources, we demonstrate the skills that students can use to be successful learners.

Problem-solving is an additional skill that tutors model for students. An organized and- intentional problem-solving approach helps us to efficiently work through challenges, and many of us effectively problem solve without much thought given to our approach. 1 However, it makes sense to take a step back and do our best to model problem-solving best-practices. Remember that repeated demonstration of a tutor’s problem-solving strategies can help students learn from our example.

We know the tutor’s role is not to solve a student’s problem for them. How do we model good problem-solving, without actually solving the problem ourselves? It’s tricky, but not impossible. We can empower students to work their way through any problem by asking good questions and walking them through the steps of the process.

The Rational Problem-Solving Process

Problem-solving is something many of us have taught ourselves through practice. However, there are many scholars and professionals who have examined and broken down effective problem-solving strategies into a series of logical steps. 2 We can check our own process by reflecting on what has been written about best-practices in problem-solving, and maybe make changes to be more consistent and effective. This can better prepare tutors to guide a student through the process when we apply it in a tutoring session.

Step 1: Define the Problem

It may seem obvious to state that the first step in solving a problem is to notice that we have a problem. Unless we take time to understand precisely what is wrong, however, we may find ourselves creating a solution that doesn’t actually fix anything. It’s very common to dive straight into devising a solution only to find that we’ve solved the wrong problem. Alternatively, we might develop a solution only to discover that the real problem is bigger than we thought.

A good practice for starting out is to try to define the problem in words. By writing or stating a problem definition, we’re challenged to identify the root cause, and this information can guide us in developing effective solutions.

In a tutoring session, sometimes the problem can take a variety of forms. The problem could be:

  • the literal problem given in a student’s homework assignment (a word problem in math, or a case study in biology, for example.)
  • a lack of clarity in assignment instructions.
  • the student not having a strategy for planning a project or starting a paper.
  • the student lacking confidence to tackle their homework or study independently

Keep in mind that the form the “problem” takes will change based on the student’s needs and goals. If the problem is that the student doesn’t understand something, the first step is to identify precisely what they don’t understand. If the problem is that something is missing, then understanding exactly what necessary parts are missing is the first step.

In a tutoring session this may mean asking the student to start the process, or begin describing the concept from the beginning, until they reach the point where things become unclear. Together, you can determine where the gaps are, and begin to develop a problem definition.

Step 2: Pull from Existing Knowledge

After we’ve identified and defined the problem, the next step is to ask ourselves what we already know about the situation. Take an inventory. What information do we already have? What can we learn from the context? What resources have we been given?

When working with a student, pulling from existing knowledge might involve reviewing the concepts already covered and the student’s existing knowledge of the course material. It may also mean reaching into material and experiences outside of the student’s course.

Some helpful questions to guide this step include:

  • What does the student know about topics related to the course material?
  • What experience might the student have from prior courses?
  • In what context might the student have heard these ideas discussed in their everyday lives or in popular culture?

When we encourage students to step back and really take account of everything they already know about the problem and its context, they can be surprised at how much knowledge they actually bring.

Step 3: Refer to support materials

Once we’ve pulled from the knowledge we already have, we can expand our search for supporting knowledge to outside resources. Are there reference materials we can access? Are there experts we can consult?

The first thing we can encourage students to do is to refer to their course texts, notes, study guides, and materials provided by the class instructor. These are often the best places to start because they’re most likely to provide relevant information. Once these resources have been referenced, we can also encourage students to look for information and guidance from other academic resources.

Students often forget that they can reference what others have written about their problem. Outside textbooks and supporting texts may offer similar ideas presented in a different way, and this could help the student approach the problem with new understanding or perspective. Online research and reference materials are good places to look for clarification of rules, theories, laws, formulas, processes, and examples. While these sources may not be quite as specific to a student’s class assignment, they can sometimes provide confirmation or clarity in areas where a student might need it.

Students should be made to feel free to leverage other academic supports as well. They are already leveraging one aspect of this support when they come to see a tutor. Other supports may include making use of the library or computer center, visiting their instructor’s office hours to ask questions, or even reaching out to other classmates. It’s always helpful for tutors to remind the student that these other supports are available and to encourage them to use these resources.

If a student is unsure or intimidated by contacting an instructor or a classmate, or is uncomfortable learning how to use other support resources, encouragement from a tutor can often be the nudge a student needs. Remind them of these supports and offer to help them access them where appropriate.

Step 4: Brainstorm Solutions

There’s usually more than one way to solve a problem, and it’s helpful to brainstorm multiple solutions to find the one that works best.

It’s important that tutors allow students to take an active role in developing their own solutions to the problem. This is where our Socratic questioning skills become really crucial and can help the students to apply what they know to the problem they’ve identified. The tutor’s role here is to facilitate the solution-generating process, contributing where appropriate, and helping to guide the student in a productive direction.

It is possible that the student will suggest a solution that we know will not solve the problem. Depending on the nature and scale of the problem, it may not always be appropriate for us to tell the student that we think it won’t work. Guiding the student through the problem-solving process is about helping students to engage with the process itself. That way, they can feel confident applying it on their own, even when a helpful tutor isn’t around to give hints. It’s up to each tutor in each situation to decide when it is appropriate to expedite the process by providing insights into solutions, and when it is best to allow students to test their solutions to determine their effectiveness.

Step 5: Test a Solution

Choose a solution and try it out. Maybe it will work! Maybe it doesn’t. Having a variety of solutions to try is why we brainstorm more than one. Though trial and error can sometimes feel frustrating, it is in the testing of our solutions that we often learn the most. We’re able to better understand the parts that work, the parts that don’t, and hopefully learn the reasons why. This can result in solutions that are more efficient and better suited to our needs.

Solution-testing is an opportunity for students to learn from mistakes in a safe, low-risk way. Often mistakes in class result in deducted points, a bad grade, or maybe an embarrassing moment in from t of classmates. As a guide through the problem-solving process, tutors can help students to see mistakes as necessary and helpful steps on the way to a solution that works, rather than as failures. It’s important that the tutor help the student see mistakes as progress, especially when a student becomes discouraged. This helps the student maintain a growth mindset while identifying ways to improve.

Step 6: Revising the Solution

When a solution doesn’t work, it may not mean the whole idea was bad. Maybe it needs some revisions and refining, but doesn’t always need to be discarded. We can use what we learned from solution-testing to make effective revisions.

This may mean we guide a student back to previous steps in the problem-solving process. Students may once more need to pull from existing knowledge, revisit those support materials, or look at some of the alternative solutions that the student developed.

Step 7: Revisit the Problem

We’ve got a solution that works! Did it fix our problem? If yes, then great!

Sometimes, however, a solution may “work,” without fixing our problem.

When this happens, we need to revisit the problem definition. Do we really understand it? Is there a detail we didn’t consider when developing our solutions? Did we misinterpret what the problem actually is when we crafted our problem definition?

At this point, perhaps we need to revise the solution once more. Sometimes in our process of researching and brainstorming, we can get off course, and taking time to refer to the initial problem can help us recalibrate our efforts and get us back on track.

Other times we may need re-define our problem. Perhaps after developing and testing several solutions, it becomes clear that the real problem is different than what we initially thought it was. Or perhaps our solutions address parts of the problem, but don’t get to the deeper root of the issue.

When a student has worked through the problem-solving process and still feels stuck, tutors can guide them to revisit the problem and clarify the initial goal. Returning to previous steps of the process as needed is normal and often necessary. Ensuring students that they’re still correctly applying the process, even when they need to jump back and forth between these steps, can help keep them from getting discouraged.

Quickwrite Exercise

Think back to a time you solved a problem in the past. It could be an obstacle you encountered in an academic setting (completing an assignment, researching for a paper, troubleshooting a technical problem) or in your personal life.

Take a moment to reflect:

  • Did you use pieces of the rational problem solving process, without knowing?
  • If you could go back and approach the problem again, how would you implement this problem solving approach? What would it look like? How would it have been different?

Facilitating the Problem-Solving Process

The rational problem-solving process is an excellent tool to help tutors guide students through problems big and small. This organized way of approaching the task can help us make sure we’re heading in a productive direction, from solving a math problem to developing a strategy to finish a research paper. How do we ensure we’re empowering students to use this process on their own?

It can be helpful to both tutors and students to use the process as a checklist during a problem-solving session. We can name each step as we move through, and make it clear to the student the purpose of each activity. This doesn’t mean we turn a session of math tutoring into a lesson on the problem-solving process, but explicitly stating the names of each step can make it clear to the student the purpose of each activity, and help them to become familiar with the process. If we “narrate” our process as we go, students can experience a guided problem-solving process during their tutoring session and be encouraged to apply it independently.

Once we’ve guided a student through the process, we can then provide opportunities for the student to take charge. We can prompt the student to move from step to step, supporting them in their problem-solving efforts along the way. This guided practice can help students to become well-versed in the process itself, and to feel more comfortable applying it independently. 3

Something to Try

In your next session, when a student comes to you with a problem, use your Socratic questioning skills to walk the student through the problem solving process. (This may be something you’re already implementing naturally!)

Be deliberate about each step. Assist the student in defining the problem, guide the student to collect their existing knowledge, help the student pull from reference materials available, etc.

How does it work for you?

Practicing the Problem-Solving Process

Don’t forget, that while this process is an excellent tool for helping students to solve problems during a session, it can also help tutors to problem-solve during a session!

Perhaps you encounter a student faced with a problem you yourself don’t know how to solve. No worries! The problem-solving process works just the same.

We can apply it to challenges with assignments, and we can also apply it to other issues we encounter during a tutoring session. Every student is unique, and it may take some problem-solving to learn how to best work with each student. Identifying the “problem,” pulling from our knowledge, consulting our supports, brainstorming, and testing solutions are all ways tutors can determine how best to assist students.

  • Dane, E., Baer, M., Pratt, M. G., and Oldham, G. R. (2011). Rational versus intuitive problem solving: How thinking “off the beaten path” can stimulate creativity. Psychology of Aesthetics, Creativity, and the Arts.  5 (1), 3–12.  https://doi.org/10.1037/a0017698.
  • Uzonwanne F.C. (2016). Rational Model of Decision Making. In: Farazmand A. (eds) Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer, Cham. https://doi.org/10.1007/978-3-319-31816-5_2474-1.
  • Klegeris, A., Bahniwal, M., and Hurren, H. (2017). Improvement in Generic Problem-Solving Abilities of Students by Use of Tutor-less Problem-Based Learning in a Large Classroom Setting. Life Sciences Education. 12(1), 1-116. https://doi.org/10.1187/cbe.12-06-0081.

Additional Resources:

McNamera, C. (2020). Problem Solving and Decision Making (Solving Problems and Making Decisions). Free Management Library. Authenticity Consulting LLC. https://managementhelp.org/personalproductivity/problem-solving.htm . Accessed 26 Apr. 2021.

Nezu C., Palmatier, A., and Nezu, A. (2004). Social Problem-Solving Training for Caregivers. In Chang, D’Zurilla, & Sanna (Eds.) Social Problem Solving: Theory, Research, and Training. (223-238). American Psychological Association. https://doi.org/10.1037/10805-013 .

Nezu, A., Nezu, C., and D’Zurilla, T. (2007). Solving Life’s problems: a 5 Step Guide to Enhanced Well-Being. Springer Publishing Company LLC. https://www.springerpub.com/solving-life-s-problems-9780826114891.html .

Scott, G. M., Lonergan, D. C., and Mumford, M.D. (2010).  Conceptual Combination: Alternative Knowledge Structures, Alternative Heuristics. Creativity Research Journal. 17(1), 79-98. https://www.tandfonline.com/doi/abs/10.1207/s15326934crj1701_7 .

Tutor Handbook Copyright © 2021 by Penny Feltner and gapinski is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Inspiration & Information for Self-Improvement

Problem Solving Models (List & Applications)

Problem Solving Models (List & Applications)

In today’s fast-paced business environment, effective problem-solving techniques are essential for teams and organizations to tackle challenges and resolve critical issues. Whether it’s identifying the root cause of a recurring problem or finding innovative solutions to complex issues, having a structured approach can greatly enhance problem-solving outcomes. This article explores different problem-solving models, techniques, and strategies that can empower individuals and teams to navigate through obstacles and find optimal solutions.

Key Takeaways:

  • Problem-solving techniques are crucial for teams and organizations to overcome challenges and achieve desired outcomes.
  • Clear problem definition and analysis play a vital role in the problem-solving process .
  • Using problem-solving tools can help generate effective solutions and test their viability.
  • Well-designed problem-solving workshops provide a structured approach and foster open discussions.
  • Tips such as defining the problem, trying different approaches, and involving the right people enhance the problem-solving process .

