• Our Mission

Making Learning Relevant With Case Studies

The open-ended problems presented in case studies give students work that feels connected to their lives.

Students working on projects in a classroom

To prepare students for jobs that haven’t been created yet, we need to teach them how to be great problem solvers so that they’ll be ready for anything. One way to do this is by teaching content and skills using real-world case studies, a learning model that’s focused on reflection during the problem-solving process. It’s similar to project-based learning, but PBL is more focused on students creating a product.

Case studies have been used for years by businesses, law and medical schools, physicians on rounds, and artists critiquing work. Like other forms of problem-based learning, case studies can be accessible for every age group, both in one subject and in interdisciplinary work.

You can get started with case studies by tackling relatable questions like these with your students:

  • How can we limit food waste in the cafeteria?
  • How can we get our school to recycle and compost waste? (Or, if you want to be more complex, how can our school reduce its carbon footprint?)
  • How can we improve school attendance?
  • How can we reduce the number of people who get sick at school during cold and flu season?

Addressing questions like these leads students to identify topics they need to learn more about. In researching the first question, for example, students may see that they need to research food chains and nutrition. Students often ask, reasonably, why they need to learn something, or when they’ll use their knowledge in the future. Learning is most successful for students when the content and skills they’re studying are relevant, and case studies offer one way to create that sense of relevance.

Teaching With Case Studies

Ultimately, a case study is simply an interesting problem with many correct answers. What does case study work look like in classrooms? Teachers generally start by having students read the case or watch a video that summarizes the case. Students then work in small groups or individually to solve the case study. Teachers set milestones defining what students should accomplish to help them manage their time.

During the case study learning process, student assessment of learning should be focused on reflection. Arthur L. Costa and Bena Kallick’s Learning and Leading With Habits of Mind gives several examples of what this reflection can look like in a classroom: 

Journaling: At the end of each work period, have students write an entry summarizing what they worked on, what worked well, what didn’t, and why. Sentence starters and clear rubrics or guidelines will help students be successful. At the end of a case study project, as Costa and Kallick write, it’s helpful to have students “select significant learnings, envision how they could apply these learnings to future situations, and commit to an action plan to consciously modify their behaviors.”

Interviews: While working on a case study, students can interview each other about their progress and learning. Teachers can interview students individually or in small groups to assess their learning process and their progress.

Student discussion: Discussions can be unstructured—students can talk about what they worked on that day in a think-pair-share or as a full class—or structured, using Socratic seminars or fishbowl discussions. If your class is tackling a case study in small groups, create a second set of small groups with a representative from each of the case study groups so that the groups can share their learning.

4 Tips for Setting Up a Case Study

1. Identify a problem to investigate: This should be something accessible and relevant to students’ lives. The problem should also be challenging and complex enough to yield multiple solutions with many layers.

2. Give context: Think of this step as a movie preview or book summary. Hook the learners to help them understand just enough about the problem to want to learn more.

3. Have a clear rubric: Giving structure to your definition of quality group work and products will lead to stronger end products. You may be able to have your learners help build these definitions.

4. Provide structures for presenting solutions: The amount of scaffolding you build in depends on your students’ skill level and development. A case study product can be something like several pieces of evidence of students collaborating to solve the case study, and ultimately presenting their solution with a detailed slide deck or an essay—you can scaffold this by providing specified headings for the sections of the essay.

Problem-Based Teaching Resources

There are many high-quality, peer-reviewed resources that are open source and easily accessible online.

  • The National Center for Case Study Teaching in Science at the University at Buffalo built an online collection of more than 800 cases that cover topics ranging from biochemistry to economics. There are resources for middle and high school students.
  • Models of Excellence , a project maintained by EL Education and the Harvard Graduate School of Education, has examples of great problem- and project-based tasks—and corresponding exemplary student work—for grades pre-K to 12.
  • The Interdisciplinary Journal of Problem-Based Learning at Purdue University is an open-source journal that publishes examples of problem-based learning in K–12 and post-secondary classrooms.
  • The Tech Edvocate has a list of websites and tools related to problem-based learning.

In their book Problems as Possibilities , Linda Torp and Sara Sage write that at the elementary school level, students particularly appreciate how they feel that they are taken seriously when solving case studies. At the middle school level, “researchers stress the importance of relating middle school curriculum to issues of student concern and interest.” And high schoolers, they write, find the case study method “beneficial in preparing them for their future.”

case study examples about education

  • High contrast
  • Press Centre

Search UNICEF

Education case studies, around-the-world case studies on unicef's education programme.

Education knowledge management dashboard

Case studies

Adolescent education and skills.

