Resilient Educator logo

ChatGPT for Teachers

Trauma-informed practices in schools, teacher well-being, cultivating diversity, equity, & inclusion, integrating technology in the classroom, social-emotional development, covid-19 resources, invest in resilience: summer toolkit, civics & resilience, all toolkits, degree programs, trauma-informed professional development, teacher licensure & certification, how to become - career information, classroom management, instructional design, lifestyle & self-care, online higher ed teaching, current events, stem projects that tackle real-world problems.

STEM Projects That Tackle Real-World Problems

STEM learning is largely about designing creative solutions for real-world problems. When students learn within the context of authentic, problem-based STEM design, they can more clearly see the genuine impact of their learning. That kind of authenticity builds engagement, taking students from groans of “When will I ever use this?” to a genuine connection between skills and application.

Using STEM to promote critical thinking and innovation

“Educational outcomes in traditional settings focus on how many answers a student knows. We want students to learn how to develop a critical stance with their work: inquiring, editing, thinking flexibly, and learning from another person’s perspective,” says Arthur L. Costa in his book Learning and Leading with Habits of Mind . “The critical attribute of intelligent human beings is not only having information but also knowing how to act on it.”

Invention and problem-solving aren’t just for laboratory thinkers hunkered down away from the classroom. Students from elementary to high school can wonder, design, and invent a real product that solves real problems. “ Problem-solving involves finding answers to questions and solutions for undesired effects. STEM lessons revolve around the engineering design process (EDP) — an organized, open-ended approach to investigation that promotes creativity, invention, and prototype design, along with testing and analysis,” says Ann Jolly in her book STEM by Design . “These iterative steps will involve your students in asking critical questions about the problem, and guide them through creating and testing actual prototypes to solve that problem.”

STEM projects that use real-world problems

Here are some engaging projects that get your students thinking about how to solve real-world problems.

Preventing soil erosion

In this project, meant for sixth – 12th grade, students learn to build a seawall to protest a coastline from erosion, calculating wave energy to determine the best materials for the job.  See the project.

Growing food during a flood

A natural disaster that often devastates communities, floods can make it difficult to grow food. In this project, students explore “a problem faced by farmers in Bangladesh and how to grow food even when the land floods.”  See the project .

Solving a city’s design needs

Get your middle or high school students involved in some urban planning. Students can identify a city’s issues, relating to things like transportation, the environment, or overcrowding — and design solutions. See the project here or this Lego version for younger learners.

Creating clean water

Too many areas of the world — including cities in our own country — do not have access to clean water. In this STEM project, teens will learn how to build and test their own water filtration systems.  See the project here .

Improving the lives of those with disabilities

How can someone with crutches or a wheelchair carry what they need? Through some crafty designs! This project encourages middle school students to think creatively  and  to participate in civic engagement.   See the project here .

Cleaning up an oil spill

We’ve all seen images of beaches and wildlife covered in oil after a disastrous spill. This project gets elementary to middle school students designing and testing oil spill clean-up kits. See the project here .

Building earthquake-resistant structures

With the ever-increasing amount of devastating earthquakes around the world, this project solves some major problems. Elementary students can learn to create earthquake resistant structures in their classroom. See the project here .

Constructing solar ovens

In remote places or impoverished areas, it’s possible to make solar ovens to safely cook food. In this project, elementary students construct solar ovens to learn all about how they work and their environmental and societal impact.  See the project here .

Stopping apple oxidization

Stop those apples from turning brown with this oxidation-based project. Perfect for younger learners, students can predict, label, count, and experiment! See the project here .

Advancing as a STEAM educator

The push for STEM has evolved into the STEAM movement, adding the arts for further enrichment and engagement. There are so many ways to embed STEM or STEAM lessons in your curriculum, but doing it well requires foundational knowledge and professional development. Imagine what type of impact you could have on your students and your community if you were supported by a theoretical framework, a variety of strategies, and a wealth of ideas and resources.

You may also like to read

  • Teaching STEM: Challenging Students to Think Through Tough Problems
  • Professional Development Resources for STEM Teachers
  • What is the Washington State STEM Lighthouse Program?
  • Characteristics of a Great STEAM Program
  • Building a Partnership Between Your School and a STEAM Organization
  • The Art of Inquiry in STEAM Education

Categorized as: Tips for Teachers and Classroom Resources

Tagged as: Art ,  Educational Technology ,  Engaging Activities ,  Math and Science ,  Science ,  STEAM

  • Online & Campus Master's in Elementary Educat...
  • 2020 Civics Engagement & Resilience: Tools fo...
  • Online & Campus Master's in Curriculum Develo...

MiddleWeb

  • STEM By Design / Teacher Preparation

Real-World STEM Problems

by Anne Jolly · Published 12/16/2012 · Updated 10/27/2021

A MiddleWeb Blog

Links checked and updated January 2019. See Anne’s recent posts for more real-world STEM.

1 stem_design_logo

STEM teachers pose problems and combine problem solving with project-based learning across disciplines. They work together with students on activities to develop students’ critical thinking, communication, assessment, and inquiry skills.

That’s an impressive job description; however, one source describes the teacher preparation system for STEM teachers as “chaotic, incoherent, and uncoordinated, filled with ‘excellent programs, terrible programs, and many in between.’” That’s not surprising, since the STEM acronym has only been around for a few years. But it certainly needs to improve.

What Good STEM Lessons Do

While things seem a bit muddled on the STEM teacher preparation front, we do know some things about STEM curriculum. We know, for example, that a good STEM lesson accomplishes these things:

  • Helps students apply math and science through authentic, hands-on learning
  • Includes the use of (or creation of) technology
  • Involves students in using an engineering design process
  • Engages students in working in collaborative teams
  • Appeals equally to girls and boys
  • Reinforces relevant math and science standards
  • Addresses a real-world problem

real world problems for students to solve stem

Providing students with real-world problems and asking them to brainstorm solutions will bring their higher order thinking skills into play. But for me, identifying real-world problems that students can solve is one of the hardest parts of creating STEM lessons.

They have to be problems that students can reasonably grapple with. And those all-important problems may need to synchronize with a specific set of math and/or science standards from the school system’s pacing guide. Hopefully you don’t have that constraint, but realistically you probably do.

Sites for Real-World Problems

I’ve located some sites that help me come up with real-world problems, and I’m always on the look-out for more. I’m going to share several sites I’ve identified, and I hope that you’ll share some as well. I invite you to click on these sites and mull over the possibilities.

real world problems for students to solve stem

In the Greening STEM section on this site you’ll find ideas for relevant problems. Most environmental topics can fit under standards for either life or physical science, so these may provide you with some real “kid-catchers,” or ideas that snag students’ interest.

Topics include areas such as:

•    Oil spills •    Water pollution •    Air quality •    Endangered species •    Environmental Health

Another favorite site of mine is the Design Squad Nation . They have some real-world problems there that I find intriguing. For example student teams might invent these:

•    Band Instrument •    Electric Gamebox •    Confetti Launcher •    Solar Water Heater •    Speedy Shelter

How cool are those ideas? As a middle school science teacher, I found STEM to be a natural fit for most of the topics I taught. Math, however, seems to be a different matter.

The Problem with Math

One issue I hear repeatedly is that math teachers find it difficult to identify real-world problems and implement STEM projects in math classes. (Note that these math teachers are not able to work collaboratively with science teachers to develop/implement lessons, and must therefore “go-it-alone.”) However, the math teachers who mentioned this are looking determinedly for ways to implement STEM lessons.

The Common Core Standards state: “Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace.” This adds urgency to the search for real-world problems that bring in appropriate math standards.

real world problems for students to solve stem

Math standards addressed by the lessons on this site include these and more:

•    Fractions, decimals, percents •    Ratios and proportions •    Estimating and predicting •    Rates and unit rate •    Modeling problems with graphs, tables, and equations •    Comparing, graphing, and interpreting data •    Scale factors •    Geometry and measurement •    Probability •    Proportional reasoning

Another site that links math to real problems is Middle School Math and Science . Students solve problems involving train races, global sun temperature, amount of water usage, and so on. Most of these are Internet-based, so you may want to design some of them as hands-on projects for students. (UPDATE: This Ohio State University site is now an archive, but you’ll still find plenty of useful resources.)