Table of Contents

Importance of Problem Identification and Analysis

Before finding solutions , accurately identifying and defining the problem is crucial. Allowing all team members to contribute their views in an open and safe manner is essential for effective problem identification and analysis. Creating a problem statement that clearly describes the problem and sets the goal for the problem-solving process is also vital.

Problem Solving Tools for Generating Solutions

When it comes to problem-solving, having the right tools and methods can make all the difference. This section introduces a range of problem-solving tools that can help teams generate effective solutions. By leveraging these tools, teams can navigate through complex challenges and find viable options to address the problem at hand.

The problem-solving process is often iterative, requiring teams to constantly test and refine their solutions. This iterative approach allows teams to learn from their mistakes, make necessary adjustments, and roadtest viable solutions for optimal outcomes.

One effective tool for generating solutions is the use of consensus tools and methods. Consensus tools encourage teams to tap into the collective intelligence of the group, promoting collaboration, and aligning everyone towards a common goal. By involving all team members in the decision-making process, consensus tools can facilitate effective problem-solving and help teams reach agreements that everyone can support.

To illustrate the value of problem-solving tools , the following table provides a comparison of different consensus tools along with their applications.

By leveraging problem-solving tools and embracing an iterative process , teams can enhance their problem-solving capabilities and find innovative solutions to even the most complex challenges.

Designing Effective Problem Solving Workshops

When it comes to solving complex problems, well-designed workshops can be instrumental in fostering collaborative brainstorming and effective problem-solving sessions. This section explores the key aspects of designing problem-solving workshops, including agenda design , workshop planning , facilitation skills , and creating a psychologically safe space for open and constructive discussions.

Agenda Design

An effective agenda sets the foundation for a successful problem-solving workshop. It provides a clear framework and structure to guide participants through the process, ensuring that all stages of problem exploration and solution implementation are covered. Additionally, a well-designed agenda allows for flexibility and adaptation to the specific needs of the participants and the problem at hand.

Consider including the following elements in your agenda:

  • Introduction and icebreaker activities to create a positive and inclusive atmosphere
  • Problem definition and analysis to ensure all participants have a common understanding of the problem
  • Idea generation and exploration to encourage creativity and diverse perspectives
  • Evaluation of potential solutions through critical thinking and analysis
  • Action planning to define next steps and assign responsibilities
  • Closing and reflection to gather feedback and insights from participants

Workshop Planning

Effective workshop planning involves careful consideration of logistical and practical aspects to ensure the smooth execution of the session. Some key factors to consider include:

  • Choosing an appropriate venue that accommodates the number of participants and fosters collaboration
  • Providing necessary materials, such as flip charts, sticky notes, and markers, to facilitate idea sharing and visual representation
  • Ensuring availability of technical equipment, if needed, for presentations or visual aids
  • Scheduling the workshop at a time when participants are most likely to be engaged and focused
  • Setting realistic timeframes for each agenda item to maintain momentum and avoid unnecessary delays

Facilitation Skills

Effective facilitation is key to guiding participants through the problem-solving process and maximizing engagement and collaboration. A skilled facilitator should:

  • Establish clear communication channels and encourage equal participation from all participants
  • Create a safe and nonjudgmental environment that promotes open sharing of ideas and perspectives
  • Listen actively to participants’ input, ensuring everyone feels heard and respected
  • Facilitate consensus-building and encourage collaboration among participants
  • Manage time effectively to keep the workshop on track and ensure all agenda items are addressed

Remember that the facilitator plays a crucial role in maintaining the energy and momentum throughout the workshop, ensuring that each participant feels valued and contributing to the problem-solving session .

Psychologically Safe Space

Creating a psychologically safe space is essential for participants to feel comfortable expressing their thoughts and perspectives openly. This can be achieved by:

  • Establishing ground rules that encourage respectful and constructive communication
  • Creating an inclusive environment that values diverse perspectives and experiences
  • Emphasizing that all ideas are valuable and should be considered without judgment
  • Encouraging active listening and building upon each other’s ideas
  • Acknowledging and appreciating the contributions of all participants

An environment that promotes psychological safety enables participants to engage in meaningful discussions, challenge assumptions, and generate innovative solutions.

Problem Solving Tips for Success

When faced with a problem, it’s essential to approach it with a clear and strategic mindset. Here are some problem-solving tips that can help you achieve successful outcomes:

  • Clearly define the problem: Before diving into solutions, take the time to clearly define the problem at hand. Break it down into manageable parts and ensure everyone involved has a solid understanding of the issue.
  • Avoid jumping to conclusions: It’s easy to make assumptions and jump to conclusions when faced with a problem. Instead, take a step back, gather all the relevant information, and analyze it objectively before drawing conclusions. Avoid letting biases cloud your judgment.
  • Try different approaches: Don’t get stuck in a single approach. Be open to exploring different angles and perspectives. Consider brainstorming sessions or using problem-solving techniques like the Six Thinking Hats to encourage creative thinking and generate diverse solutions.
  • Don’t take it personally: Problem-solving is a collaborative process that involves different viewpoints. It’s important not to take criticism or differing opinions personally. Embrace constructive feedback and use it to refine your ideas and strategies.
  • Get the right people in the room: Assemble a team of individuals with diverse skills and expertise that are relevant to the problem at hand. Having the right people involved ensures a broader range of perspectives and a higher chance of finding effective solutions.
  • Document everything: Keep a record of the entire problem-solving process, including discussions, decisions, and possible solutions. This documentation not only provides valuable insights but also helps track progress and enables effective communication with stakeholders.
  • Bring a facilitator: Having a neutral facilitator can greatly enhance the problem-solving process. A facilitator ensures that the discussions remain focused, encourages participation from all team members, and helps maintain a productive atmosphere.
  • Develop problem-solving skills: Continuously work on developing your problem-solving skills. Seek out opportunities to learn new techniques, attend workshops, or engage in professional development programs. Problem-solving is a skill that can be honed and improved over time.
  • Design a great agenda: A well-planned and structured agenda sets the tone for an effective problem-solving session . It provides a roadmap and ensures that the discussion stays on track. Include time for brainstorming, idea evaluation , and decision-making to maximize productivity.

By following these problem-solving tips , you can increase your chances of finding innovative and effective solutions to complex problems.

Problem Solving Models and Strategies: Polya’s Four-Step Model

In this section, we will explore Polya’s four-step problem-solving model, a versatile approach that can be applied to various types of problems. This model provides a systematic framework for understanding, analyzing, and solving problems effectively.

Step 1: Understand the Problem

The first step in Polya’s model is to gain a clear understanding of the problem at hand. This involves thoroughly analyzing the problem statement , identifying any constraints or limitations, and determining what needs to be achieved.

Step 2: Devise a Plan

Once the problem is understood, the next step is to devise a plan or strategy to solve it. This may involve breaking down the problem into smaller, more manageable parts, identifying relevant concepts or theories, and exploring possible approaches or techniques.

Step 3: Carry Out the Plan

With a well-defined plan in place, it’s time to execute it. This step involves taking action according to the devised plan, implementing the chosen strategy, and applying problem-solving techniques to address the problem effectively.

Step 4: Look Back

After carrying out the plan, it is crucial to reflect on the solution and evaluate its effectiveness. This step involves reviewing the outcomes, assessing the strengths and weaknesses of the approach, and identifying any lessons learned for future problem-solving endeavors.

Polya’s four-step model provides a structured and iterative approach to problem solving, allowing individuals and teams to navigate complex challenges with clarity and confidence. By promoting a systematic analysis of problems and emphasizing reflection, this model enhances problem-solving skills and facilitates continuous improvement.

Let’s take a closer look at how Polya’s model can be applied to real-life scenarios and academic contexts:

The application of Polya’s four-step model in these scenarios demonstrates its effectiveness in guiding problem-solving processes and facilitating successful outcomes, whether in business or educational settings.

Problem Solving Models and Strategies: IDEAL Model

In problem-solving, having a structured approach can greatly enhance effectiveness. The IDEAL model , developed by Bransford and Stein, provides a comprehensive framework for understanding and solving problems in both educational and professional settings.

Identify the Problem

The first step of the IDEAL model is to identify the problem at hand. It involves recognizing and clearly defining the core issue that needs to be addressed. By honing in on the specific problem, you can direct your efforts towards finding an appropriate solution.

Define an Outcome

Once the problem is identified, the next step is to define the desired outcome or goal. This requires envisioning the ideal state or solution that you aim to achieve. Clearly defining the outcome helps guide the problem-solving process and aligns the efforts of the team.

Explore Possible Strategies

With the problem and desired outcome in mind, the next step is to explore possible strategies or approaches to solve the problem. This involves brainstorming and considering different perspectives and ideas. By exploring a range of strategies, you increase the likelihood of finding innovative and effective solutions.

Anticipate Outcomes and Act

After evaluating the different strategies, it is essential to anticipate the potential outcomes of each option. This step involves assessing the pros, cons, risks, and benefits associated with each strategy. Once the analysis is complete, it is time to make a decision and take action.

Look and Learn

The final step of the IDEAL model is to reflect on the problem-solving process and learn from it. This step includes evaluating the effectiveness of the chosen strategy, identifying areas for improvement, and capturing lessons learned for future problem-solving endeavors. By actively engaging in this reflection, you enhance your problem-solving skills over time.

The IDEAL model offers a structured and systematic approach to problem-solving. By following these steps – identifying the problem, defining an outcome, exploring possible strategies, anticipating outcomes and acting, and reflecting on the process – individuals and teams can enhance their problem-solving capabilities and achieve better outcomes.

Problem Solving Examples: Polya’s Four-Step Model

In this section, we will explore some examples of problem solving using Polya’s four-step model . These examples will demonstrate how the model can be applied to solve everyday problems, as well as mathematical and academic problems. By understanding the problem, devising a plan, executing the plan, and reflecting on the solution, the problem-solving process becomes more structured and effective.

Example 1: Everyday Problem

Let’s consider a common everyday problem: organizing a family gathering. The problem is to find a suitable date, venue, and activities that accommodate everyone’s preferences and availability. Using Polya’s four-step model, we can break down the problem-solving process:

  • Understanding the problem: Analyze the requirements, preferences, and constraints of all family members.
  • Devising a plan: Create a checklist of potential dates, venues, and activities. Consider the logistics, costs, and feasibility of each option.
  • Executing the plan: Discuss the options with family members and gather their input. Negotiate and find common ground to finalize the details.
  • Reflecting on the solution: Evaluate the success of the gathering based on the feedback and experience of the participants. Identify areas for improvement in future events.

Using Polya’s model helps ensure that all aspects of the problem are considered and addressed, leading to a more inclusive and successful family gathering.

Example 2: Mathematical Problem

Let’s now apply Polya’s four-step model to a mathematical problem. Consider the following example:

“Find the value of x in the equation 3x + 7 = 22.”

By following Polya’s four-step model, we can approach this problem systematically:

  • Understanding the problem: Recognize that the equation represents a linear relationship and that the goal is to find the value of x that satisfies the equation.
  • Devising a plan: Isolate the variable x on one side of the equation by performing the necessary arithmetic operations.
  • Executing the plan: Apply the plan by subtracting 7 from both sides of the equation and then dividing by 3 to isolate x.
  • Reflecting on the solution: Verify the calculated value of x by substituting it back into the original equation. Check if it satisfies the equation and provides a logical solution.

Through the application of Polya’s four-step model, we can solve mathematical problems with clarity and confidence.

Polya’s four-step model provides a systematic approach to problem-solving. The examples discussed in this section demonstrate the practical application of the model in solving everyday and mathematical problems. By understanding the problem, devising a plan, executing the plan, and reflecting on the solution, individuals and teams can enhance their problem-solving process and achieve effective outcomes.

Problem Solving Examples: IDEAL Model

This section provides practical examples of problem solving using the IDEAL model. Through these examples, you will gain a better understanding of how the IDEAL model can be applied in various contexts to analyze and solve problems effectively.

Example 1: Improving Customer Satisfaction

A customer service team in a retail company noticed a decline in customer satisfaction ratings. Following the IDEAL model, they identified the problem: low customer satisfaction. They defined the outcome they wanted to achieve: increase customer satisfaction by 15% within three months. Next, the team explored possible strategies such as enhancing training programs, implementing a customer feedback system, and improving communication channels. They anticipated the outcomes of each strategy, considering factors like resource allocation, customer response, and employee engagement. After careful evaluation, they decided to implement a comprehensive customer feedback system. The team acted upon their decision and rolled out the new system, collecting customer feedback and analyzing the data regularly. They closely monitored customer satisfaction metrics, made refinements based on feedback, and ensured timely resolution of customer issues. Throughout the process, the team reflected on the effectiveness of their strategies and made necessary adjustments. As a result, customer satisfaction improved by 20% within the target timeline, exceeding their initial goal.