Improving students' mental health in Bangladesh

Improving the quality of lower secondary through inquiry-based learning and skills development (Argentina)

An online career portal strengthens career guidance among secondary students in India and helps them plan for future educational and work opportunities (India)

Lessons on youth-led action towards climate advocacy and policy (India)

Learning, life skills and citizenship education and social cohesion through game-based sports – Nashatati Programme (Jordan)

Mental health promotion and suicide prevention in schools (Kazakhstan)

A multi-level, cross-sectoral response to improving adolescent mental health (Mongolia)

The Personal Project (Morocco)  

Improving adolescents’ learning in violence-affected areas through blended in-person and online learning opportunities - Communities in Harmony for Children and Adolescents (Mexico)

A community-based approach to support the psychosocial wellbeing of students and teachers (Nicaragua)

Flexible pathways help build the skills and competencies of vulnerable out-of-school adolescents (United Republic of Tanzania)

Climate change and education

Schools as platforms for climate action (Cambodia)

Paving the way for a climate resilient education system (India)

Youth act against climate and air pollution impacts (Mongolia)

Early childhood education

Early environments of care: Strengthening the foundation of children’s development, mental health and wellbeing (Bhutan)

Native language education paves the way for preschool readiness (Bolivia)

Developing cross-sector quality standards for children aged 0-7 (Bulgaria)

Expanding quality early learning through results-based financing (Cambodia)

Harnessing technology to promote communication, education and social inclusion for young children with developmental delays and disabilities (Croatia, Montenegro, and Serbia)

Scaling up quality early childhood education in India by investing in ongoing professional development for officials at the state, district and local levels (India)

Strengthening early childhood education in the national education plan and budget in Lesotho to help children succeed in primary and beyond (Lesotho)

Enhancing play-based learning through supportive supervision (Nigeria)

Learning social and emotional skills in pre-school creates brighter futures for children (North Macedonia)

How developing minimum standards increased access to pre-primary education (Rwanda)

Expanding access to quality early childhood education for the most excluded children (Serbia)

Advancing early learning through results-based financing (Sierra Leone)

Lessons learned from designing social impact bonds to expand preschool education (Uzbekistan)

Equity and inclusion

Inclusive education for children with disabilities.

Strengthening policies to mainstream disability inclusion in pre-primary education (Ethiopia)

National early screening and referrals are supporting more young children with disabilities to learn (Jamaica)

Ensuring inclusive education during the pandemic and beyond (Dominican Republic)

Championing inclusive practices for children with disabilities (Ghana)

Accessible digital textbooks for children in Kenya (Kenya)

Planning for inclusion (Nepal)

Harnessing the potential of inclusive digital education to improve learning (Paraguay)

Gender equality in education

Sparking adolescent girls' participation and interest in STEM (Ghana)

Non-formal education and the use of data and evidence help marginalized girls learn in Nepal (Nepal)

Getting girls back to the classroom after COVID-19 school closures (South Sudan)

Education in emergencies

Creating classrooms that are responsive to the mental health needs of learners, including refugees (Poland)

Return to school (Argentina)

Learning from the education sector’s COVID-19 response to prepare for future emergencies (Bangladesh)

Prioritising learning for Rohingya children (Bangladesh)

Prioritizing children and adolescents’ mental health and protection during school reopening (Brazil)

Learning where it is difficult to learn: Radio programmes help keep children learning in Cameroon

Reaching the final mile for all migrant children to access education (Colombia)

Supporting the learning and socio-emotional development of refugee children (Colombia)

Mission Recovery (Democratic Republic of the Congo)

The National Building the Foundations for Learning Program, CON BASE (Dominican Republic)

Mental health and psychosocial well-being services are integrated in the education system (Ecuador)

Improving access to quality education for refugee learners (Ethiopia)

The Learning Passport and non-formal education for vulnerable children and youth (Lebanon)

Accelerated Learning Programme improves children’s learning in humanitarian settings (Mozambique)

Responding to multiple emergencies – building teachers’ capacity to provide mental health and psychosocial support before, during, and after crises (Mozambique)

Teaching at the right level to improve learning in Borno State (Nigeria)

Remedial catch-up learning programmes support children with COVID-19 learning loss and inform the national foundational learning strategy (Rwanda)

Learning solutions for pastoralist and internally displaced children (Somalia)

Recovering learning at all levels (South Africa)

How radio education helped children learn during the COVID-19 pandemic and aftermath (South Sudan)

Addressing learning loss through EiE and remedial education for children in Gaza (State of Palestine)