Teach Engineering

No list of real-world problem ideas would be complete without mentioning the Teach Engineering lessons. As you peruse these, read the summary of the lessons rather than relying on the titles. Look for projects that include hands-on ideas, such as those involving microbes, rocket-powered boats, solid fuel reactants, the fisheries bycatch problem , and so on. Notice that many of the lessons have hands-on “Associated Activities.” These generally hands-on investigations bring the “E” in STEM to your students.

I hope these sites will be of value to you, and will assist you in brainstorming ideas for real-world problems. Feel free to share comments or sites of your own. We’re inventing a new specialty and need all the help we can get and share!

For even more STEM lesson ideas, read Anne’s 2018 posts:

How to Make or Find Good STEM Lessons and Design Squad Global’s Super STEM Resources

and her 2020 post:

Need a Real World STEM Project? Try Plastics Pollution

You’ll also find teaching ideas at Anne’s STEM by Design website

real world problems for students to solve stem

Click & use code MWEB1 for 20% off!

Share this:

Tags: STEM curriculum STEM real-world problems STEM teacher preparation teaching STEM

' src=

Anne Jolly began her career as a lab scientist, caught the science teaching bug and was recognized as an Alabama Teacher of the Year during her long career as a middle grades science teacher. From 2007-2014 Anne was part of an NSF-funded team that developed middle grades STEM curriculum modules and teacher PD. In 2020-2021 Anne teamed with Flight Works Alabama to develop a workforce-friendly middle school curriculum and is now working on an elementary version. Her book STEM By Design: Strategies & Activities for Grades 4-8 is published by Routledge/EOE in partnership with MiddleWeb.

65 Responses

  • Comments 63
  • Pingbacks 2

' src=

Hello Anne. As a new STEM coordinator, I have to give a STEM presentation to principals for my charter schools. Can you suggest and lessons, books. power points,etc. that would be advantageous? Fondly, Linda Schwerer Pinellas Academy of Math & Science

' src=

Hi, Linda – I have a couple of ideas . . . If you contact Susan Pruet – Director if Engaging Youth through Engineering (you can google it) she will send you a copy of a free STEM launcher. It’s a lesson intended to demonstrate the STEM process. You could lead your principals through it if you think they really need a better understanding of the difference in STEM and science experimentation. You could also distribute it to your schools for teachers to use as a launcher into the STEM way of thinking. It has PowerPoint slides with it.

An online document that you might like to look at is “STEM Teachers in Professional Learning Communities: From Good Teachers to Great Teaching.” You can google this document online as well as a National Academies Press document titled “Successful K-12 STEM Education: Identifying Effective Approaches in Science, Technology, Engineering, and Mathematics.”

I’m not sure if you’re trying to introduce these principals to the idea of STEM and convince them that they need to do this, or if you’re trying to show your principals how to do this. Those are two separate presentations – at least.

Good luck with your preparation! You have a lot of research to back up the need for STEM!

Thank you so much Anne! I will get to work! Your advice is very helpful!

' src=

I realize this comment is 3 years old, but I came across it just now. I would like to know if Susan Pruet is still available to get that free STEM launcher you mentioned – a lesson intended to demo the STEM process. I would love this.

' src=

Harry – thanks for asking. This is still a popular post at MiddleWeb! Anne Jolly’s January 2017 blog post shares the Launcher activity: Launch the New Year with STEM Mini-Lessons!

Thank you! Much appreciated from a fellow Alabaman. (correct use of that word? :) )

' src=

I love the STEM idea. But, as a 7th grade math teacher, I don’t see a place in STEM programs to ensure that students understand the basic math skills required by educational standards. For many kids, it takes a long time to understand and be able to apply math concepts. With STEM programming focusing on the project-based approach, where does mastering basic skills fit in?

Mastering math skills and applying them through STEM isn’t actually an either-or situation. If kids see reasons for what they are learning, they tend to learn more deeply and quickly because they are actually engaged in the content. I’ve worked with STEM courses that made use of math that the kids had already learned. I’ve also worked with STEM projects that taught the math kids needed in order to solve the problem. Both were effective. The real purpose of STEM is to ensure that math and science students learn their content more deeply. If that isn’t working, then we’ll need to keep adjusting until we get there. Thanks for asking!

' src=

Hi Ann, I am a third grade teacher and currently co-chair a curriculum committee to develop a summer program for Kindergarten through 3rd grade. I am having trouble finding age appropriate STEM lessons for kindergarten through 3rd grade. Do you have ideas or suggestiosn as to where I can start? Thank you.

Hi, Mary! So glad you’re working on developing a summer program. I know someone who’s been there, done that, and I’m going to put you in touch with her. Her name is Susan Pruet and her email is [email protected] . Please shoot her an email and she’ll be happy to tell you about what materials, etc. she uses.

I’d also take a look at the Engineering is Elementary (EiE) curriculum from the Boston Museum of Science. Those are quite thorough and good.

' src=

Hi Ann I am a seventh grade science teacher and we are in the early stages of implementing STEMS at our school site.Can this program incorporate all content areas, history, language arts, math and science all in the science classroom? This is not my understanding of how it should be taught. I understand the math and science but to include what the history and language art teacher is teaching doesnt seem to work. I am hoping you can clarify this for me.

Hi, Darren. Wow. You’re gonna be sorry you asked me this . . . my answer won’t be short!

For me personally, STEM includes an indepth, integrated focus on science and math, and on using the engineering design process to solve real-world problems. Technology may be used to help with the solution, or teams of kids may create technology as part of the solution. (Anything made by humans to meet a want or need is designated as technology). This in-depth focus on science and math through STEM has come about as the result of a 21st Century workforce with an increasing need in STEM fields and a lack of STEM-prepared workers. The math and science deficits are sending our industries abroad to find workers qualified for our 21st century workforce.

Now to your question. I see a place for art in the STEM product design – it could be used to make the product teams produce more appealing and desirable – although that may be for the art teacher to work with if it’s going to involve knowing art design principles.

Likewise, you have to use some form of language arts in the communication process (communication is part of the engineering design process); however, it’s used naturally as teams work together to solve the engineering (STEM) challenge and to publicize their solutions. It’s not used try to accomplish specific language arts objectives.

History might be incorporated if you need to set some sort of context for the engineering challenge. But I can’t visualize incorporating specific history objectives during a STEM challenge unless they happen to be a natural fit. And unless you need a historical context for the challenge.

Doing a “force fit” with other subjects doesn’t make much sense to me. Not to mention – class time is already at a premium. STEM work, with its inquiry-based approach, already requires more time than a traditional science (or math) class.

The fact that all subjects are not taught directly in an engineering challenge doesn’t lessen the value of those other subjects. Again – it goes back to the need we’re attempting to meet by going deeper in math and science content through an engineering process.

So for me, in a STEM project students focus on using science and math to solve real world challenges, and they use the engineering design process to bring structure and process to doing that. Language arts and history are always appropriate to the extent that (and if) they add value to the STEM challenge. They shouldn’t be add-ons just for the sake of adding them on.

Remember, however, that there is an intense focus on the science and mathematics objectives in a solid STEM program. And this works best when these two subjects are integrated and the math and science teachers work together on teaching STEM projects.

Now, aren’t you sorry you asked? Seriously – remember this is MY opinion and STEM has other looks as well. I’d advise you to listen openly to the need for including other subjects as explained by your principal or other decision-maker. Then – rather than pushing back – in a positive manner explain how these subjects could fit naturally during the course of the STEM projects. Also explain what you expect to accomplish for your students through STEM and note the limited time you already have. Let me know how it goes. :-)

' src=

I am looking for STEM lessons that I can incorporate in my middle school Math Enrichment program which is for advanced math students in grades 6-8 and meets for approximately 10 weeks during the school year. I have been given the charge of creating a Math/STEM enrichment program/curriculum and am looking for resources to help. Currently, our school is implementing STEM curriculum/projects in the Science classrooms, but I need to find more of a mathematical slant. Thanks for your help…..I am so glad I found this website!