Example 2: Optimizing Project Management

A project management team in a software development company faced challenges with meeting project deadlines and maintaining quality standards. Applying the IDEAL model, they took a systematic approach to address these issues. They identified the problem: missed project deadlines and compromised quality. Defining the outcome, they aimed to improve on-time project completion and deliver high-quality products. The team explored various strategies, including enhancing project planning and tracking tools, implementing agile project management methodologies, and fostering cross-functional collaboration. They anticipated the outcomes of each strategy, considering factors like stakeholder satisfaction, resource utilization, and project productivity. After careful evaluation, they decided to adopt an agile project management approach. The team took action and implemented agile practices, such as daily stand-up meetings, sprint planning, and continuous feedback loops. These practices enabled them to adapt quickly to changing project requirements and effectively manage resources. Throughout the project, the team continuously looked back, reflecting on the project’s progress and identifying areas for improvement. The iterative nature of the IDEAL model allowed them to make necessary adjustments, resulting in improved project performance and increased customer satisfaction.

Example 3: Enhancing Employee Engagement

A human resources team in a multinational corporation aimed to enhance employee engagement and improve overall organizational culture. They utilized the IDEAL model to guide their problem-solving process. They first identified the problem: low employee engagement and poor organizational culture. Defining the outcome, they aimed to increase employee engagement by 10% and foster a positive work environment. The team explored strategies such as implementing employee recognition programs, promoting work-life balance, and providing leadership development opportunities. They anticipated the outcomes of each strategy, considering factors like employee satisfaction, retention rates, and productivity. After careful evaluation, they prioritized the implementation of employee recognition programs. The team took proactive steps and launched a company-wide recognition program, acknowledging and appreciating employee contributions. They encouraged open communication and collaboration, creating a supportive and inclusive work environment. Throughout the implementation process, the team regularly evaluated the program’s effectiveness and gathered feedback from employees. They made adjustments based on the feedback received and ensured continuous improvement. As a result of their efforts, employee engagement increased by 12%, and the overall organizational culture improved, leading to enhanced productivity and employee satisfaction.

Example 4: Streamlining Supply Chain Operations

A supply chain management team in a manufacturing company faced inefficiencies in their operations, leading to delays in product delivery and increased costs. They applied the IDEAL model to overcome these challenges. They identified the problem: supply chain inefficiencies causing delays and increased costs. Defining the outcome, they aimed to streamline supply chain operations, reduce delivery lead times by 20%, and minimize costs. The team explored strategies such as implementing advanced inventory management systems, optimizing transportation routes, and enhancing supplier relationships. They anticipated the outcomes of each strategy, considering factors like cost savings, lead time reductions, and customer satisfaction. After careful evaluation, they decided to optimize transportation routes to reduce delivery lead times. The team took action and collaborated with logistics partners to streamline transportation routes, eliminate bottlenecks, and enhance delivery efficiency. They monitored performance indicators, such as on-time delivery rates and transportation costs, to measure the effectiveness of the changes. Throughout the process, the team reflected on the impact of their actions and continuously looked for opportunities to further optimize the supply chain operations. As a result, they successfully reduced delivery lead times by 25% and achieved significant cost savings.

In each of these examples, the IDEAL problem-solving model played a crucial role in guiding teams to effectively define problems, explore strategies, anticipate outcomes, take action, and reflect on the process. By utilizing the IDEAL model, teams can enhance their problem-solving capabilities and achieve desirable outcomes in diverse scenarios.

Art of Problem Solving: Slowing Down and Asking Questions

In the art of problem solving , one key element that often gets overlooked is the importance of slowing down and adopting a problem-solving mindset . In our fast-paced world, we tend to rush through challenges, seeking quick solutions without taking the time to fully understand the problem at hand.

Slowing down allows us to step back, analyze the situation, and gain a deeper understanding of the problem. By taking a moment to pause and reflect, we can identify any assumptions or biases that may be clouding our judgment. It allows us to approach the problem-solving process with a clear and open mind, ready to explore new possibilities.

One effective way to slow down and gain a fresh perspective is to ask great questions. Questions have the power to stimulate creativity, challenge preconceived notions, and generate multiple perspectives. They help us to delve deeper into the problem, uncovering hidden complexities and uncovering new insights.

“The important thing is not to stop questioning. Curiosity has its own reason for existing.” – Albert Einstein

Benefits of Slowing Down and Asking Questions

When we slow down and ask questions, we open up a world of possibilities. Here are some key benefits of adopting this approach:

  • Stimulates creativity: Asking questions encourages out-of-the-box thinking, sparking new ideas and innovative solutions.
  • Challenges assumptions: By questioning our assumptions, we can uncover biases and limitations that may be hindering our problem-solving process.
  • Explores different perspectives: Asking questions helps us consider diverse viewpoints, leading to a more comprehensive understanding of the problem.
  • Overcomes stress and limitations: Slowing down and being curious reduces stress and allows for a more mindful problem-solving process, enabling us to navigate challenges more effectively.

By adopting a problem-solving mindset that prioritizes slowing down and asking questions , we can unlock our full problem-solving potential and approach challenges with clarity and confidence.

Problem Solving Techniques: Brainstorming and Six Thinking Hats

In problem-solving, it’s crucial to have effective techniques that stimulate creativity, generate ideas, and evaluate potential solutions. Two widely used problem-solving techniques are brainstorming and the six thinking hats method.

Brainstorming is a collaborative idea generation process that encourages participants to think freely and generate as many ideas as possible. The goal is to create a nonjudgmental environment where all ideas are welcomed and explored. By suspending judgment and fostering an open mindset, brainstorming enables teams to uncover innovative solutions and overcome obstacles.

The six thinking hats method, developed by Edward de Bono, provides a structured approach to problem solving. This technique divides thinking into six distinct perspectives, each associated with a specific color hat. The different hats represent different modes of thinking and allow individuals to look at a problem from multiple angles. The six hats are:

  • White Hat : Focusing on the available information and facts
  • Red Hat : Exploring emotions, intuitions, and feelings
  • Black Hat : Identifying potential risks, obstacles, and critical judgment
  • Yellow Hat : Identifying benefits, opportunities, and positive aspects
  • Green Hat : Stimulating creativity and generating alternative ideas
  • Blue Hat : Managing the thinking process and facilitating discussions

The six thinking hats method allows teams to wear different hats at different moments, encouraging diverse perspectives and avoiding bias. This technique enhances idea generation, problem analysis , and decision-making by ensuring that all relevant aspects are considered.

By combining brainstorming and the six thinking hats method, teams can benefit from both free-flowing idea generation and structured analysis. This dynamic approach can lead to innovative solutions that address complex problems effectively.

Next, we’ll explore the concept of “How Might We?” ( HMW ) questions, which further enhance idea generation and problem-solving.

In conclusion, problem-solving models, strategies, and techniques play a crucial role in addressing challenges and achieving desired outcomes in various fields. By utilizing effective problem-solving methods, teams and organizations can navigate complex issues, identify innovative solutions, and drive positive change.

Developing problem-solving skills is essential for individuals and teams to approach problems with clarity and confidence. Through clear problem identification , thorough analysis, and the application of problem-solving tools, teams can work collaboratively to generate viable solutions and make informed decisions.

Creating a supportive environment that encourages open communication, diverse perspectives, and an iterative approach to problem-solving is key to success. By fostering a culture that values curiosity, creativity, and continuous learning, organizations can empower their employees to tackle challenges head-on and drive meaningful progress.

In summary, problem-solving is not just a necessary skill, but also an art. By leveraging problem-solving models, techniques, and strategies, individuals and teams can confidently navigate complex issues, overcome obstacles, and achieve optimal outcomes. With a clear problem-solving process, a supportive environment, and a commitment to continuous improvement, problem-solving becomes a powerful tool for success in any context.

What is the importance of problem identification and analysis?

Problem identification and analysis are crucial in the problem-solving process as they help in accurately defining the problem, setting a clear goal, and understanding the underlying factors contributing to the problem.

What are some problem-solving tools for generating solutions?

There are various problem-solving tools available, including brainstorming, consensus tools, and iterative processes. These tools aid in generating solutions by encouraging creativity, tapping into collective intelligence, and refining ideas through testing and feedback.

How can I design effective problem-solving workshops?

To design effective problem-solving workshops, focus on agenda design , facilitation skills , and creating a psychologically safe space. It is essential to plan the workshop, provide structure, encourage open discussions, and guide the group towards solution implementation.

What are some problem-solving tips for success?

Some problem-solving tips for success include clearly defining the problem, avoiding hasty conclusions, trying different approaches, maintaining a constructive and collaborative mindset, getting the right people involved, documenting the process, and considering the role of a facilitator.

What is Polya’s four-step problem-solving model?

Polya’s four-step problem-solving model involves understanding the problem, devising a plan, executing the plan, and reflecting on the solution. It is a versatile model applicable to both academic and real-life problems.

What is the IDEAL problem-solving model?

The IDEAL problem-solving model includes identifying the problem, defining an outcome, exploring strategies, anticipating outcomes, and reflecting on the process. It is a comprehensive model for understanding and solving problems in various settings.

Can you provide examples of problem solving using Polya’s four-step model?

Sure! Examples of problem solving using Polya’s four-step model include solving everyday problems and academic/mathematical problems. These examples demonstrate the importance of understanding the problem, devising a plan, executing the plan, and reflecting on the solution.

Can you provide examples of problem solving using the IDEAL model?

Of course! Examples of problem solving using the IDEAL model cover various contexts and demonstrate the importance of identifying the problem, defining an outcome, exploring strategies, anticipating outcomes, and reflecting on the process for effective problem solving.

How does slowing down and asking questions contribute to problem solving?

Slowing down and adopting a problem-solving mindset allows for asking great questions, stimulating creativity, challenging assumptions, and generating multiple perspectives. This approach helps overcome stress and limitations, leading to better problem-solving outcomes.

What are some problem-solving techniques I can use?

Some problem-solving techniques include brainstorming and the six thinking hats method. Brainstorming fosters creativity, idea generation, and evaluation, while the six thinking hats method encourages considering different perspectives and exploring possibilities.

What are the key takeaways from this article on problem-solving?

The key takeaways include understanding the importance of problem-solving models, strategies, and techniques for tackling challenges, developing problem-solving skills, creating a supportive environment, and using a structured approach for successful outcomes.

Related Posts

model for problem solving

A Recap of Some of the Best New Online Slots from March 2024

model for problem solving

179+ Names Without Vowels – With Meanings [All Categories]

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Life-Skills-Advocate logo header

  • Meet Our Team
  • Discover The LSA Difference
  • Coaching Process
  • Core Values
  • What is Executive Functioning?
  • Understanding the EF Ripple Effect
  • For Daily Life
  • ND-Friendly Tools
  • Executive Functioning Assessment
  • Executive Functioning Meal Plan
  • Executive Functioning 101 Resource Hub
  • Executive Functioning IEP Goal Resource Hub
  • How To Make Stuff More EF Friendly

Teaching the IDEAL Problem-Solving Method to Diverse Learners

Written by:

  Amy Sippl

Filed under: EF 101 Series , Executive Functioning , Problem Solving

Published:  January 21, 2021

Last Reviewed: April 10, 2023

READING TIME:  ~ minutes

We may assume that teens and young adults come equipped with a strong sense of approaching difficult or uncertain situations. For many of the individuals we work with, problem-solving needs to be practiced and developed in the same way as academic and social skills. The IDEAL Problem Solving Method is one option to teach problem-solving to diverse learners.

What is problem-solving?

Problem-solving is the capacity to identify and describe a problem and generate solutions to fix it .

Problem-solving involves other executive functioning behaviors as well, including attentional control, planning , and task initiation . Individuals might use time management , emotional control, or organization skills to solve problems as well. Over time, learners can observe their behavior, use working memory , and self-monitor behaviors to influence how we solve future issues.

Why are problem-solving strategies important?

Not all diverse learners develop adequate problem-solving. Learners with a history of behavioral and learning challenges may not always use good problem-solving skills to manage stressful situations. Some students use challenging behaviors like talking back, arguing, property destruction, and aggression when presented with challenging tasks. Others might shut down, check out, or struggle to follow directions when encountering new or unknown situations.

Without a step-by-step model for problem-solving , including identifying a problem and choosing a replacement behavior to solve it, many of our children and students use challenging behaviors instead. The IDEAL Problem-Solving Method is one option to teach diverse learners to better approach difficult situations.