Providing psychosocial support and promoting learning readiness during compounding crises for adolescents in Gaza (State of Palestine)

Inclusion of South Sudanese refugees into the national education system (Sudan)

Inclusion of Syrian refugee children into the national education system (Turkey)

Including refugee learners so that every child learns (Uganda)

Learning assessments

Assessment for learning (Afghanistan)

Formative assessment places student learning at the heart of teaching (Ethiopia)

Strengthening teacher capacity for formative assessment (Europe and Central Asia)

All students back to learning (India)

Strengthening the national assessment system through the new National Achievement Survey improves assessment of children’s learning outcomes (India)

A new phone-based learning assessment targets young children (Nepal)

Adapting a remote platform in innovative ways to assess learning (Nigeria)

Assessing children's reading in indigenous languages (Peru)

Southeast Asia primary learning metrics: Assessing the learning outcomes of grade 5 students (Southeast Asia)

Minimising learning gaps among early-grade learners (Sri Lanka)

Assessing early learning (West and Central Africa)

Primary education / Foundational Literacy and Numeracy

Improving child and adolescent health and nutrition through policy advocacy (Argentina)

Online diagnostic testing and interactive tutoring (Bulgaria)

Supporting the socio-emotional learning and psychological wellbeing of children through a whole-school approach (China)

Engaging parents to overcome reading poverty (India)

Integrated school health and wellness ensure better learning for students (India)

Instruction tailored to students’ learning levels improves literacy (Indonesia)

A whole-school approach to improve learning, safety and wellbeing (Jamaica)

Multi-sectoral programme to improve the nutrition of school-aged adolescents (Malawi)

Parents on the frontlines of early grade reading and math (Nigeria)

Training, inspiring and motivating early grade teachers to strengthen children’s skills in literacy and numeracy (Sierra Leone) Life skills and citizenship education through Experiential Learning Objects Bank (State of Palestine)

Curriculum reform to meet the individual needs of students (Uzbekistan)

Improving early grade reading and numeracy through ‘Catch-Up,’ a remedial learning programme (Zambia)

Reimagine Education / Digital learning

Education 2.0: skills-based education and digital learning (Egypt)

Empowering adolescents through co-creation of innovative digital solutions (Indonesia)

Virtual instructional leadership course (Jamaica)

Learning Bridges accelerates learning for over 600,000 students (Jordan)

Unleashing the potential of youth through the Youth Learning Passport (Jordan)

Lessons learned from the launch of the Learning Passport Shkollat.org (Kosovo)

Opening up the frontiers of digital learning with the Learning Passport (Lao PDR)

Building teachers’ confidence and capacity to provide online learning (Maldives)

Mauritania’s first digital learning program: Akelius Digital French Course (Mauritania)

Mitigating learning loss and strengthening foundational skills through the Learning Passport (Mexico)

Expanding digital learning opportunities and connectivity for all learners (Tajikistan)

For COVID-19 education case studies, please click here and filter by area of work (Education) and type (Case Study / Field Notes).

Resources for partners

Learning at the heart of education

Key Asks 2021 - National Reviews - SDG 4 Quality Education

More from UNICEF

Transforming education in africa.

An evidence-based overview and recommendations for long-term improvements

Early Childhood Education for All

It is time for a world where all children enter school equipped with the skills they need to succeed.

A world ready to learn

Prioritizing quality early childhood education

Mission: Recovery education in humanitarian countries

Updates on UNICEF’s work to deliver education to children in crisis-affected countries, with support from the US Government

Center for Teaching

Case studies.

Print Version

Case studies are stories that are used as a teaching tool to show the application of a theory or concept to real situations. Dependent on the goal they are meant to fulfill, cases can be fact-driven and deductive where there is a correct answer, or they can be context driven where multiple solutions are possible. Various disciplines have employed case studies, including humanities, social sciences, sciences, engineering, law, business, and medicine. Good cases generally have the following features: they tell a good story, are recent, include dialogue, create empathy with the main characters, are relevant to the reader, serve a teaching function, require a dilemma to be solved, and have generality.

Instructors can create their own cases or can find cases that already exist. The following are some things to keep in mind when creating a case:

  • What do you want students to learn from the discussion of the case?
  • What do they already know that applies to the case?
  • What are the issues that may be raised in discussion?
  • How will the case and discussion be introduced?
  • What preparation is expected of students? (Do they need to read the case ahead of time? Do research? Write anything?)
  • What directions do you need to provide students regarding what they are supposed to do and accomplish?
  • Do you need to divide students into groups or will they discuss as the whole class?
  • Are you going to use role-playing or facilitators or record keepers? If so, how?
  • What are the opening questions?
  • How much time is needed for students to discuss the case?
  • What concepts are to be applied/extracted during the discussion?
  • How will you evaluate students?