Hi, Sharon,

Math is one of the under-resourced areas in terms of lessons that apply real, grade-level math. I’ve seen so many lessons that ask students to “find the average” (my math teachers say it should be “find the median”), and then the writer feels that math has been sufficiently covered. NOT! Some areas of math that I’ve seen successfully developed into STEM lessons include applying what middle school students have learned about flow rate, unit rate, scaling and proportion, and statistics, to name a few.

Susan Pruet – a real math guru – will be writing a post for this blog in August. She’s going to address how math teachers can be STEM teachers, and will give some examples.

Some of the better math lessons I’ve found and adapted are from the Design Squad. This one – making cardboard furniture ( http://pbskids.org/designsquad/build/paper-table/ )- uses geometry. Try browsing around there for ideas. The Design Squad site also has links to other sites as well.

I’m SO glad that you, a math teacher, are taking on this task. Applying math will eliminate forever kids asking “Why should I learn this?”

Keep us posted, and stay in touch.

Thanks for your reply. I will be looking for the post in August and I will look at the Design Squad site as well. I too feel that Math takes a back seat to Science when STEM programs are created and implemented. I hope to change that! I will keep in touch and again, I appreciate your reply and support!!

' src=

You are providing amazing resources – thank you! I am starting a STEM program for all 6th, 7th and 8th grade students in our middle school. They will have STEM on three consecutive days (3 – 45 minute blocks) for 12 weeks. This will be a very exciting introductory year for us! My challenge is to design the curriculum this summer, though. I am searching for any type of “canned” curriculum to purchase as a start and then to develop from there. Can you provide any suggestions? Thanks so much!

I, too, have been given the charge of STEM curriculum writing for grades 6-8 in mathematics during the summer. If I find anything useful, I could let you know. It is a daunting task!!

Hi Sharon, Yes that would be excellent, and I will do the same! Nancy

I found a great resource for STEM projects on TeachersPayTeachers.com It is: 21st Century Math Projects. The emphasis is on Math, but STEM oriented. Check it out!

I checked it out, too, Sharon . . . I can’t see to what extent it mirrors STEM lessons, but it certainly seems to do so from what I read. And I love the fact that it’s written from a math perspective. Thanks for pointing out this resource!

Wow. What a feat to accomplish over the summer, Nancy!

Several “For purchase” STEM packages are out there, but I can’t recommend any in particular because I don’t know enough about them. You want your STEM program to integrate math, science, and technology, and to follow an engineering design process. (It’s the engineering piece that many would-be STEM curricula leave out.)

I’ll put out the feelers and see if any show up on the horizon. Check my Twitter feed at @ajollygal – I may get some responses there.

Thanks so much, Anne! I am a bit overwhelmed at the moment, but simultaneously excited about bringing STEM to our school! I appreciate any help or guidance – I will check twitter as well.

' src=

I am a parent of a 3rd grader who has been given the task of doing a stem project, and I have no idea how to help her, or what I am looking to do. I do not understand what this curriculum is. Can you please explain to me what I’m supposed to be doing with her

STEM curriculum helps kids apply the science and math they learn in a real world situations. Parents can help a lot with the STEM skills kids need. Here are some posts that contain information I wrote mostly for parents. See if these can give you the information you’re looking for. http://www.middleweb.com/3569/10-stem-tips-for-parents/ http://www.middleweb.com/15579/ideas-activities-stem-summer-slide/ http://www.middleweb.com/22787/reinvent-summer-learning-make-it-up/

Thanks for your question, and for looking for ways to help your daughter in STEM!

' src=

please suggest me some hands on activity on maths for 10-15 yrs of age

' src=

I am a technology teacher for grades 3-5. I am looking for STEM problems my students can do on the computer. Any ideas?

' src=

Thanks for the information on applying STEM. I am actually a spatial ecologist that is teaching gr7-9 mathematics at a small school in South Africa. I feel that we came up with a brilliant idea of how to combine Math and STEM (for those Math teachers that were uncertain). I combined our focus on insects (biology) for the term with all the data chapters (collect, organise, summarise, interpret and report). The learners were tasked with creating a question that we wanted to answer regarding insects and using the data cycle/scientific method (above) to develop a plan how to answer this question. The learners decided to do a survey of insects at the school. They set up a plan of how to collect the insects, did so and then analysed the data and reported their findings. They had to include a section on possible errors/bias in their data. I admit that this is one of the easier sections in math to incorporate into a STEM-type approach but I provide it as an example. The kids loved it!

Thank you so much, Marie! Integrating math and science fits naturally in your example. I appreciate your sharing your idea here, and I wonder if you’d allow me to share it on my website – http://www.stem-by-design.com/ .

You are more than welcome to share it. I think often we are unaware of how what we are doing can be related to STEM/is STEM! (Pls leave my e-mail address anonymous). Thank you Marie

' src=

Hello, I work in the scholastic department of a wastewater treatment plant. We provide hands on STEM outreach to schools and community. We are preparing for our second year STEM camp for high school students. Last year we partnered with a local university and focused on microbiology and chemistry. This year we are looking for some additional engaging ideas to incorporate into our 5 day camp. Are there any recommendations that you can provide? Thank you

' src=

Hi Ron, I am going to be teaching a Medical Microbiology class this fall. I would love to know how you focused on microbiology and what lessons you may have used. The University of Texas has potential to help us. What university department did you work with? Thanks for any help you can give me.

' src=

Hi Ann I am a STEM instructor, using lego materials as hands on instruction materials,how do I make my class more interesting and innovative. I need ideas on how to make my class a real world problem solving session,please your kind recommendations. Thank you

Try this idea . . . your kids should have a real reason for building whatever it is they make with the Legos (or any other materials). Suppose they are studying the human body in science. They could use the Legos to construct a prototype of something to solve a problem – perhaps a model of a miniature artificial arm or leg that would help a disabled person, If the kids have a reason for making something and the freedom to come up with their own designs, this often stimulates interest and innovation.

' src=

I am looking or some STEAM projects for 4-5th graders to work on in relation to Earth Day. Does anyone have any suggestions? We are just starting to implement these into our classes at school which ranges from Prek-8 so suggestions for any grade level are welcome and I will pass them on.

' src=

Thank you for all of your valuable STEM resources! I’ve enjoyed reading/researching through your site!

I am new to teaching a middle school 9-week STEM class for 6th graders. As of right now, my curriculum/materials consist of a canned STEM program that has zero depth.

I’ve been tasked with overhauling the class – developing a true STEM curriculum. Do you know of any middle school models I could research?

I’d appreciate any help.

Hi, Sarah, Take a look at this STEM launcher on my website at http://www.stem-by-design.com/use-mini-lessons-to-launch-stem-projects/ . It will help your kids get engaged with the “E” in STEM. It’s written for use in math+science classes, but it would be simple to modify and use with your kids. I have two more launchers I can send you if you like this one.

Another idea – look around the website while you’re there. There are plenty free resources and tools (click on the tabs at the top) and you are welcome to use (and modify) any of them.

If you want to check out my book – it has suggestions for developing STEM lessons. If you have a chance to develop STEM projects that carry over from one time the kids meet until the next, that’s the best look. If you only see them once a week or so, then that’s a bit more of an issue. If you want to email me we can probably “chat” more over email than here. [email protected]

Thanks for being a STEM person!

Thank you, Anne! I appreciate your suggestions and resources. When you get a chance, I’d love to take a look at the other launchers.

' src=

Hello! I am a 11 year old kid going to Somerset Academy. I am doing a STEM project like all of else as well. I am working with two other friends on this project. In our project there is some different things we must do. Most of all we need to make a product that solves an everyday problem. Our group created and idea with ice cream. Our product name is Drip Catch. It is basically a plastic cup for our ice cream cones whenever it melts. The Ice cram will just fall into the cup looking thing. But….. it does not really work. So I am asking for an idea that is a product that solves everyday problems.

I also forgot to mention I am in 5th grade. Please help me. You only need to give me an easy/ OK difficulty stem project. But.. it must be a product we created and it HAS to solve a problem.

What a neat assignment! I like the Drip Catch idea – I wish it had worked. Can you redesign it so that it will work? I think its a great start.

Let me tell you where you can find some good ideas for STEM projects. Go to the Design Squad at http://pbskids.org/designsquad/projects/ . At the top of the page, click on “Design” or click on “Build.” There are some pretty good ideas there.