IDEAL Problem-Solving Method

In 1984, Bransford and Stein published one of the most popular and well-regarded problem-solving methods. It’s used both in industry and in education to help various learners establish a problem, generate solutions, and move forward quickly and efficiently. By teaching your learner each step of the IDEAL model, you can provide them with a set of steps to approach a problem with confidence.

The IDEAL Problem-Solving Method includes:

Word Image 2 Teaching The Ideal Problem-Solving Method To Diverse Learners

I – Identify the problem.

There’s no real way to create a solution to a problem unless you first know the scope of the problem. Encourage your learner to identify the issue in their own words. Outline the facts and the unknowns. Foster an environment where your learner is praised and supported for identifying and taking on new problems.

Examples of identifying problems:

  • “I have a math quiz next week and don’t know how to do the problems.”
  • “I can’t access my distance learning course website.”
  • “The trash needs to be taken out, and I can’t find any trash bags.”

D – Define an outcome

The second step in the IDEAL problem-solving process is to define an outcome or goal for problem-solving. Multiple people can agree that a problem exists but have very different ideas on goals or outcomes. By deciding on an outlined objective first, it can speed up the process of identifying solutions.

Defining outcomes and goals may be a difficult step for some diverse learners. The results don’t need to be complicated, but just clear for everyone involved.

Examples of defining outcomes:

  • “I want to do well on my math quiz.”
  • “I get access to the course website.”
  • “The trash gets taken out before the trash pickup day tomorrow.”

E – Explore possible strategies.

Once you have an outcome, encourage your learner to brainstorm possible strategies. All possible solutions should be on the table during this stage, so encourage learners to make lists, use sticky notes, or voice memos to record any ideas. If your learner struggles with creative idea generation, help them develop a plan of resources for who they might consult in the exploration stage.

Examples of possible strategies to solve a problem:

  • “I review the textbook; I ask for math help from a friend; I look up the problems online; I email my teacher.”
  • “I email my teacher for the course access; I ask for help from a classmate; I try to reset my password.”
  • “I use something else for a trash bag; I place an online order for bags; I take the trash out without a bag; I ask a neighbor for a bag; I go shopping for trash bags.”

A – Anticipate Outcomes & Act

Once we generate a list of strategies, the next step in the IDEAL problem-solving model recommends that you review the potential steps and decide which one is the best option to use first. Helping learners to evaluate the pros and cons of action steps can take practice. Ask questions like, “What might happen if you take this step?” or “Does that step make you feel good about moving forward or uncertain?”

After evaluating the outcomes, the next step is to take action. Encourage your learner to move forward even if they may not know the full result of taking action. Support doing something, even if it might not be the same strategy, you might take to solve a problem or the ‘best’ solution.

L – Look and Learn

The final step in the IDEAL problem-solving model is to look and learn from an attempt to solve a problem. Many parents and teachers forget this critical step in helping diverse learners to stop and reflect when problem-solving goes well and doesn’t go well. Helping our students and children learn from experience can make problem-solving more efficient and effective in the future. Ask questions like “How did that go?” and “What do you think you’ll do differently next time?”

Examples of Look and Learn statements:

  • “I didn’t learn the problems from looking at the textbook, but it did help to call a friend. I’ll start there next time.”
  • “When I didn’t have access to the course website, resetting my password worked.”
  • “I ran out of trash bags because I forgot to put them on the shopping list . I’ll buy an extra box of trash bags to have them on hand, so I don’t run out next time.”

Practice Problem-Solving

For ideas on common problems, download our deck of problem-solving practice cards. Set aside time to practice, role-play, give feedback, and rehearse again if needed.

How to teach the IDEAL problem-solving method

Top businesses and corporations spend thousands of dollars on training teams to implement problem-solving strategies like the IDEAL method. Employees practice and role-play common problems in the workplace . Coaches give supportive feedback until everyone feels confident in each of the steps.

Teachers and parents can use the same process to help students and children use the IDEAL problem-solving method. Set aside time to review common problems or social scenarios your learner might encounter. Practice using the IDEAL method when emotions and tensions aren’t running as high. Allow your learner to ask questions, work through problems, and receive feedback and praise for creating logical action plans.

Further Reading

  • Bransford, J., and Stein, B., “The Ideal Problem Solver” (1993). Centers for Teaching and Technology – Book Library . 46. https://digitalcommons.georgiasouthern.edu/ct2-library/4
  • Executive Functioning 101: Planning Skills
  • Executive Functioning: Task Initiation
  • Executive Functioning Skills by Age: What to Expect
  • Kern, L., George, M. P., & Weist, M. D. (2016). Supporting students with emotional and behavioral problems. Baltimore, MD: Paul H. Brookes.

About The Author

Amy Sippl is a Minnesota-based Board Certified Behavior Analyst (BCBA) and freelance content developer specializing in helping individuals with autism and their families reach their best possible outcomes. Amy earned her Master's Degree in Applied Behavior Analysis from St. Cloud State University and also holds undergraduate degrees in Psychology and Family Social Science from University of Minnesota – Twin Cities. Amy has worked with children with autism and related developmental disabilities for over a decade in both in-home and clinical settings. Her content focuses on parents, educators, and professionals in the world of autism—emphasizing simple strategies and tips to maximize success. To see more of her work visit amysippl.com .

Related Posts

Executive functioning skills 101: problem-solving, executive functioning 101: all about attentional control, self-monitoring: long-term strategies & supports, the connection between sleep deprivation and executive function, organization skills: long-term strategies and supports for diverse learners, how to embed executive functioning skills in the classroom.

Life Skills Advocate is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com. Some of the links in this post may be Amazon.com affiliate links, which means if you make a purchase, Life Skills Advocate will earn a commission. However, we only promote products we actually use or those which have been vetted by the greater community of families and professionals who support individuals with diverse learning needs.

Session expired

Please log in again. The login page will open in a new tab. After logging in you can close it and return to this page.

model for problem solving

Model-Based Problem Solving

ADR Times

Common Problem-Solving Models & How to Use Them

Problem – solving models are step-by-step processes that provide a framework for addressing challenges. Problems arise in every facet of life. From work. to home. to friends and family, problems and conflicts can make life difficult and interfere with our physical and mental well-being. Understanding how to approach problems when they arise and implementing problem-solving techniques can make the journey through a problem less onerous on ourselves and those around us.

By building a structured problem-solving process, you can begin to build muscle memory by repeatedly practicing the same approach, and eventually, you may even begin to find yourself solving complex problems . Building a problem-solving model for each of the situations where you may encounter a problem can give you a path forward, even when the most difficult of problems arise.

This article will explore the concept of problem-solving models and dive into examples of such models and how to use them. It will also outline the benefits of implementing a problem-solving model in each area of life and why these problem-solving methods can have a large impact on your overall well-being. The goal of this article is to help you identify effective problem-solving strategies and develop critical thinking to generate solutions for any problem that comes your way.

Problem-Solving Model Defined

The first step in creating a problem-solving plan is to understand what we mean when we say problem-solving models. A problem-solving model is a step-by-step process that helps a team identify and effectively solve problems that they may encounter. This problem-solving approach gives the team the muscle memory and guide to address a conflict and resolve disputes quickly and effectively.

There are common problem-solving models that many teams have implemented, but there is also the freedom to shape a method to fit the needs of a specific situation. These models often rely on various problem-solving techniques to identify the root cause of the issue and find the best solution. This article will explore some common problem-solving models as well as general problem-solving techniques to help a team engage with and solve problems effectively.

Benefits of Implementing Problem-Solving Models

Before we discuss the exact models for problem-solving, it can be helpful to discuss why problem-solving models are beneficial in the first place. There are a variety of benefits to having a plan in place when a problem arises, but a few important benefits are listed below.

Guide Posts

When a team encounters a problem and has a guide for how to approach and solve the problem, it can be a relief to know that they have a process to fall back on when the issue cannot be resolved quickly from the beginning. A problem-solving strategy will serve as a guide for the parties to know which steps to take next and how to identify the appropriate solution.

It can also clarify when the issue needs to stay within the team, and when the issue needs to be escalated to someone in a position with more authority. It can also help the entire team solve complex problems without creating an issue out of the way the team solves the problem. It gives the team a blueprint to work from and encourages them to find a good solution.

Creative Solutions That Last

When the team or family has a way to fall back on to solve a problem, it takes some of the pressure off of coming up with the process and allows the parties to focus on identifying the relevant information and coming up with various potential solutions to the issue. By using a problem-solving method, the parties can come up with different solutions and find common ground with the best solution. This can be stifled if the team is too focused on figuring out how to solve the problem.

Additionally, the solutions that the parties come up with through problem-solving tools will often address the root cause of the issue and stop the team from having to revisit the same problem over and over again. This can lead to overall productivity and well-being and help the team continue to output quality work. By encouraging collaboration and creativity, a problem-solving technique will often keep solving problems between the parties moving forward and possibly even address them before they show up.

Common Models to Use in the Problem-Solving Process

Several models can be applied to a complex problem and create possible solutions. These range from common and straightforward to creative and in-depth to identify the most effective ways to solve a problem. This section will discuss and break down the problem-solving models that are most frequently used.

Standard Problem-Solving Process

When you search for a problem-solving technique, chances are you will find the standard model for saving problems. This model identifies and uses several important steps that will often be used in other models as well, so it can be helpful to begin the model-building process with an understanding of this model as a base. Other models often draw from this process and adapt one or more of the steps to help create additional options. Each of these steps works to accomplish a specific goal in furtherance of a solution.

Define the Problem

The first step in addressing a problem is to create a clear definition of the issue at hand. This will often require the team to communicate openly and honestly to place parameters around the issue. As the team defines the problem, it will be clear what needs to be solved and what pieces of the conflict are ancillary to the major issue. It helps to find the root causes of the issue and begin a process to address that rather than the symptoms of the problem. The team can also create a problem statement, which outlines the parameters of the problem and what needs to be fixed.

In addition to open and honest communication, other techniques can help to identify the root cause and define the problem. This includes a thorough review of the processes and steps that are currently used in the task and whether any of those steps are directly or indirectly causing the problem.

This includes reviewing how tasks are done, how communication is shared, and the current partners and team members that work together to identify if any of those are part of the issue. It is also the time to identify if some of the easy fixes or new tools would solve the problem and what the impact would be.

It is also important to gain a wide understanding of the problem from all of the people involved. Many people will have opinions on what is going on, but it is also important to understand the facts over the opinions that are affecting the problem. This can also help you identify if the problem is arising from a boundary or standard that is not being met or honored. By gathering data and understanding the source of the problem, the process of solving it can begin.

Generate Solutions

The next step in the basic process is to generate possible solutions to the problem. At this step, it is less important to evaluate how each of the options will play out and how they may change the process and more important to identify solutions that could address the issue. This includes solutions that support the goals of the team and the task, and the team can also identify short and long-term solutions.

The team should work to brainstorm as many viable solutions as possible to give them the best options to consider moving forward. They cannot pick the first solution that is proposed and consider it a successful problem-solving process.

Evaluate and Select

After a few good options have been identified, the next step is to evaluate the options and pick the most viable option that also supports the goals of the team or organization. This includes looking at each of the possible solutions and determining how they would either encourage or hinder the goals and standards of the team. These should evaluated without bias toward the solution proposed or the person putting forward the solution. Additionally, the team should consider both actual outcomes that have happened in the past and predicted instances that may occur if the solution is chosen.

Each solution should be evaluated by considering if the solution would solve the current problem without causing additional issues, the willingness of the team to buy in and implement the solution, and the actual ability of the team to implement the solution.

Participation and honesty from all team members will make the process go more smoothly and ensure that the best option for everyone involved is selected. Once the team picks the option they would like to use for the specific problem, they should clearly define what the solution is and how it should be implemented. There should also be a strategy for how to evaluate the effectiveness of the solution.

Implement the Solution and Follow Up

Once a solution is chosen, a team will often assume that the work of solving problems is complete. However, the final step in the basic model is an important step to determine if the matter is resolved or if additional options are needed. After the solution has been implemented by the team, the members of the team must provide feedback and identify any potential obstacles that may have been missed in the decision-making process.

This encourages long-term solutions for the problem and helps the team to continue to move forward with their work. It also gives the team a sense of ownership and an example of how to evaluate an idea in the future.

If the solution is not working the way that it should, the team will often need to adapt the option, or they may get to the point where they scrap the option and attempt another. Solving a problem is not always a linear process, and encouraging reform and change within the process will help the team find the answer to the issues that they face.