I read of a group of kids who designed Popsicles with vitamins in them. Here are some other problems kids tackled. http://read.bi/2DoiBSY Just scroll down to see them.

Have you ever noticed that kids on crutches have a problem carrying things around? Is there some sort of carrier that can be added to crutches so that kids can carry things?

Keep your eyes open. Look for a problem you can help in your community or at your school.

Good luck to you and your friends. I hope you’ll come back and post what you finally decided to do. I bet it will be neat!

Thank you very much! I looked at the links you provided and got some new ideas. But.. my friends and I decided to keep doing the Drip Catch idea! But thx for your help! Bye have a great day/

Thanks, Jaden! Let me know how the Drip Catch works. I thought it sounded like a useful and original idea.

Tom is the STEM fair and we finished! It looks amazing. We made the drip catch with a plastic container and cut it into a circle and a hole inside. SO ready for tom!! Thank you so much.

Good luck!!

' src=

HI Anne I am in the process of starting a STEM Summer Academy for 6-8 graders, looking for projects in STEM that will motivate the students

Take a look at “Engineering Is Elementary” (EIE) Curriculum Units. You can find them at( http://www.eie.org/eie-curriculum/curriculum-units .) While they are designed for up to 5th grade, they are easily adaptable for older students. Also check out “Engineering Adventures” at https://www.eie.org/engineering-adventures/curriculum-units .

“Engineering Everywhere” (www.eie.org/engineering-everywhere) is a free Middle School curriculum you may like. It’s designed for youth in afterschool and camp programs.

Another place I go for just fun activity ideas is the Design Squad (pbskids.org/designsquad/projects/)

I hope those give you some good ideas!

Thank you I will keep you posted on how it turns out ; any ideas for projects

' src=

What a great resource! I am currently teaching in a small school of 22 P-6 students and have been asked to complete a 1-1.5 hour Maths Problem Solving Session with a STEM focus each week with all of the children. Can you please put me in touch with some resources/activities that are hands on and suitable for multi age/abilities?

Hi, Karlene. One resource that seems popular is the Student Teaming Guide, and it’s a free download on my book website (www.stem-by-design.com). To get it, click the tab at the top of the webpage titled Student Teaming Tips. Scroll to the bottom, and download it and share it.

You may enjoy looking around the website as well. You’ll find plenty of free tools, tips, and teaching ideas there. You’ll also find a free STEM Launcher (a mini-lesson called Stop, Drop, Don’t Pop) to introduce engineering to your students. ( http://bit.ly/2Cvb2cw ) Scroll toward the bottom of the page and you will see 3 pdfs you can download, use, and share.

In my MiddleWeb blog I write about all sorts of topics from lesson design to including girls in STEM. You may wish to look at some of those resources as well. In fact, I’ve just posted another launcher there – the ‘Bama Bears – to help kick off STEM (the engineering component) for 2018.

I also came across another good muliti-grade level resource that I think you’ll like. Take a look at this site: http://bit.ly/2IaNeda

I hope some of these help! Thanks for your work with STEM.

I forgot to include the link to my MW blog – it’s https://www.middleweb.com/category/stem-by-design/

' src=

I’m involved in our school’s pilot STEAM classes and found the resources in your post helpful. I’ve used TeachEngineering quite often to help me get ideas.

About the problem with maths, we’ve had the same concern but what we’re aiming to do in our next project is getting the students to collect data themselves than using made-up ones. We think that the authenticity of these activities will increase students’ level of motivation.

Great idea, Ms B! Authenticity is, indeed, the key.

Also consider checking out some of the big math grade-level concepts and targeting one or more of those specific concepts for a STEM challenge. We did that with flow rate. We did an environmental STEM project that dealt with water erosion (that was an authentic problem for our school.) The kids used flow rate to measure and calculate the effectiveness of their barriers. Then they redesigned them and got much better results. And . . . they finally saw a practical use for learning how to calculate flow rate!

' src=

I am the middle school science teacher at a Christian school and is desirous of coordinating and developing a STEM curriculum. I have heard a lot about STEM but want to have a clear focus on how to start this first in the middle school then to the rest of the student body.

Hi, Edmund, What an exciting adventure – starting to implement STEM in the elementary school. That’s certainly the right way to do it. Start with this article on building a foundation with elementary STEM: https://www.middleweb.com/26244/building-a-foundation-with-elementary-stem/ . If you haven’t checked out my latest book, STEM by Design , it’s published by Routledge/MiddleWeb. Among other things, this book shares practical tips, principles, and strategies for implementing STEM in Grades 4-8. Those principles can be applied at earlier grades as well. You may enjoy looking around the book website as well at https://www.STEM-by-Design.com . You’ll find plenty of free tools, tips, and teaching ideas there. You’ll also find a free STEM Launcher (mini-lesson called Stop, Drop, Don’t Pop) to introduce engineering to your students. I’ve posted another launcher – the ‘Bama Bears – on my MiddleWeb blog site. You can modify both of these to help kick off STEM (the engineering component) for this fall.

' src=

hii, i’am education student , and i want to work on stem activity based on problem solving for grade 4 to 6 math student , but i don’t have any idea what should i doo :(

One place to start is looking at issues in your community. Also checking news geared towards kids (news depth, TFK, and National Geographic. Then get creative around the engineering design process.

You might also check out Design Squad Global, Dana. There are a lot of super STEM activities for all grade levels on that site. Good luck with your STEM activities.

' src=

Hi Anne, I don’t teach but I was wondering if you could give me ideas for STEM ideas for some of my peers. It is a school project so I’ve got to knock it out of the ballpark. Appreciate it. Thanks. Please get back to me before 2/20/19. Thanks again.

Hi, Yen-Dow,

A couple of suggestions that will help you find ideas: Go to Design Squad Global Lesson Plans. ( https://to.pbs.org/2XcjPXBd/ ). They have some amazing ideas there.

You might try this MiddleWeb blog post I wrote. ( http://bit.ly/2BK3qmS )

And look at Science Buddies. They have a lot of good resources there. (Note: The Science Buddies site requires a free account to access all the details. Just takes a minute.)

I hope those suggestions will be of some help!

' src=

Selam, Türkiye’de ilkokul öğretmeniyim. Bio ekonomi ile ilgili STEM projesi geliştirmek istiyorum.Fikirlerinizi almak benim için muhteşem olacaktır.Teşekkür ederim.

Selam, Candan. Thanks for teaching STEM to elementary students.To find ideas for bio economy projects, please go to this link: https://www.middleweb.com/39326/how-elementary-stem-can-meet-the-future/ . At the end of this article you will find links to six sites that have good lessons you may be able to use. I hope this helps, and please continue your good work.

' src=

Hello Anne, Such a wonderful site! So I am interested in researching teacher’s beliefs about integrated STEM education and if it can improve science and math skills for my dissertation. I am planning to explore authentic tasks in both science and math. What do you think about this idea? How can I explore this topic in greater depth? Can you recommend me some readings? Should I use the same authentic activities for both math and science or can I use scientific inquiry in science and models in math? Hoping to hear your thoughts.

Also, I forgot to mention that I would be focusing on primary schools so if you can suggest me some readings.

[…] By Anne JollySummary by MiddleWeb Smartbrief"Providing STEM students with real-world challenges fuels their curiosity & investigative interests, writes science educator Anne Jolly. But where do teachers find problems worthy of investigation? In a new post at MiddleWeb's STEM Imagineering blog, Jolly makes the case for real-world problem solving and points to Internet resources that can help teachers find suitable challenges in science, math and engineering."  […]

[…] head over heels in a STEM project—before the familiar acronym had even burst onto the scene. See Real World STEM Problems for some suggestions for projects students might focus […]

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Notify me of follow-up comments by email.

Notify me of new posts by email.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

  • Popular Posts
  • Recent Posts
  • Recent Comments

real world problems for students to solve stem

Book Reviews / Literacy

The Democratic Roots Essential to Literacy

real world problems for students to solve stem

Articles / Literacy

How Teacher Notebooks Can Help Students Learn

real world problems for students to solve stem

Articles / Mathematics

How to Differentiate the Teaching, Not the Task

real world problems for students to solve stem

Research / Wide Open Learning

Taking Small Steps to Build Research Skills

real world problems for students to solve stem

Book Reviews / Mindsets

How to Reclaim Your Energy, Passion, & Time

real world problems for students to solve stem

Defiance / I Will Screw This Up

Why I’m Keeping My Classroom Door Open

real world problems for students to solve stem

Articles / Leadership

You Can Make Meetings More Productive

real world problems for students to solve stem

Articles / Body Image

Books to Help Students Explore Body Image

real world problems for students to solve stem

Equations / Meaningful Math

My Students Struggle to Solve Basic Equations

real world problems for students to solve stem

Articles / Extra Credit

Providing Extra Credit: Positive or Negative?

real world problems for students to solve stem

Articles / Deeper Learning

Complex Tasks Every Student Can Accomplish

real world problems for students to solve stem

Articles / Classroom Culture

A UDL Strategy to Help Students Communicate

real world problems for students to solve stem

Number Sense Builds a Strong Math Foundation

real world problems for students to solve stem

Book Reviews / Teaching Insights

A How-to Guide to Better Engage Your Students

real world problems for students to solve stem

Articles / Engagement

Consistency: the Invisible Backbone of Teaching

  • MiddleWeb says: Mona Iehl points readers to a discussion of the research behind...
  • Melvin Rountree says: What is the data showing student improvement? Has it been replicated...
  • Angela Foster says: I think that dialogue journals are a wonderful way to engage...
  • Donna Norton says: As a parent, I frequently think about my kids' talents and...
  • Donna Norton says: I love how it encourages personal connections and discussions about the...

Sign Up & Receive the Latest News about Our Content…

Email address:

First Name:

Read our Privacy Policy

BOOK REVIEWS

real world problems for students to solve stem

A Leadership Blueprint for Growth and Success

real world problems for students to solve stem

10 Tools to Help Kids Develop Their Talents

real world problems for students to solve stem

The Reading Strategies Book Gets an Update

real world problems for students to solve stem

Opportunities for Swift Achievement Gains

real world problems for students to solve stem

Teaching for Retention, Application and Transfer

real world problems for students to solve stem

Strategies to Adjust ‘Up’ What Students Know

real world problems for students to solve stem

Assuring Just, Inclusive Learning for Newcomers

real world problems for students to solve stem

Building Bridges That Cultivate Teacher Growth

real world problems for students to solve stem

SEL, Civic Engagement, & a Healthy Democracy

real world problems for students to solve stem

An Enhanced Edition of ‘When Kids Can’t Read’

real world problems for students to solve stem

Shifting to Asset-Based Literacy Assessments

real world problems for students to solve stem

Bringing the Science of Reading into Grades 3-5

real world problems for students to solve stem

Class Libraries to Inspire and Challenge Readers

real world problems for students to solve stem

Strategies to Integrate AI into Every Classroom

real world problems for students to solve stem

Preparing Our Students to Engage the World

real world problems for students to solve stem

A Playbook for Student and Teacher Well-Being

real world problems for students to solve stem

Culturally & Historically Responsive Classrooms

real world problems for students to solve stem

7 Science Fair Projects that Solve Problems

  • August 5, 2023

Share this post:

https://stem-inspirations.com/stem-science-fair-projects-help-students-prepare-for-real-life-careers

Science fair projects that solve problems are a great way for students to test their interest and aptitude for a career in STEM (science-technology-engineering-math). But they shouldn’t choose just any old topic. To make the most of the opportunity, try to focus on projects with real-world applications. This will give them hands-on experience directly related to a good-paying job field, like  engineering .

With planning and hard work, the right science fair project might bump up a student’s chances for a scholarship or a trip to one of the science competitions sponsored by the Society for Science .

Do your students need help sketching the experimental set-up for a science fair presentation? Check out these resources:
  • No-Prep Worksheets – How to Draw like an Engineer and Isometric Drawing
  • 3D Isometric Drawing and Design for Middle School
  • My Engineering Draw & Write Journal for Kids : 48 Fun Drawing and Writing Prompts to Learn about the Engineering Design Process.

Don’t get me wrong — creating foaming volcanoes or diagramming the human circulatory system are fun and classic ideas for a science fair project. But unless your student plans to go to med school or major in geology, these typical projects won’t do much to advance his or her future career. Far more practical engineering jobs will be available in the 21st century.

In this post you’ll find seven problem-solving science fair projects gleaned from the Education.com website. They provide simple, but realistic, introductions to real-world careers in electronics, robotics & automation, and construction engineering.

For more help with choosing a science fair topic, setting up your experiment, collecting and analyzing the data, and presenting your results, visit NASA’s video page on How to do a Science Fair Project .

Solving problems in Smart Technology

Consider the hottest topic in industry today – Smart Manufacturing, or Industry 4.0, sometimes called the Industrial Internet of Things (IIOT). Industry 4.0 is just one facet of the global push towards Smart Cities, Smart Homes, and Smart Agriculture.

All these concepts center on wireless connectivity between machines using cellular networks. So, for Smart Homes, this means your utilities, fridge, lights, security, HVAC, and other systems would be connected through an app on your smartphone. From there you can track and control these systems to keep your home safe and comfortable, while reducing water and energy use.

[Click here to join the STEM-Inspirations mailing list ]

For Industry 4.0, companies are connecting the machines used in their manufacturing and power generation plants at different locations around the world. On top of that, they are creating “digital twins” of each machine, which are 3D animated computer models of the machines.

The idea is to collect real-time data from each machine and then use that data, along with artificial intelligence (AI), machine vision, and even virtual reality simulations, to:

  • Design new products
  • Predict when a machine will need maintenance BEFORE something goes wrong
  • Optimize the output of the machines and harmonize them to work together

Solving problems in Robotics

Another major topic in industry is  robotics and automation . Automation means that machines are programmed to perform tasks without human help. Some robots are standalone, “service” robots, like the Roomba. Others, like robotic arms in factories and warehouses, pick and place items to be processed.

The more human-friendly “collaborative” robots can improve human capacity and are safe to work around. Put together, these technologies allow some manufacturing plants to run “lights out,” without any human input for days.

Real-world science fair projects help students with real-world careers in STEM

Robots are boosting agriculture, both in planting and harvesting fields and in packaging food. With Smart Agriculture technology, farmers collect data in their fields with mobile apps applying artificial intelligence (AI) software to reduce fertilizer needs and optimize water use.

Help students sketch their experimental set-up for science fair presentations with these resources: No-Prep Worksheets – How to Draw like an Engineer and Isometric Drawing 3D Isometric Drawing and Design for Middle School My Engineering Draw & Write Journal for Kids : 48 Fun Drawing and Writing Prompts to Learn about the Engineering Design Process.

Solving Engineering Problems

Most science fair projects on the internet seem to focus on the basic sciences, like biology and chemistry. But in light of the skills gap we are now experiencing between the available job force and manufacturing industry requirements, I believe engineering-focused science fair projects that solve problems in Industry 4.0, robotics, automation, and construction may be better choices for building up tomorrow’s workforce.

Here are 7 science fair project ideas that focus on solving problems:

1. cell phone dead zones science fair project.

https://www.education.com/science-fair/article/cell-phone-dead-zones/

Students learn how wireless networks work, find dead zones where wireless signals are lost, and determine ways to reduce these zones – important preparation for students who hope to work on Smart Homes, Smart Factories, Smart Cities, or Smart Agriculture.

2. App development science fair project

https://www.education.com/science-fair/article/iphone-application-design/

An app on a phone or tablet can be an interactive game, a navigational device, a business software package, or just about anything else you can imagine. This project allows you to get a head start in the growing app design field by designing your own app for popular smartphones.

3. Smoke detector science fair project

https://www.education.com/science-fair/article/smoke-detectors-working/?source=related_materials&order=2

Sensors of all kinds solve problems for smart technologies and robotics engineering. Sensors can detect motion, gases, light, heat, and other changes in the environment to allow robots to avoid collisions or Smart Homes to detect a fire, for example. This project compares the effectiveness of two types of sensors in a smoke detector.