GROW Method

Another method that is similar to the standard method is the G.R.O.W. method. This method has very similar steps to the standard method, but the catchiness of the acronym helps a team approach the problem from the same angle each time and work through the method quickly.

The first step in the method is to identify a goal, which is what the “g” stands for in “grow.” To establish a goal, the team will need to look at the issues that they are facing and identify what they would like to accomplish and solve through the problem-solving process. The team will likely participate in conversations that identify the issues that they are facing and what they need to resolve.

The next step is to establish the current reality that the group is facing. This helps them to determine where they currently are and what needs to be done to move them forward. This can help the group establish a baseline for where they started and what they would like to change.

The next step is to find any obstacles that may be blocking the group from achieving their goal. This is where the main crux of the issues that the group is facing will come out. This is also helpful in giving the group a chance to find ways around these obstacles and toward a solution.

Way Forward

After identifying the obstacles and potential ways to avoid them, the group will then need to pick the best way to move forward and approach their goal together. Here, they will need to create steps to move forward with that goal.

Divide and Conquer

Another common problem-solving method is the divide-and-conquer method. Here, instead of the entire team working through each step of the process as a large group, they split up the issue into smaller problems that can be solved and have individual members or small groups work through the smaller problems. Once each group is satisfied with the solution to the problem, they present it to the larger group to consider along with the other options.

This process can be helpful if there is a large team attempting to solve a large and complex problem. It is also beneficial because it can be used in teams with smaller, specialized teams within it because it allows each smaller group to focus on what they know best.

However, it does encourage the parties to shy away from collaboration on the overall issue, and the different solutions that each proposes may not be possible when combined and implemented.

For this reason, it is best to use this solution when approaching complex problems with large teams and the ability to combine several problem-solving methods into one.

Six Thinking Hats

The Six Thinking Hats theory is a concept designed for a team with a lot of differing conflict styles and problem-solving techniques. This method was developed to help sort through the various techniques that people may use and help a team find a solution that works for everyone involved. It helps to organize thinking and lead the conversation to the best possible solution.

Within this system, there are six different “hats” that identify with the various aspects of the decision-making process: the overall process, idea generation, intuition and emotions, values, information gathering, and caution or critical thinking. The group agrees to participate in the process by agreeing on which of the hats the group is wearing at a given moment. This helps set parameters and expectations around what the group is attempting to achieve at any moment.

This system is particularly good in a group with different conflict styles or where people have a hard time collecting and organizing their thoughts. It can be incredibly beneficial for complex problems with many moving parts. It can also help groups identify how each of the smaller sections relates to the big picture and help create new ideas to answer the overall problem.

However, it can derail if the group focuses too heavily or for too long on one of the “hats.” The group should ensure that they have a facilitator to guide them through the process and ensure that each idea and section is considered adequately.

Trial and Error

The trial and error process takes over the evaluation and selection process and instead chooses to try out each of the alternatives to determine what the best option would be. It allows the team to gather data on each of the options and how they apply practically. It also provides the ability for the team to have an example of each possible answer to help a decision-maker determine what the best option is.

Problem-solving methods that focus on trial and error can be helpful when a team has a simple problem or a lot of time to test potential solutions, gather data, and determine an answer to the issue.

It can also be helpful when the team has a sense of the best guess for a solution but wants to test it out to determine if the data supports that option, or if they have several viable options and would like to identify the best one. However, it can be incredibly time-consuming to test each of the options and evaluate how they went. Time can often be saved by evaluating each option and selecting the best to test.

Other Problem-Solving Skills

In addition to the methods outlined above, other problem-solving skills can be used regardless of the model that is used. These techniques can round out the problem-solving process and help address either specific steps in the overall method or alter the step in some way to help it fit a specific situation.

Ask Good Questions

One of the best ways to work through any of the problem-solving models is to ask good questions. This will help the group find the issue at the heart of the problem and address that issue rather than the symptoms. The best questions will also help the group find viable solutions and pick the solution that the group can use to move forward. The more creative the questions , the more likely that they will produce innovative solutions.

Take a Step Back

Occasionally, paying attention to a problem too much can give the group tunnel vision and harm the overall processes that the group is using. Other times, the focus can lead to escalations in conflict. When this happens, it can be helpful to set aside the problem and give the group time to calm down. Once they have a chance to reconsider the options and how they apply, they can approach the issue with a new sense of purpose and determination. This can lead to additional creative solutions that may help the group find a new way forward.

Final Thoughts

Problem-solving can be a daunting part of life. However, with a good problem-solving method and the right techniques, problems can be addressed well and quickly. Applying some of these options outlined in this article can give you a head start in solving your next problem and any others that arise.

To learn more about problem-solving models, problem-solving activities, and more, contact ADR Times !

Must-read Articles:

What is a Contingent Contract?

  • Recent Posts

Emily Holland

  • Mediator vs Lawyer: Finding the Best Fit - April 2, 2024
  • How to Deal With a Narcissist - March 27, 2024
  • How Long After Mediation Will I Get My Money? - March 19, 2024

National Center for Pyramid Model Innovations

National Center for Pyramid Model Innovations

Problem-Solving Steps

Problem solving steps strategies and poster. Includes boy and girl versions.

model for problem solving

This website was made possible by Cooperative Agreement #H326B220002 which is funded by the U.S. Department of Education, Office of Special Education Programs. However, those contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. This website is maintained by the  University of South Florida . Contact  webmaster . © University of South Florida

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Share Podcast

HBR On Leadership podcast series

Do You Understand the Problem You’re Trying to Solve?

To solve tough problems at work, first ask these questions.

  • Apple Podcasts
  • Google Podcasts

Problem solving skills are invaluable in any job. But all too often, we jump to find solutions to a problem without taking time to really understand the dilemma we face, according to Thomas Wedell-Wedellsborg , an expert in innovation and the author of the book, What’s Your Problem?: To Solve Your Toughest Problems, Change the Problems You Solve .

In this episode, you’ll learn how to reframe tough problems by asking questions that reveal all the factors and assumptions that contribute to the situation. You’ll also learn why searching for just one root cause can be misleading.

Key episode topics include: leadership, decision making and problem solving, power and influence, business management.

HBR On Leadership curates the best case studies and conversations with the world’s top business and management experts, to help you unlock the best in those around you. New episodes every week.

  • Listen to the original HBR IdeaCast episode: The Secret to Better Problem Solving (2016)
  • Find more episodes of HBR IdeaCast
  • Discover 100 years of Harvard Business Review articles, case studies, podcasts, and more at HBR.org .

HANNAH BATES: Welcome to HBR on Leadership , case studies and conversations with the world’s top business and management experts, hand-selected to help you unlock the best in those around you.

Problem solving skills are invaluable in any job. But even the most experienced among us can fall into the trap of solving the wrong problem.

Thomas Wedell-Wedellsborg says that all too often, we jump to find solutions to a problem – without taking time to really understand what we’re facing.

He’s an expert in innovation, and he’s the author of the book, What’s Your Problem?: To Solve Your Toughest Problems, Change the Problems You Solve .

  In this episode, you’ll learn how to reframe tough problems, by asking questions that reveal all the factors and assumptions that contribute to the situation. You’ll also learn why searching for one root cause can be misleading. And you’ll learn how to use experimentation and rapid prototyping as problem-solving tools.

This episode originally aired on HBR IdeaCast in December 2016. Here it is.

SARAH GREEN CARMICHAEL: Welcome to the HBR IdeaCast from Harvard Business Review. I’m Sarah Green Carmichael.

Problem solving is popular. People put it on their resumes. Managers believe they excel at it. Companies count it as a key proficiency. We solve customers’ problems.

The problem is we often solve the wrong problems. Albert Einstein and Peter Drucker alike have discussed the difficulty of effective diagnosis. There are great frameworks for getting teams to attack true problems, but they’re often hard to do daily and on the fly. That’s where our guest comes in.

Thomas Wedell-Wedellsborg is a consultant who helps companies and managers reframe their problems so they can come up with an effective solution faster. He asks the question “Are You Solving The Right Problems?” in the January-February 2017 issue of Harvard Business Review. Thomas, thank you so much for coming on the HBR IdeaCast .

THOMAS WEDELL-WEDELLSBORG: Thanks for inviting me.

SARAH GREEN CARMICHAEL: So, I thought maybe we could start by talking about the problem of talking about problem reframing. What is that exactly?

THOMAS WEDELL-WEDELLSBORG: Basically, when people face a problem, they tend to jump into solution mode to rapidly, and very often that means that they don’t really understand, necessarily, the problem they’re trying to solve. And so, reframing is really a– at heart, it’s a method that helps you avoid that by taking a second to go in and ask two questions, basically saying, first of all, wait. What is the problem we’re trying to solve? And then crucially asking, is there a different way to think about what the problem actually is?

SARAH GREEN CARMICHAEL: So, I feel like so often when this comes up in meetings, you know, someone says that, and maybe they throw out the Einstein quote about you spend an hour of problem solving, you spend 55 minutes to find the problem. And then everyone else in the room kind of gets irritated. So, maybe just give us an example of maybe how this would work in practice in a way that would not, sort of, set people’s teeth on edge, like oh, here Sarah goes again, reframing the whole problem instead of just solving it.

THOMAS WEDELL-WEDELLSBORG: I mean, you’re bringing up something that’s, I think is crucial, which is to create legitimacy for the method. So, one of the reasons why I put out the article is to give people a tool to say actually, this thing is still important, and we need to do it. But I think the really critical thing in order to make this work in a meeting is actually to learn how to do it fast, because if you have the idea that you need to spend 30 minutes in a meeting delving deeply into the problem, I mean, that’s going to be uphill for most problems. So, the critical thing here is really to try to make it a practice you can implement very, very rapidly.

There’s an example that I would suggest memorizing. This is the example that I use to explain very rapidly what it is. And it’s basically, I call it the slow elevator problem. You imagine that you are the owner of an office building, and that your tenants are complaining that the elevator’s slow.

Now, if you take that problem framing for granted, you’re going to start thinking creatively around how do we make the elevator faster. Do we install a new motor? Do we have to buy a new lift somewhere?

The thing is, though, if you ask people who actually work with facilities management, well, they’re going to have a different solution for you, which is put up a mirror next to the elevator. That’s what happens is, of course, that people go oh, I’m busy. I’m busy. I’m– oh, a mirror. Oh, that’s beautiful.

And then they forget time. What’s interesting about that example is that the idea with a mirror is actually a solution to a different problem than the one you first proposed. And so, the whole idea here is once you get good at using reframing, you can quickly identify other aspects of the problem that might be much better to try to solve than the original one you found. It’s not necessarily that the first one is wrong. It’s just that there might be better problems out there to attack that we can, means we can do things much faster, cheaper, or better.

SARAH GREEN CARMICHAEL: So, in that example, I can understand how A, it’s probably expensive to make the elevator faster, so it’s much cheaper just to put up a mirror. And B, maybe the real problem people are actually feeling, even though they’re not articulating it right, is like, I hate waiting for the elevator. But if you let them sort of fix their hair or check their teeth, they’re suddenly distracted and don’t notice.

But if you have, this is sort of a pedestrian example, but say you have a roommate or a spouse who doesn’t clean up the kitchen. Facing that problem and not having your elegant solution already there to highlight the contrast between the perceived problem and the real problem, how would you take a problem like that and attack it using this method so that you can see what some of the other options might be?

THOMAS WEDELL-WEDELLSBORG: Right. So, I mean, let’s say it’s you who have that problem. I would go in and say, first of all, what would you say the problem is? Like, if you were to describe your view of the problem, what would that be?

SARAH GREEN CARMICHAEL: I hate cleaning the kitchen, and I want someone else to clean it up.

THOMAS WEDELL-WEDELLSBORG: OK. So, my first observation, you know, that somebody else might not necessarily be your spouse. So, already there, there’s an inbuilt assumption in your question around oh, it has to be my husband who does the cleaning. So, it might actually be worth, already there to say, is that really the only problem you have? That you hate cleaning the kitchen, and you want to avoid it? Or might there be something around, as well, getting a better relationship in terms of how you solve problems in general or establishing a better way to handle small problems when dealing with your spouse?

SARAH GREEN CARMICHAEL: Or maybe, now that I’m thinking that, maybe the problem is that you just can’t find the stuff in the kitchen when you need to find it.

THOMAS WEDELL-WEDELLSBORG: Right, and so that’s an example of a reframing, that actually why is it a problem that the kitchen is not clean? Is it only because you hate the act of cleaning, or does it actually mean that it just takes you a lot longer and gets a lot messier to actually use the kitchen, which is a different problem. The way you describe this problem now, is there anything that’s missing from that description?

SARAH GREEN CARMICHAEL: That is a really good question.