4. Faraday’s experiment science fair project

https://www.education.com/science-fair/article/faraday-experiment-current-generated-magnet/

Electric currents create their own magnetic fields, and the movement of magnets induces , or creates, current in a wire. Motors and generators use magnetic movement to create current and send electricity to do useful work to power machines. In this lab, you will recreate Michael Faraday’s famous experiment by building a solenoid  (a coil of wire) and experiment with moving magnets to produce current.

5 & 6. EMFs science fair projects

https://www.education.com/science-fair/article/smart-card-electromagnetic-fields/

https://www.education.com/science-fair/article/EMF-affect-us/

Radio Frequency Identification (RFID) is an electronic technology used in credit cards, ID Cards, and theft prevention systems, as well as in manufacturing, warehousing and shipping products. The first project measures the electromagnetic fields (EMFs) given off by various RFID transmitters, which may have harmful effects on people. The second project looks directly at how EMFs can affect us physically.

7. Rust prevention science fair project

https://www.education.com/science-fair/article/bust-that-rust/

Metals rust, and that can be a big problem when it comes to bridges, buildings, cars, and any object exposed to air and water. This project examines the process of oxidation (not just rust) that ultimately breaks down every physical object and looks at ways to prevent that from happening.

For more problem-solving science fair project ideas, follow the STEM-Inspirations Science Fair Projects board on Pinterest.

Copyright © 2017-2021 by Holly B. Martin

Click here to join the STEM-Inspirations mailing list .

real world problems for students to solve stem

Hi, I'm Holly!

I help you educate and inspire students to pursue careers in STEM/STEAM!

Click here to learn more about me and how I can help you .

Let's Connect!

real world problems for students to solve stem

real world problems for students to solve stem

  • Book Excerpts / Realistic STEM Challenges

STEM Problems Students Can Really Address

by STEM by Design · Published July 5, 2016 · Updated July 5, 2016

Excerpted from “Ten Think-Abouts for Preparing to Teach STEM,” Chapter 4, STEM by Design by Anne Jolly (Routledge 2017). All Rights Reserved.

Think-About #3: What Kinds of Problems Can My Students Realistically Address?

  Problem-solving is fundamental to STEM. But coming up with real-world engineering challenges for students to solve can be tricky. Here are some ideas about locating problem possibilities.

◆ Encourage student-generated problems . These are obviously ideal for creating student enthusiasm and engagement. Adolescent students love to make learning about “me.” Give them as much input as possible into problems they want to solve, within constraints dictated by the curriculum.

◆ Check out 14 Grand Challenges for Engineering . In the 2008 National Academy of Engineering Grand Challenges for Engineering report, the NAE identified 14 broad categories of problems that we as a nation must be prepared to solve in this century. Mull over the list of real-world problems . Your students might be interested in designing model solutions related to some of these. Some Grand Challenges that I think might inspire middle school STEM students include solar energy, clean water, health care (including food shortage and disease and accessibility issues), and urban infrastructure (including transportation systems and visually appealing bridges and municipal structures).

Sample items from Table 4.1 in STEM by Design (Routledge, 2017)

◆ Do an Internet STEM Lesson search . Simply typing “real-world problems” into a search engine can bring up a host of possible sites that you can sift through for ideas. Of course, everything labeled “STEM” is not necessarily a true STEM lesson. To narrow your search you might detour over to the Resources section in the Appendices and examine some sites mentioned under “STEM Lessons.” Be sure the check out the Link Engineering website for great insights into good STEM lessons as well as information about engineering design.

◆ Keep the problem do-able. Whether your students identify a problem to solve or you choose the engineering challenge, be sure to keep it do-able. Consider (1) what students have already learned that can help with solving this problem, and (2) the resources available for the challenge. Engineering solutions for a problem involving clean energy (wind turbines, solar cells, etc.) might be quite realistic. Tackling a problem involving interplanetary travel—not so much.

◆ Line up a resource support group . Your science and technology labs may be well-equipped to allow students access to digital tools, measuring devices, and other equipment. Realistically, though, you will still find times when supplies needed for a STEM lesson will include items such as wood, wire, cardboard, tape, string, tongue depressors, paper and plastic cups, plastic spoons, foam board, and so on.

Lining up some business partners to help with STEM supplies can solve your resource problem. For example, doctors, dentists, and hospitals may donate supplies such as surgical gloves and tongue depressors. Some businesses may donate office-type supplies; others may donate money. Parents and PTA groups are generally more than willing to send paper towels, paper plates, cups, and spoons, and other household items you may need. I found that colleges and universities would often donate perfectly usable science equipment that they were replacing. Our local police station donated some triple-beam balances. Be creative in beginning to assemble a resource support group.

◆ Be sure to get comfortable with both the math and the science content your students will use in each challenge . If you teach only science, or only math, be sure you collaborate with a teacher in the other field. In the language of math and science, terms sometimes mean slightly different things. For example, the term “factor” when used in science might refer to something that contributes to a result, such as a catalyst in a chemical reaction. In mathematics, a factor is a number (or algebraic expression) that is multiplied together with another number to produce a given product. You want to be aware of possible inconsistencies in terminology and be sure you are using the correct “teacher talk” in discussing science and math content with students.

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • Click to print (Opens in new window)

Tags: Anne Jolly real-world STEM projects STEM By Design STEM student challenges

You may also like...

real world problems for students to solve stem

What’s So New or Different about STEM?

July 5, 2016

 by STEM by Design · Published July 5, 2016 · Last modified July 6, 2016

real world problems for students to solve stem

7 Solid Reasons to Involve Students in STEM

 by STEM by Design · Published July 5, 2016 · Last modified July 11, 2016

real world problems for students to solve stem

The 8 Criteria for Authentic STEM Programs

 by STEM by Design · Published July 5, 2016 · Last modified October 17, 2016

2 Responses

  • Pingbacks 0

' src=

I love STEM.

' src=

Nice post. I agree that teachers need to be comfortable with the relevant content. We emphasize the need for consistent language in all our classes as well at our school. How do you go about covering the necessary content if the students come up with the topic?

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Notify me of follow-up comments by email.

Notify me of new posts by email.

Get 20% Off! – Use Code MWEB1

real world problems for students to solve stem

  • Popular Posts
  • Recent Posts
  • Recent Comments

real world problems for students to solve stem

Anne's Blog / Back to School

5 Things New STEM Teachers Can Do Right Now

real world problems for students to solve stem

Anne's Blog / Product Design

Use Product Design to Expand STEM Projects

real world problems for students to solve stem

Anne's Blog / Improving STEM Lessons

Real World STEM Issue: Plastics Pollution

real world problems for students to solve stem

Anne's Blog / STEM Teacher Traits

13 Traits of Great STEM Teachers

real world problems for students to solve stem

Get the School Year Off to a STEM Start!

real world problems for students to solve stem

Anne's Blog / Summer Learning Loss

STEM & Summer Learning Loss

real world problems for students to solve stem

Welcome to STEM by Design

real world problems for students to solve stem

Book Excerpts / STEM Program Criteria

real world problems for students to solve stem

Anne's Blog / STEM Launchers

Use Mini-Lessons to Launch STEM Projects

real world problems for students to solve stem

Book Excerpts

' src=

Subscribe to Our STEM by Design Newsletter

Email Address

The Search for Real-World STEM Problems

BRIC ARCHIVE

  • Share article

If you want to engage students and get them excited about what they are learning in science, technology, engineering, and mathematics classes, ask them to tackle a real-world problem. Then watch their amazement as they realize what they are learning in class actually has real-world applications.

Working on solutions to real-world problems is the heart of any STEM investigation. These solutions may include devices and designs that improve our lives, fulfill our needs or wants, and make our world better. From designing a better pen to figuring out how to assist areas lacking access to clean drinking water, the opportunity to search for solutions to real-world problems fuels students’ curiosity and sparks their investigative interests.

Perhaps the most important consequence of students working on real problems is that they begin to develop empathy—a sense that there is something worth dedicating their efforts to outside of themselves. We need to grow a savvy, ethical workforce to solve looming issues such as air pollution, fresh-water shortages, and crumbling infrastructure.

Criteria for Selecting Real-World Problems

Designing real-world engineering challenges for K-12 students can be tough. In my experience as a STEM teacher, identifying authentic problems that students can work on is one of the most challenging parts of lesson planning.

Here are some of the criteria I consider when selecting real-world problems:

  • The problem must be real. It must involve an authentic engineering challenge grounded in compelling societal, economic, and environmental issues that affect people’s lives and communities. Mythical insects, space aliens, and theoretical life forms are not real-world problems—at least not yet.
  • Students must be able to relate to the problem. If students don’t care about the problem, their buy-in will be limited. This needs to be a significant challenge students care about. It might be a problem in their own life or community. Alternatively, you might build a context to help them connect with an unfamiliar problem by using videos, speakers, or field trips.
  • The problem should be “doable.” For a STEM project to be successful, students should have access to the resources, knowledge, and skills they need to solve the problem—and the scope of the problem should be manageable. Engineering solutions for a problem involving clean energy, such as wind turbines or solar cells, might be realistic. However, tackling a problem involving interplanetary space travel—not so much.
  • The problem must allow for multiple acceptable approaches and solutions. Don’t even consider a problem with a single, predetermined approach and “right” or “wrong” answer. In your STEM class, each team of students might choose a different approach for solving the problem, and several different solutions may work.

BRIC ARCHIVE

  • Students should use an engineering design process —drawing on science, mathematics, and technology skills and concepts—to solve the problem. However, each subject doesn’t need to be used to the same extent. Some solutions may rely more heavily on science and others on mathematics, but all must require students to use an engineering design process.
  • The problem should align with grade-level standards for science and mathematics. In a packed school day, neither teachers nor students have time for much “extra” curriculum content. Teachers can more readily buy into teaching STEM if students are able to use skills they are learning anyway to address the selected problem.

Problem Possibilities

Now for the most challenging part: selecting a real-world problem that meets the above criteria. When my students and I draw a blank, these are some of the tactics I use:

  • Encourage students to come up with the problem. This approach typically generates the most enthusiasm and buy-in from students. Give them as much autonomy as possible to identify problems they want to solve, within the constraints dictated by the curriculum. You might start by asking students to be on the alert for problems in their home, school, or community. For example, students might notice erosion in the schoolyard, or determine that kids need a digital tool to manage their homework assignments. If students get stuck, ask them what needs to happen to make life better for the citizens in their area. Are some people in their community hungry? Is pollution a problem? Just remember to direct students toward problems that are appropriate for their grade level and content knowledge.
  • Do an online search . Simply typing “real-world problems” in a search engine brings up a host of possible sites that you can sift through for ideas. But be forewarned: Everything labeled “real-world problem” is not necessarily a STEM real-world problem with an engineering approach.

Online Resources

So how do you focus your online research to target problems that students can approach with a STEM lens? Some of my go-to search options include:

  • If you need a jumping-off point, take a look at the National Academy of Engineering Grand Challenges . These challenges are divided into four major themes: sustainability, health, security, and joy of living. Some of the challenges that might inspire middle-school students revolve around solar energy, clean water, health care (including food shortage, disease, and accessibility), and urban infrastructure (including transportation systems and municipal structures).
  • Take a stop at the Boston Museum of Science for comprehensive and well-designed engineering curriculum targeting all age groups. The museum’s Engineering Everywhere Curriculum Units offer free STEM lessons that focus on unique and interesting real-world challenges. For additional ideas, check out these 20 hands-on Engineering is Elementary Curriculum Units .
  • You can find a wide variety of STEM lessons and activities geared to specific grade levels at eGIF Dream Up the Future .
  • Another one of my favorite sites is PBS’s Design Squad . You can find intriguing problem-solving ideas in the activities and lesson plans sections.
  • The Teach Engineering site also offers a number of STEM/engineering lessons—be sure to browse these Maker Challenges .
  • For high-school teachers, an excellent resource is Rutgers Today , which describes more advanced real-world problems. High school students in upper-level math or science courses might be able to design and implement solutions for these types of problems.

These are just a few of many resources that can help identify real-world problems with STEM solutions. In the comments section, share your own go-to websites or other resources for STEM instruction. By sharing your insights and experiences, you can help all STEM teachers—and students—learn.

Image provided by the author.

Sign Up for EdWeek Update

Edweek top school jobs.

A billboard heralding the upcoming total solar eclipse that Erie will experience is shown in Erie, Pa., on March 22, 2024.

Sign Up & Sign In

module image 9

  • Utility Menu

University Logo

GA4 Tracking Code

Home

fa51e2b1dc8cca8f7467da564e77b5ea

  • Make a Gift
  • Join Our Email List
  • Problem Solving in STEM

Solving problems is a key component of many science, math, and engineering classes.  If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer different types of problems.  Problem solving during section or class allows students to develop their confidence in these skills under your guidance, better preparing them to succeed on their homework and exams. This page offers advice about strategies for facilitating problem solving during class.

How do I decide which problems to cover in section or class?

In-class problem solving should reinforce the major concepts from the class and provide the opportunity for theoretical concepts to become more concrete. If students have a problem set for homework, then in-class problem solving should prepare students for the types of problems that they will see on their homework. You may wish to include some simpler problems both in the interest of time and to help students gain confidence, but it is ideal if the complexity of at least some of the in-class problems mirrors the level of difficulty of the homework. You may also want to ask your students ahead of time which skills or concepts they find confusing, and include some problems that are directly targeted to their concerns.

You have given your students a problem to solve in class. What are some strategies to work through it?

  • Try to give your students a chance to grapple with the problems as much as possible.  Offering them the chance to do the problem themselves allows them to learn from their mistakes in the presence of your expertise as their teacher. (If time is limited, they may not be able to get all the way through multi-step problems, in which case it can help to prioritize giving them a chance to tackle the most challenging steps.)
  • When you do want to teach by solving the problem yourself at the board, talk through the logic of how you choose to apply certain approaches to solve certain problems.  This way you can externalize the type of thinking you hope your students internalize when they solve similar problems themselves.
  • Start by setting up the problem on the board (e.g you might write down key variables and equations; draw a figure illustrating the question).  Ask students to start solving the problem, either independently or in small groups.  As they are working on the problem, walk around to hear what they are saying and see what they are writing down. If several students seem stuck, it might be a good to collect the whole class again to clarify any confusion.  After students have made progress, bring the everyone back together and have students guide you as to what to write on the board.
  • It can help to first ask students to work on the problem by themselves for a minute, and then get into small groups to work on the problem collaboratively.
  • If you have ample board space, have students work in small groups at the board while solving the problem.  That way you can monitor their progress by standing back and watching what they put up on the board.
  • If you have several problems you would like to have the students practice, but not enough time for everyone to do all of them, you can assign different groups of students to work on different – but related - problems.

When do you want students to work in groups to solve problems?

  • Don’t ask students to work in groups for straightforward problems that most students could solve independently in a short amount of time.
  • Do have students work in groups for thought-provoking problems, where students will benefit from meaningful collaboration.
  • Even in cases where you plan to have students work in groups, it can be useful to give students some time to work on their own before collaborating with others.  This ensures that every student engages with the problem and is ready to contribute to a discussion.

What are some benefits of having students work in groups?

  • Students bring different strengths, different knowledge, and different ideas for how to solve a problem; collaboration can help students work through problems that are more challenging than they might be able to tackle on their own.
  • In working in a group, students might consider multiple ways to approach a problem, thus enriching their repertoire of strategies.
  • Students who think they understand the material will gain a deeper understanding by explaining concepts to their peers.

What are some strategies for helping students to form groups?  

  • Instruct students to work with the person (or people) sitting next to them.
  • Count off.  (e.g. 1, 2, 3, 4; all the 1’s find each other and form a group, etc)
  • Hand out playing cards; students need to find the person with the same number card. (There are many variants to this.  For example, you can print pictures of images that go together [rain and umbrella]; each person gets a card and needs to find their partner[s].)
  • Based on what you know about the students, assign groups in advance. List the groups on the board.
  • Note: Always have students take the time to introduce themselves to each other in a new group.

What should you do while your students are working on problems?

  • Walk around and talk to students. Observing their work gives you a sense of what people understand and what they are struggling with. Answer students’ questions, and ask them questions that lead in a productive direction if they are stuck.
  • If you discover that many people have the same question—or that someone has a misunderstanding that others might have—you might stop everyone and discuss a key idea with the entire class.

After students work on a problem during class, what are strategies to have them share their answers and their thinking?