THOMAS WEDELL-WEDELLSBORG: Other, basically asking other factors that we are not talking about right now, and I say those because people tend to, when given a problem, they tend to delve deeper into the detail. What often is missing is actually an element outside of the initial description of the problem that might be really relevant to what’s going on. Like, why does the kitchen get messy in the first place? Is it something about the way you use it or your cooking habits? Is it because the neighbor’s kids, kind of, use it all the time?

There might, very often, there might be issues that you’re not really thinking about when you first describe the problem that actually has a big effect on it.

SARAH GREEN CARMICHAEL: I think at this point it would be helpful to maybe get another business example, and I’m wondering if you could tell us the story of the dog adoption problem.

THOMAS WEDELL-WEDELLSBORG: Yeah. This is a big problem in the US. If you work in the shelter industry, basically because dogs are so popular, more than 3 million dogs every year enter a shelter, and currently only about half of those actually find a new home and get adopted. And so, this is a problem that has persisted. It’s been, like, a structural problem for decades in this space. In the last three years, where people found new ways to address it.

So a woman called Lori Weise who runs a rescue organization in South LA, and she actually went in and challenged the very idea of what we were trying to do. She said, no, no. The problem we’re trying to solve is not about how to get more people to adopt dogs. It is about keeping the dogs with their first family so they never enter the shelter system in the first place.

In 2013, she started what’s called a Shelter Intervention Program that basically works like this. If a family comes and wants to hand over their dog, these are called owner surrenders. It’s about 30% of all dogs that come into a shelter. All they would do is go up and ask, if you could, would you like to keep your animal? And if they said yes, they would try to fix whatever helped them fix the problem, but that made them turn over this.

And sometimes that might be that they moved into a new building. The landlord required a deposit, and they simply didn’t have the money to put down a deposit. Or the dog might need a $10 rabies shot, but they didn’t know how to get access to a vet.

And so, by instigating that program, just in the first year, she took her, basically the amount of dollars they spent per animal they helped went from something like $85 down to around $60. Just an immediate impact, and her program now is being rolled out, is being supported by the ASPCA, which is one of the big animal welfare stations, and it’s being rolled out to various other places.

And I think what really struck me with that example was this was not dependent on having the internet. This was not, oh, we needed to have everybody mobile before we could come up with this. This, conceivably, we could have done 20 years ago. Only, it only happened when somebody, like in this case Lori, went in and actually rethought what the problem they were trying to solve was in the first place.

SARAH GREEN CARMICHAEL: So, what I also think is so interesting about that example is that when you talk about it, it doesn’t sound like the kind of thing that would have been thought of through other kinds of problem solving methods. There wasn’t necessarily an After Action Review or a 5 Whys exercise or a Six Sigma type intervention. I don’t want to throw those other methods under the bus, but how can you get such powerful results with such a very simple way of thinking about something?

THOMAS WEDELL-WEDELLSBORG: That was something that struck me as well. This, in a way, reframing and the idea of the problem diagnosis is important is something we’ve known for a long, long time. And we’ve actually have built some tools to help out. If you worked with us professionally, you are familiar with, like, Six Sigma, TRIZ, and so on. You mentioned 5 Whys. A root cause analysis is another one that a lot of people are familiar with.

Those are our good tools, and they’re definitely better than nothing. But what I notice when I work with the companies applying those was those tools tend to make you dig deeper into the first understanding of the problem we have. If it’s the elevator example, people start asking, well, is that the cable strength, or is the capacity of the elevator? That they kind of get caught by the details.

That, in a way, is a bad way to work on problems because it really assumes that there’s like a, you can almost hear it, a root cause. That you have to dig down and find the one true problem, and everything else was just symptoms. That’s a bad way to think about problems because problems tend to be multicausal.

There tend to be lots of causes or levers you can potentially press to address a problem. And if you think there’s only one, if that’s the right problem, that’s actually a dangerous way. And so I think that’s why, that this is a method I’ve worked with over the last five years, trying to basically refine how to make people better at this, and the key tends to be this thing about shifting out and saying, is there a totally different way of thinking about the problem versus getting too caught up in the mechanistic details of what happens.

SARAH GREEN CARMICHAEL: What about experimentation? Because that’s another method that’s become really popular with the rise of Lean Startup and lots of other innovation methodologies. Why wouldn’t it have worked to, say, experiment with many different types of fixing the dog adoption problem, and then just pick the one that works the best?

THOMAS WEDELL-WEDELLSBORG: You could say in the dog space, that’s what’s been going on. I mean, there is, in this industry and a lot of, it’s largely volunteer driven. People have experimented, and they found different ways of trying to cope. And that has definitely made the problem better. So, I wouldn’t say that experimentation is bad, quite the contrary. Rapid prototyping, quickly putting something out into the world and learning from it, that’s a fantastic way to learn more and to move forward.

My point is, though, that I feel we’ve come to rely too much on that. There’s like, if you look at the start up space, the wisdom is now just to put something quickly into the market, and then if it doesn’t work, pivot and just do more stuff. What reframing really is, I think of it as the cognitive counterpoint to prototyping. So, this is really a way of seeing very quickly, like not just working on the solution, but also working on our understanding of the problem and trying to see is there a different way to think about that.

If you only stick with experimentation, again, you tend to sometimes stay too much in the same space trying minute variations of something instead of taking a step back and saying, wait a minute. What is this telling us about what the real issue is?

SARAH GREEN CARMICHAEL: So, to go back to something that we touched on earlier, when we were talking about the completely hypothetical example of a spouse who does not clean the kitchen–

THOMAS WEDELL-WEDELLSBORG: Completely, completely hypothetical.

SARAH GREEN CARMICHAEL: Yes. For the record, my husband is a great kitchen cleaner.

You started asking me some questions that I could see immediately were helping me rethink that problem. Is that kind of the key, just having a checklist of questions to ask yourself? How do you really start to put this into practice?

THOMAS WEDELL-WEDELLSBORG: I think there are two steps in that. The first one is just to make yourself better at the method. Yes, you should kind of work with a checklist. In the article, I kind of outlined seven practices that you can use to do this.

But importantly, I would say you have to consider that as, basically, a set of training wheels. I think there’s a big, big danger in getting caught in a checklist. This is something I work with.

My co-author Paddy Miller, it’s one of his insights. That if you start giving people a checklist for things like this, they start following it. And that’s actually a problem, because what you really want them to do is start challenging their thinking.

So the way to handle this is to get some practice using it. Do use the checklist initially, but then try to step away from it and try to see if you can organically make– it’s almost a habit of mind. When you run into a colleague in the hallway and she has a problem and you have five minutes, like, delving in and just starting asking some of those questions and using your intuition to say, wait, how is she talking about this problem? And is there a question or two I can ask her about the problem that can help her rethink it?

SARAH GREEN CARMICHAEL: Well, that is also just a very different approach, because I think in that situation, most of us can’t go 30 seconds without jumping in and offering solutions.

THOMAS WEDELL-WEDELLSBORG: Very true. The drive toward solutions is very strong. And to be clear, I mean, there’s nothing wrong with that if the solutions work. So, many problems are just solved by oh, you know, oh, here’s the way to do that. Great.

But this is really a powerful method for those problems where either it’s something we’ve been banging our heads against tons of times without making progress, or when you need to come up with a really creative solution. When you’re facing a competitor with a much bigger budget, and you know, if you solve the same problem later, you’re not going to win. So, that basic idea of taking that approach to problems can often help you move forward in a different way than just like, oh, I have a solution.

I would say there’s also, there’s some interesting psychological stuff going on, right? Where you may have tried this, but if somebody tries to serve up a solution to a problem I have, I’m often resistant towards them. Kind if like, no, no, no, no, no, no. That solution is not going to work in my world. Whereas if you get them to discuss and analyze what the problem really is, you might actually dig something up.

Let’s go back to the kitchen example. One powerful question is just to say, what’s your own part in creating this problem? It’s very often, like, people, they describe problems as if it’s something that’s inflicted upon them from the external world, and they are innocent bystanders in that.

SARAH GREEN CARMICHAEL: Right, or crazy customers with unreasonable demands.

THOMAS WEDELL-WEDELLSBORG: Exactly, right. I don’t think I’ve ever met an agency or consultancy that didn’t, like, gossip about their customers. Oh, my god, they’re horrible. That, you know, classic thing, why don’t they want to take more risk? Well, risk is bad.

It’s their business that’s on the line, not the consultancy’s, right? So, absolutely, that’s one of the things when you step into a different mindset and kind of, wait. Oh yeah, maybe I actually am part of creating this problem in a sense, as well. That tends to open some new doors for you to move forward, in a way, with stuff that you may have been struggling with for years.

SARAH GREEN CARMICHAEL: So, we’ve surfaced a couple of questions that are useful. I’m curious to know, what are some of the other questions that you find yourself asking in these situations, given that you have made this sort of mental habit that you do? What are the questions that people seem to find really useful?

THOMAS WEDELL-WEDELLSBORG: One easy one is just to ask if there are any positive exceptions to the problem. So, was there day where your kitchen was actually spotlessly clean? And then asking, what was different about that day? Like, what happened there that didn’t happen the other days? That can very often point people towards a factor that they hadn’t considered previously.

SARAH GREEN CARMICHAEL: We got take-out.

THOMAS WEDELL-WEDELLSBORG: S,o that is your solution. Take-out from [INAUDIBLE]. That might have other problems.

Another good question, and this is a little bit more high level. It’s actually more making an observation about labeling how that person thinks about the problem. And what I mean with that is, we have problem categories in our head. So, if I say, let’s say that you describe a problem to me and say, well, we have a really great product and are, it’s much better than our previous product, but people aren’t buying it. I think we need to put more marketing dollars into this.

Now you can go in and say, that’s interesting. This sounds like you’re thinking of this as a communications problem. Is there a different way of thinking about that? Because you can almost tell how, when the second you say communications, there are some ideas about how do you solve a communications problem. Typically with more communication.

And what you might do is go in and suggest, well, have you considered that it might be, say, an incentive problem? Are there incentives on behalf of the purchasing manager at your clients that are obstructing you? Might there be incentive issues with your own sales force that makes them want to sell the old product instead of the new one?

So literally, just identifying what type of problem does this person think about, and is there different potential way of thinking about it? Might it be an emotional problem, a timing problem, an expectations management problem? Thinking about what label of what type of problem that person is kind of thinking as it of.

SARAH GREEN CARMICHAEL: That’s really interesting, too, because I think so many of us get requests for advice that we’re really not qualified to give. So, maybe the next time that happens, instead of muddying my way through, I will just ask some of those questions that we talked about instead.

THOMAS WEDELL-WEDELLSBORG: That sounds like a good idea.

SARAH GREEN CARMICHAEL: So, Thomas, this has really helped me reframe the way I think about a couple of problems in my own life, and I’m just wondering. I know you do this professionally, but is there a problem in your life that thinking this way has helped you solve?

THOMAS WEDELL-WEDELLSBORG: I’ve, of course, I’ve been swallowing my own medicine on this, too, and I think I have, well, maybe two different examples, and in one case somebody else did the reframing for me. But in one case, when I was younger, I often kind of struggled a little bit. I mean, this is my teenage years, kind of hanging out with my parents. I thought they were pretty annoying people. That’s not really fair, because they’re quite wonderful, but that’s what life is when you’re a teenager.

And one of the things that struck me, suddenly, and this was kind of the positive exception was, there was actually an evening where we really had a good time, and there wasn’t a conflict. And the core thing was, I wasn’t just seeing them in their old house where I grew up. It was, actually, we were at a restaurant. And it suddenly struck me that so much of the sometimes, kind of, a little bit, you love them but they’re annoying kind of dynamic, is tied to the place, is tied to the setting you are in.

And of course, if– you know, I live abroad now, if I visit my parents and I stay in my old bedroom, you know, my mother comes in and wants to wake me up in the morning. Stuff like that, right? And it just struck me so, so clearly that it’s– when I change this setting, if I go out and have dinner with them at a different place, that the dynamic, just that dynamic disappears.

SARAH GREEN CARMICHAEL: Well, Thomas, this has been really, really helpful. Thank you for talking with me today.

THOMAS WEDELL-WEDELLSBORG: Thank you, Sarah.  

HANNAH BATES: That was Thomas Wedell-Wedellsborg in conversation with Sarah Green Carmichael on the HBR IdeaCast. He’s an expert in problem solving and innovation, and he’s the author of the book, What’s Your Problem?: To Solve Your Toughest Problems, Change the Problems You Solve .