  • Ask for volunteers to share answers. Depending on the nature of the problem, student might provide answers verbally or by writing on the board. As a variant, for questions where a variety of answers are relevant, ask for at least three volunteers before anyone shares their ideas.
  • Use online polling software for students to respond to a multiple-choice question anonymously.
  • If students are working in groups, assign reporters ahead of time. For example, the person with the next birthday could be responsible for sharing their group’s work with the class.
  • Cold call. To reduce student anxiety about cold calling, it can help to identify students who seem to have the correct answer as you were walking around the class and checking in on their progress solving the assigned problem. You may even want to warn the student ahead of time: "This is a great answer! Do you mind if I call on you when we come back together as a class?"
  • Have students write an answer on a notecard that they turn in to you.  If your goal is to understand whether students in general solved a problem correctly, the notecards could be submitted anonymously; if you wish to assess individual students’ work, you would want to ask students to put their names on their notecard.  
  • Use a jigsaw strategy, where you rearrange groups such that each new group is comprised of people who came from different initial groups and had solved different problems.  Students now are responsible for teaching the other students in their new group how to solve their problem.
  • Have a representative from each group explain their problem to the class.
  • Have a representative from each group draw or write the answer on the board.

What happens if a student gives a wrong answer?

  • Ask for their reasoning so that you can understand where they went wrong.
  • Ask if anyone else has other ideas. You can also ask this sometimes when an answer is right.
  • Cultivate an environment where it’s okay to be wrong. Emphasize that you are all learning together, and that you learn through making mistakes.
  • Do make sure that you clarify what the correct answer is before moving on.
  • Once the correct answer is given, go through some answer-checking techniques that can distinguish between correct and incorrect answers. This can help prepare students to verify their future work.

How can you make your classroom inclusive?

  • The goal is that everyone is thinking, talking, and sharing their ideas, and that everyone feels valued and respected. Use a variety of teaching strategies (independent work and group work; allow students to talk to each other before they talk to the class). Create an environment where it is normal to struggle and make mistakes.
  • See Kimberly Tanner’s article on strategies to promoste student engagement and cultivate classroom equity. 

A few final notes…

  • Make sure that you have worked all of the problems and also thought about alternative approaches to solving them.
  • Board work matters. You should have a plan beforehand of what you will write on the board, where, when, what needs to be added, and what can be erased when. If students are going to write their answers on the board, you need to also have a plan for making sure that everyone gets to the correct answer. Students will copy what is on the board and use it as their notes for later study, so correct and logical information must be written there.

Real-world problem-solving

On this page:, what is it.

Real-world problem-solving is more than demonstrating examples in a classroom. It’s about moving away from the textbooks to connect the concepts to the real world.  Teachers apply contemporary STEM knowledge to guide students through investigating and tackling an existing challenge or need. For example, it could be designing a greenhouse for the school garden, working with industry or designing a solution to a local council problem.

How does it help?

Real-world problem-solving promotes:

  • The relevance of STEM education and its connection with the ‘real world’ after school e.g. careers and education opportunities. This can increase student interest and engagement in STEM.
  • Active critical-thinking and problem-solving.
  • Access to STEM experts and real work environments. This enhances student learning experiences and sparks student interest and engagement.
  • STEM education that resembles authentic STEM practice in industry. This can help students understand the realities of the world of the work.

How do you do it?

  • Partner with experts or professionals through school-industry partnerships to provide examples/challenges/contexts.
  • Gather real examples from local community e.g. local council.

Want to know more?

Research reports.

  • Partnering with scientists boosts school students’ and teachers’ confidence in science - The Conversation
  • The Australian Industry Group Strengthening School - Industry STEM Skills partnerships - Final Project Report (Page 40)

Case study: Banksia Park International High School and BTG Australasia

Banksia Park International High School in South Australia partnered with BTG Australasia for an extended real world STEM project for Year 8 students. This involved a student visit to BTG’s laboratories, a four-week group project on contamination avoidance in BTG labs and presentations to a panel of BTG employees and other external panellists. The project exposed students to how STEM skills can be applied to a real-world industry problem. It challenged students to think both critically and creatively. It also linked to curriculum learning areas in mathematics, science and technologies. Both the school and BTG were impressed with the enthusiasm and growth of students and were eager to further the partnership.

IMAGES

  1. STEM Projects That Tackle Real-World Engineering Challenges

    real world problems for students to solve stem

  2. Engage Students in Solving Real-World Problems with STEM

    real world problems for students to solve stem

  3. Summer STEM Series- Part 4- Problem Solving!

    real world problems for students to solve stem

  4. Engage Students in Solving Real-World Problems with STEM

    real world problems for students to solve stem

  5. Science fair gives students chance to solve real-world problems

    real world problems for students to solve stem

  6. Engage Students in Solving Real-World Problems with STEM

    real world problems for students to solve stem

VIDEO

  1. Real-World Problem Solving: Finding Solutions Through Projects

  2. Solving Real-World Problems: Bringing Authentic Context to Learning

  3. Evan-Moor's STEM Lessons and Challenges

  4. STEAM + Project-Based Learning: Real Solutions From Driving Questions

  5. STEM Education: Developing 21st century problem solvers

  6. Real World Problem

COMMENTS

  1. STEM Projects That Tackle Real-World Problems

    STEM Projects That Tackle Real-World Problems. The SHARE Team December 12, 2018. Article continues here. STEM learning is largely about designing creative solutions for real-world problems. When students learn within the context of authentic, problem-based STEM design, they can more clearly see the genuine impact of their learning.

  2. Finding Real-World Problems for STEM Lessons - MiddleWeb

    Providing students with real-world problems to solve fuels their curiosity and investigative interests. In its policy paper on establishing effective K-12 STEM education programs, the National Research Council reports that students in high-performing STEM programs have opportunities to learn science, mathematics, and engineering by addressing ...

  3. 7 Science Fair Projects that Solve Problems

    Science fair projects that solve problems are a great way for students to test their interest and aptitude for a career in STEM (science-technology-engineering-math). But they shouldn’t choose just any old topic. To make the most of the opportunity, try to focus on projects with real-world applications.

  4. Real World STEM Projects - Little Bins for Little Hands

    Real world STEM projects are a great way for kids to develop and practice their problem solving skills. Learn how to set up real-world STEM challenges as part of a STEM or science curriculum in any classroom, group, or home. Use our handy free STEM challenge checklist to guide the process from identifying a problem, developing a solution to ...

  5. STEM Problems Students Can Really Address - STEM by Design

    But coming up with real-world engineering challenges for students to solve can be tricky. Here are some ideas about locating problem possibilities. Encourage student-generated problems. These are obviously ideal for creating student enthusiasm and engagement. Adolescent students love to make learning about “me.” Give them as much input as ...

  6. Engage Students in Solving Real-World Problems with STEM

    The following are our top 4 STEM read alouds and activities to engage students in real-world problem solving. 1.) The Water Princess. The Water Princess by Susan Verdeis centered around the real-world problem of a lack of clean and accessible drinking water. It tells the story young girls walking daily to fill pots with water to be used for ...

  7. The Search for Real-World STEM Problems - Education Week

    For a STEM project to be successful, students should have access to the resources, knowledge, and skills they need to solve the problem—and the scope of the problem should be manageable.

  8. Problem Solving in STEM | Derek Bok Center, Harvard University

    Problem Solving in STEM. Solving problems is a key component of many science, math, and engineering classes. If a goal of a class is for students to emerge with the ability to solve new kinds of problems or to use new problem-solving techniques, then students need numerous opportunities to develop the skills necessary to approach and answer ...

  9. Put Global Problem Solvers: The Series in Action with Free ...

    Use Technology to Solve a Local Problem. Use Technology to Solve a Local Problem, the third lesson plan in our series for use with GPS: The Series, encourages students to use the same kind of collaborative STEM problem solving and social entrepreneurship steps in response to any real-world problem.

  10. Real-world problem-solving - Department of Education ...

    Real-world problem-solving is more than demonstrating examples in a classroom. It’s about moving away from the textbooks to connect the concepts to the real world. Teachers apply contemporary STEM knowledge to guide students through investigating and tackling an existing challenge or need. For example, it could be designing a greenhouse for ...