We’ll be back next Wednesday with another hand-picked conversation about leadership from the Harvard Business Review. If you found this episode helpful, share it with your friends and colleagues, and follow our show on Apple Podcasts, Spotify, or wherever you get your podcasts. While you’re there, be sure to leave us a review.

We’re a production of Harvard Business Review. If you want more podcasts, articles, case studies, books, and videos like this, find it all at HBR dot org.

This episode was produced by Anne Saini, and me, Hannah Bates. Ian Fox is our editor. Music by Coma Media. Special thanks to Maureen Hoch, Adi Ignatius, Karen Player, Ramsey Khabbaz, Nicole Smith, Anne Bartholomew, and you – our listener.

See you next week.

  • Subscribe On:

Latest in this series

This article is about leadership.

  • Decision making and problem solving
  • Power and influence
  • Business management

Partner Center

Polytomous Effectiveness Indicators in Complex Problem-Solving Tasks and Their Applications in Developing Measurement Model

  • Theory & Methods
  • Published: 09 April 2024

Cite this article

  • Pujue Wang   ORCID: orcid.org/0000-0001-6931-6829 1 , 2 &
  • Hongyun Liu   ORCID: orcid.org/0000-0002-3472-9102 1 , 2  

Recent years have witnessed the emergence of measurement models for analyzing action sequences in computer-based problem-solving interactive tasks. The cutting-edge psychometrics process models require pre-specification of the effectiveness of state transitions often simplifying them into dichotomous indicators. However, the dichotomous effectiveness becomes impractical when dealing with complex tasks that involve multiple optimal paths and numerous state transitions. Building on the concept of problem-solving, we introduce polytomous indicators to assess the effectiveness of problem states \(d_{s}\) and state-to-state transitions \({\mathrm {\Delta }d}_{\mathrm {s\rightarrow s'}}\) . The three-step evaluation method for these two types of indicators is proposed and illustrated across two real problem-solving tasks. We further present a novel psychometrics process model, the sequential response model with polytomous effectiveness indicators (SRM-PEI), which is tailored to encompass a broader range of problem-solving tasks. Monte Carlo simulations indicated that SRM-PEI performed well in the estimation of latent ability and transition tendency parameters across different conditions. Empirical studies conducted on two real tasks supported the better fit of SRM-PEI over previous models such as SRM and SRMM, providing rational and interpretable estimates of latent abilities and transition tendencies through effectiveness indicators. The paper concludes by outlining potential avenues for the further application and enhancement of polytomous effectiveness indicators and SRM-PEI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

model for problem solving

Data Availability

The data analyzed in the empirical example of this study are available on this project’s Open Science Framework (OSF) page: https://osf.io/fw82q/ .

Anderson, J. R., Funke, J., & Plata, G. (Eds.). (2007). Cognitive psychologic (6 Aufl.). Spektrum Akademischer Verlag http://www.gbv.de/dms/bs/toc/529836963.pdf

Arieli-Attali, M., Ou, L., & Simmering, V. R. (2019). Understanding test takers’ choices in a self-adapted test: A hidden Markov modeling of process data. Frontiers in Psychology, 10 , 83. https://doi.org/10.3389/fpsyg.2019.00083

Article   PubMed   PubMed Central   Google Scholar  

Bergner, Y., & von Davier, A. A. (2019). Process data in NAEP: Past, present, and future. Journal of Educational and Behavioral Statistics, 44 (6), 706–732.

Article   Google Scholar  

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37 (1), 29–51. https://doi.org/10.1007/BF02291411

Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7 , 434–455.

Google Scholar  

Buchner, A., & Funke, J. (1993). Finite-state automata: Dynamic task environments in problem-solving research. The Quarterly Journal of Experimental Psychology, 46 (1), 83–118.

Chen, Y. (2020). A continuous-time dynamic choice measurement model for problem-solving process data. Psychometrika, 85 (4), 1052–1075. https://doi.org/10.1007/s11336-020-09734-1

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms (4th ed., pp. 563–572). Cambridge: MIT Press.

Fu, Y., Zhan, P., Chen, Q., & Jiao, H. (2023). Joint modeling of action sequences and action time in computer-based interactive tasks. Behav Res Methods . https://doi.org/10.3758/s13428-023-02178-2

Article   PubMed   Google Scholar  

Funke, J. (2001). Dynamic systems as tools for analysing human judgement. Think Reason, 7 , 69–89.

Geisser, S., & Eddy, W. F. (1979). A predictive approach to model selection. J Am Stat Assoc, 74 , 153–160.

Gelfand, A. E., & Dey, D. K. (1994). Bayesian model choice: Asymptotics and exact calculations. Journal of the Royal Statistical Society Series B, 56 , 501–514.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2014). Bayesian data analysis (3rd ed.). Boca Raton: Chapman & Hall/CRC Press.

Gelman, A., Meng, X.-L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6 , 733–760.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7 (4), 457–472. https://doi.org/10.1214/ss/1177011136

Griffin, P., & Care, E. (2014). Assessment and teaching of 21st century skills: Methods and approach . New York, NY: Springer.

Guttman, I. (1967). The use of the concept of a future observation in goodness-of-fit problems. Journal of the Royal Statistical Society: Series B (Methodological), 29 (1), 83–100. https://doi.org/10.1111/j.2517-6161.1967.tb00676.x

Han, Y., Liu, H., & Ji, F. (2022). A sequential response model for analyzing process data on technology-based problem-solving tasks. Multivariate Behavioral Research, 57 (6), 960–977. https://doi.org/10.1080/00273171.2021.1932403

Han, Y., & Wilson, M. (2022). Analyzing student response processes to evaluate success on a technology-based problem-solving task. Applied Measurement in Education, 35 (1), 33–45.

He, Q., & von Davier, M. (2015). Identifying feature sequences from process data in problem-solving items with n-grams. In L. A. van der Ark, D. M. Bolt, W.-C. Wang, J. A. Douglas, & S.-M. Chow (Eds.), Quantitative psychology research (pp. 173–190). Berlin: Springer. https://doi.org/10.1007/978-3-319-19977-1_13

Chapter   Google Scholar  

He, Q., & von Davier, M. (2016). Analyzing process data from problem-solving items with N-Grams: Insights from a computer-based large-scale assessment. In Y. Rosen, S. Ferrara, & M. Mosharraf (Eds.), Handbook of research on technology tools for real-world skill development (pp. 750–777). Pennsylvania: IGI Global.

Koehler, E., Brown, E., & Haneuse, J. P. A. (2009). On the assessment of monte carlo error in simulation-based statistical analyses. The American Statistician, 63 (2), 155–162. https://doi.org/10.1198/tast.2009.0030

LaMar, M. M. (2018). Markov decision process measurement model. Psychometrika, 83 (1), 67–88. https://doi.org/10.1007/s11336-017-9570-0

Levy, R., & Mislevy, R. J. (2016). Bayesian psychometric modeling . Cambridge: CRC Press.

Li, M., Liu, H., Cai, M., & Yuan, J. (2023). Estimation of individuals’ collaborative problem solving ability in computer-based assessment. Education and Information Technologies . https://doi.org/10.1007/s10639-023-12271-w

Liu, H., Liu, Y., & Li, M. (2018). Analysis of process data of PISA 2012 computer-based problem solving: Application of the modified multilevel mixture IRT model. Frontiers in Psychology, 9 , 1372.

Mayer, R. E., & Wittrock, M. C. (2006). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah: Erlbaum.

Newell, A., & Simon, H. A. (1972). Human problem solving (Vol. 104). Englewood Cliffs: Prentice-Hall.

OECD (2014). PISA 2012 results: Creative problem solving: Students ’ skills in tackling real-life problems (Vol. V). OECD.

OECD. (2016). PISA 2015 Assessment and analytical framework: Science . Reading, mathematic and financial literacy: PISA. OECD Publishing. https://doi.org/10.1787/9789264255425-en

OECD. (2018). The future of education and skills: Education 2030 . Paris: OECD Publishing.

Patz, R. J., & Junker, B. W. (1999). Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses. Journal of Educational and Behavioral Statistics, 24 (4), 342–366. https://doi.org/10.3102/10769986024004342

Patz, R. J., & Junker, B. W. (1999). A straightforward approach to Markov chain Monte Carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24 (2), 146–178. https://doi.org/10.3102/10769986024002146

Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applies statistician. The Annals of Statistics, 12 , 1151–1172. https://doi.org/10.2307/2240995

Shu, Z., Bergner, Y., Zhu, M., Hao, J., & von Davier, A. A. (2017). An item response theory analysis of problem-solving processes in scenario-based tasks. Psychological Test and Assessment Modeling, 59 (1), 109–131.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van der Linde, A. (1998). Bayesian deviance, the effective number of parameters, and the comparison of arbitrarily complex models . MRC Biostatistics Unit: Technical report.

Tang, X. (2023). A latent hidden Markov model for process data. Psychometrika . https://doi.org/10.1007/s11336-023-09938-1

Tang, X., Wang, Z., He, Q., Liu, J., & Ying, Z. (2020). Latent feature extraction for process data via multidimensional scaling. Psychometrika, 85 (2), 378–397.

von Davier, A. A. (2017). Computational psychometrics in support of collaborative educational assessments. Journal of Educational Measurement, 54 (1), 3–11.

Xiao, Y., He, Q., Veldkamp, B., & Liu, H. (2021). Exploring latent states of problem-solving competence using hidden Markov model on process data. Journal of Computer Assisted Learning, 37 (5), 1232–1247.

Xiao, Y., & Liu, H. (2023). A state response measurement model for problem-solving process data. Behavior Research Methods, 1–20 . https://doi.org/10.3758/s13428-022-02042-9

Yuan, J., Xiao, Y., & Liu, H. (2019). Assessment of collaborative problem solving based on process stream data: A new paradigm for extracting indicators and modeling dyad data. Frontiers in Psychology, 10 , 369. https://doi.org/10.3389/fpsyg.2019.0036

Download references

No funding was received to assist with the preparation of this manuscript. The authors have no competing interests to declare that are relevant to the content of this article.

Author information

Authors and affiliations.

Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Beijing Normal University, No. 19 Xin Jie Kou Wai Street, Beijing, 100875, China

Pujue Wang & Hongyun Liu

Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, No. 19, Xin Jie Kou Wai St., Hai Dian District, Beijing, 100875, People’s Republic of China

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hongyun Liu .

Ethics declarations

Code availability.

The codes are available on this project’s Open Science Framework (OSF) page: https://osf.io/fw82q/ .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1032 KB)

Appendix a. algorithm for automatically calculating state effectiveness in the balance beam task.

figure 5

The interface of the initial state in the Chinese version of the Balance Beam task.

figure 6

The diagram for the four types of transitions that can occur when a weight moves among ten possible positions in the Balance Beam task.

In the Balance Beam task, the ten potential positions for each weight are categorized into four groups: (1) Positions 1–4: Positioned on side A of the beam; (2) Position 5: Not suspended on side A; (3) Position 6: Not suspended on side B; (4) Positions 7–10: Positioned on side B of the beam. Figure 5 illustrates the transition of each weight among ten positions through four types of operations: (1) removing a weight from the beam; (2) hanging an unhung weight; (3) passing a weight to the other student; and (4) shifting the position of a weight on the same side. Each arrow represents an operation that can lead to a transition. Through this figure, we can easily find the minimum number of transitions between any two positions for one weight. Since an operation can only alter the position of one weight once, the shortest distance between states s and \(s'\) equals the sum of the minimum number of operations required for each of the four weights to change its position from state s to \(s'\) . Then, we can quickly and accurately calculate the shortest distance \(d_{s}^{(k)}\) between a state s and the target state \(s_{target}^{(k)}\) using the state code and rules to change the position according to Fig. 6 . Finally, we select the minimum distance \(d_{s}=\min \left( d_{s}^{(1)}, d_{s}^{(2)}, \ldots , d_{s}^{(k)}\right) \) as the effectiveness indicator \(d_{s}\) of the state s

During the process of programming the calculations mentioned above, the position of each weight can be assigned a unique number from one to ten. Therefore, any given state in the Balance Beam task can be encoded by a sequence of four numbers, a representation we refer to as the state code. For one weight, calculating the shortest distance between any two positions can be simplified by several rules. The R code for evaluating the effectiveness of states for the Balance Beam task that requires the use of two weights to achieve balance is available at https://osf.io/fw82q/ .

In the example of the code, the four positions for hanging weights on the balance beam on student A’s side are coded as 1 to 4, and the four positions on student B’s side are coded as \(-1\) to \(-4\) . The unhung weights are coded as 0.5 when in student A’s hand and \(-\) 0.5 when in student B’s hand. In the initial state, all four weights are in the hand of A, and the state code is (0.5, 0.5, 0.5, 0.5). The effectiveness of the initial state is equal to 3, which means that the balance state using two weights can be achieved after a minimum of three transitions. Another example is that Student B holds the 50 g and 100 g weights and Student A has hung the 300 g weight at position 1 and the 500 g weight at position 2. This state is at a minimum distance of 2 from the balance state.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Wang, P., Liu, H. Polytomous Effectiveness Indicators in Complex Problem-Solving Tasks and Their Applications in Developing Measurement Model. Psychometrika (2024). https://doi.org/10.1007/s11336-024-09963-8

Download citation

Received : 05 August 2023

Published : 09 April 2024

DOI : https://doi.org/10.1007/s11336-024-09963-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • polytomous effectiveness indicators
  • process data
  • problem-solving
  • Find a journal
  • Publish with us
  • Track your research

Help | Advanced Search

Computer Science > Computation and Language

Title: chatglm-math: improving math problem-solving in large language models with a self-critique pipeline.

Abstract: Large language models (LLMs) have shown excellent mastering of human language, but still struggle in real-world applications that require mathematical problem-solving. While many strategies and datasets to enhance LLMs' mathematics are developed, it remains a challenge to simultaneously maintain and improve both language and mathematical capabilities in deployed LLM this http URL this work, we tailor the Self-Critique pipeline, which addresses the challenge in the feedback learning stage of LLM alignment. We first train a general Math-Critique model from the LLM itself to provide feedback signals. Then, we sequentially employ rejective fine-tuning and direct preference optimization over the LLM's own generations for data collection. Based on ChatGLM3-32B, we conduct a series of experiments on both academic and our newly created challenging dataset, MathUserEval. Results show that our pipeline significantly enhances the LLM's mathematical problem-solving while still improving its language ability, outperforming LLMs that could be two times larger. Related techniques have been deployed to ChatGLM\footnote{\url{ this https URL }}, an online serving LLM. Related evaluation dataset and scripts are released at \url{ this https URL }.

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

AIP Publishing Logo

The influence of cognitive apprenticeship learning models on students’ problem-solving skills in optical instruments

  • Split-Screen
  • Article contents
  • Figures & tables
  • Supplementary Data
  • Peer Review
  • Open the PDF for in another window
  • Reprints and Permissions
  • Cite Icon Cite
  • Search Site

Amalia Izzatul Isma , Ai Nurlaela; The influence of cognitive apprenticeship learning models on students’ problem-solving skills in optical instruments. AIP Conf. Proc. 5 April 2024; 3058 (1): 020026. https://doi.org/10.1063/5.0202981

Download citation file:

  • Ris (Zotero)
  • Reference Manager

The main topics of this research are the low problem-solving skills of students and the models used by teachers in the classroom do not train learners’ problem-solving skills. The aims of this research are to find out the influence, improvement, and responses of cognitive apprenticeship learning models on students’ problem-solving skills on optical instruments . The research was conducted at MA Al-Amiriyyah for three weeks in June 2021 with a sample of 48 students. Samples were taken by purposive sampling consisting of 23 students of class XI MIA 2 (control class) and 25 students of XI MIA 3 (experimental class). The research method used was a quasi-experimental research design with a nonequivalent control group design. The hypothesis testing results on the results of posttest data using the Mann Whitney U test at a significance level of 5% with the conclusion H 0 is rejected that shows cognitive apprenticeship learning models is effect on students’ problem-solving skills. Students’ problem-solving skill in the experimental class increased (N-gain 0,56 moderate category) than the control class students (N-gain 0,09 low category). Using cognitive apprenticeship learning models make students enthusiastic to study by 85%.

Citing articles via

Publish with us - request a quote.

model for problem solving

Sign up for alerts

  • Online ISSN 1551-7616
  • Print ISSN 0094-243X
  • For Researchers
  • For Librarians
  • For Advertisers
  • Our Publishing Partners  
  • Physics Today
  • Conference Proceedings
  • Special Topics

pubs.aip.org

  • Privacy Policy
  • Terms of Use

Connect with AIP Publishing

This feature is available to subscribers only.

Sign In or Create an Account

IMAGES

  1. An Overview Of 9 Step Problem Solving Model

    model for problem solving

  2. ️ Problem solving step. 5 Problem Solving Steps. 2019-01-14

    model for problem solving

  3. PPT

    model for problem solving

  4. Problem Solving Cycle

    model for problem solving

  5. 7 Steps to Improve Your Problem Solving Skills

    model for problem solving

  6. 4 Steps Problem Solving Template

    model for problem solving

VIDEO

  1. OR 7.4 Queuing Model

  2. Keynesian model

  3. Chemical Reaction Engineering

  4. LIDM 2023

  5. Transportation Model Prob. Modified Distribution Method Part #5 in Somali

  6. Bohr's Model problem Solving

COMMENTS

  1. PDF THIRTEEN PROBLEM-SOLVING MODELS

    Identify the people, information (data), and things needed to resolve the problem. Step. Description. Step 3: Select an Alternative. After you have evaluated each alternative, select the alternative that comes closest to solving the problem with the most advantages and fewest disadvantages.

  2. Problem-Solving Models: What They Are and How To Use Them

    Most problem-solving models rely on data to inform decisions, which helps to maintain objectivity and fairness throughout the process. By using problem-solving methods to hear the opinions of everyone, you can eliminate bias when solving a problem. In addition, implementing problem-solving models can lead to more effective, thoughtful solutions.

  3. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  4. The FOCUS Model

    The model is helpful because it uses a team-based approach to problem solving and to business-process improvement, and this makes it particularly useful for solving cross-departmental process issues. Also, it encourages people to rely on objective data rather than on personal opinions, and this improves the quality of the outcome. It has five ...

  5. PDF A Problem Solving Approach to Designing and Implementing a Strategy to

    Problem-Solving Approach to Strategy Design and Implementation. The problem-solving approach to designing and implementing a strategy includes eight steps (see. Figure A): 1. Identify the Problem. 2. Analyze the Problem and Diagnose Its Causes. 3. Develop a Theory of Action.

  6. How to master the seven-step problem-solving process

    Structured problem solving strategies can be used to address almost any complex challenge in business or public policy. ... Classic problem solving often gravitates toward a model; design thinking migrates toward a prototype. Rather than writing a big deck with all my supporting evidence, they'll bring an example, a thing, and that feels ...

  7. 7 Problem-Solving Skills That Can Help You Be a More ...

    The steps to solving problems in this model include: identifying that there is a problem, defining the goals you hope to achieve, exploring potential solutions, choosing a solution and acting on it, and looking at (or evaluating) the outcome. 1. Identify that there is a problem and root out its cause.

  8. 35 problem-solving techniques and methods for solving complex problems

    Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model. Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy.

  9. Problem Solving

    In early problem-solving research, problem solving was treated as a unidimensional and linear solution-seeking process. In more recent years, the view of problem-solving research has shifted to a multidimensional model of problem solving, which provides researchers with more lenses for speculating upon the complex nature of problem solving.

  10. The McKinsey guide to problem solving

    The McKinsey guide to problem solving. Become a better problem solver with insights and advice from leaders around the world on topics including developing a problem-solving mindset, solving problems in uncertain times, problem solving with AI, and much more.

  11. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  12. What is 8D? Eight Disciplines Problem Solving Process

    The 8D problem solving model establishes a permanent corrective action based on statistical analysis of the problem and focuses on the origin of the problem by determining its root causes. Although it originally comprised eight stages, or disciplines, the eight disciplines system was later augmented by an initial planning stage. ...

  13. PDF Six-step Problem Solving Model

    Using a problem solving model enables a group to consider all possible causes of a problem and all possible solutions. A problem solving model uses a series of logical steps to help a group identify the most important causes and the best solution. Following the model not only helps the group arrive at a solution, it helps the group arrive at a

  14. The Six-Step Problem-Solving Model: A Collaborative Approach to

    The Six Step Problem Solving Model isn't just a method; it's a mindset. A mindset that ensures problems are tackled systematically and collaboratively, driving teams towards effective ...

  15. Business problem solving

    But seasoned problem solvers show you differently. The most elegant problem solving is that which makes the solution obvious. The late economist Herb Simon put it this way: "Solving a problem simply means representing it so as to make the solution transparent." 10 Herbert Simon, The Sciences of the Artificial, Cambridge, MA: MIT Press, 1969.

  16. Modeling Problem Solving

    Problem-solving is an additional skill that tutors model for students. An organized and- intentional problem-solving approach helps us to efficiently work through challenges, and many of us effectively problem solve without much thought given to our approach. 1 However, it makes sense to take a step back and do our best to model problem-solving ...

  17. Problem Solving Models (List & Applications)

    Problem Solving Models and Strategies: Polya's Four-Step Model. In this section, we will explore Polya's four-step problem-solving model, a versatile approach that can be applied to various types of problems. This model provides a systematic framework for understanding, analyzing, and solving problems effectively.

  18. Teaching the IDEAL Problem-Solving Method to Diverse Learners

    The final step in the IDEAL problem-solving model is to look and learn from an attempt to solve a problem. Many parents and teachers forget this critical step in helping diverse learners to stop and reflect when problem-solving goes well and doesn't go well. Helping our students and children learn from experience can make problem-solving more ...

  19. CC Liong: Model-Based Problem Solving

    Liong's topic is "Model-Based Problem Solving." He uses an example of an American who drives a Pontiac car and buys ice-cream as an example to demonstrate the importance of defining the right problem. After buying vanilla ice cream, the car would not start. When he parked at the curb and bought other flavors of ice cream, he could drive away ...

  20. PDF Creative Problem Solving

    Problem Solving as the sum of its parts: Creative means having an element of newness and innovation, and relevance. Problem encompasses any situation that presents a challenge, offers an opportunity or is a concern. Solving means devising ways to answer, to meet or satisfy the problem. It can also mean adapting yourself to the situation or ...

  21. Common Problem-Solving Models & How to Use Them

    The first step in creating a problem-solving plan is to understand what we mean when we say problem-solving models. A problem-solving model is a step-by-step process that helps a team identify and effectively solve problems that they may encounter. This problem-solving approach gives the team the muscle memory and guide to address a conflict ...

  22. Problem-Solving Steps

    Problem-Solving Steps. Problem solving steps strategies and poster. Includes boy and girl versions. View Resource. File Type: pdf. Categories: Visual Support. Tags: Classroom Implementation, Family Engagement, Practical Strategies, Social-Emotional Skills - Problem-Solving, Training.

  23. Develop Problem Solving Skills for Franchise Success

    Here's how you can develop the essential problem solving skills for success in franchising? Powered by AI and the LinkedIn community. 1. Understand Models. Be the first to add your personal ...

  24. Do You Understand the Problem You're Trying to Solve?

    To Solve Your Toughest Problems, Change the Problems You Solve. In this episode, you'll learn how to reframe tough problems by asking questions that reveal all the factors and assumptions that ...

  25. Polytomous Effectiveness Indicators in Complex Problem-Solving Tasks

    Recent years have witnessed the emergence of measurement models for analyzing action sequences in computer-based problem-solving interactive tasks. The cutting-edge psychometrics process models require pre-specification of the effectiveness of state transitions often simplifying them into dichotomous indicators. However, the dichotomous effectiveness becomes impractical when dealing with ...

  26. ChatGLM-Math: Improving Math Problem-Solving in Large Language Models

    Large language models (LLMs) have shown excellent mastering of human language, but still struggle in real-world applications that require mathematical problem-solving. While many strategies and datasets to enhance LLMs' mathematics are developed, it remains a challenge to simultaneously maintain and improve both language and mathematical capabilities in deployed LLM systems.In this work, we ...

  27. The influence of cognitive apprenticeship learning models on students

    The hypothesis testing results on the results of posttest data using the Mann Whitney U test at a significance level of 5% with the conclusion H 0 is rejected that shows cognitive apprenticeship learning models is effect on students' problem-solving skills. Students' problem-solving skill in the experimental class increased (N-gain 0,56 ...

  28. A cooperative neural dynamic model for solving general convex nonlinear

    By reducing the original program to an interval problem and then weighting problem, the Karush-Kuhn-Tucker (KKT) conditions are given. Moreover, we use the KKT conditions into a RNN as an important tool to solve the problem. Besides, the global convergence properties and the Lyapunov stability of the dynamic model are studied in this study.

  29. A Novel Numerical Method for Solving Unknown Statistical Quantities in

    The successful execution of many simulation studies relies on the accurate generation of correlated multivariate data that adhere to a particular model with known parameter values. In this article, we use a kernel inspired by path tracing rules to algebraically solve unknown causal effects in the context of a multivariate general linear model.