To find other cases that already exist, try the following websites:

  • The National Center for Case Study Teaching in Science , University of Buffalo. SUNY-Buffalo maintains this set of links to other case studies on the web in disciplines ranging from engineering and ethics to sociology and business
  • A Journal of Teaching Cases in Public Administration and Public Policy , University of Washington

For more information:

  • World Association for Case Method Research and Application

Book Review :  Teaching and the Case Method , 3rd ed., vols. 1 and 2, by Louis Barnes, C. Roland (Chris) Christensen, and Abby Hansen. Harvard Business School Press, 1994; 333 pp. (vol 1), 412 pp. (vol 2).

Creative Commons License

Teaching Guides

  • Online Course Development Resources
  • Principles & Frameworks
  • Pedagogies & Strategies
  • Reflecting & Assessing
  • Challenges & Opportunities
  • Populations & Contexts

Quick Links

  • Services for Departments and Schools
  • Examples of Online Instructional Modules

Transforming Education Logo

  • Board of Directors
  • National Advisory Board
  • OUR RESOURCES
  • OUR STORIES
  • Our Newsletters

Case Study Compilation

The SEL Integration Approach  Case Study Compilation  was developed with and for educators who work in a K-12 school setting, including teachers, paraprofessionals, counselors, SEL Directors, teacher leaders, & school principals, to provide examples of practice related to three questions:

  • What does it mean to focus on social-emotional development and the creation of positive learning environments?
  • How can educators integrate their approaches to social, emotional, and academic development?
  • What does it look, sound, and feel like when SEL is effectively embedded into all elements of the school day?

case study examples about education

When read one at a time, the case studies offer snapshots of social-emotional learning in action; they describe daily routines, activities, and teachable moments within short vignettes. When read together, the case studies provide a unique picture of what it takes for a school to integrate social, emotional, and academic learning across grade levels, content areas, and other unique contexts.

The Case Study Compilation includes:

  • Eleven case studies:  Each case study highlights educator ‘moves’ and strategies to embed social-emotional skills, mindsets, and competencies throughout the school day and within academics. They each  conclude with a reflection prompt that challenges readers to examine their own practice. The case studies are written from several different perspectives, including teachers in the classroom and in distance learning environments, a school counselor, and district leaders.
  • Reflection Guide for Professional Learning:  The Reflection Guide offers an entry point for educators to think critically about their work with youth in order to strengthen their practice. School leaders or other partners may choose to use this Reflection Guide in a variety of contexts, including coaching conversations and staff professional development sessions.

View our accompanying Quick Reference Guide , Companion Guides , and Educator & School Leader Self-Reflection Tools .

“We must resist thinking in siloed terms when it comes to social-emotional learning (SEL), academics, and equity. Rather, these elements of our work as educators and partners go hand in hand.”

HEAD & HEART, TransformEd & ANet

Get the Latest Updates

case study examples about education

© Copyright 2020 Transforming Education. All content is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License .

Transforming Education is a registered 501(c)3 based in Boston, Massachusetts

license button

Recent Tweet

Take action.

  • Subject List
  • Take a Tour
  • For Authors
  • Subscriber Services
  • Publications
  • African American Studies
  • African Studies
  • American Literature
  • Anthropology
  • Architecture Planning and Preservation
  • Art History
  • Atlantic History
  • Biblical Studies
  • British and Irish Literature
  • Childhood Studies
  • Chinese Studies
  • Cinema and Media Studies
  • Communication
  • Criminology
  • Environmental Science
  • Evolutionary Biology
  • International Law
  • International Relations
  • Islamic Studies
  • Jewish Studies
  • Latin American Studies
  • Latino Studies
  • Linguistics
  • Literary and Critical Theory
  • Medieval Studies
  • Military History
  • Political Science
  • Public Health
  • Renaissance and Reformation
  • Social Work
  • Urban Studies
  • Victorian Literature
  • Browse All Subjects

How to Subscribe

  • Free Trials

In This Article Expand or collapse the "in this article" section Case Study in Education Research

Introduction, general overview and foundational texts of the late 20th century.

  • Conceptualisations and Definitions of Case Study
  • Case Study and Theoretical Grounding
  • Choosing Cases
  • Methodology, Method, Genre, or Approach
  • Case Study: Quality and Generalizability
  • Multiple Case Studies
  • Exemplary Case Studies and Example Case Studies
  • Criticism, Defense, and Debate around Case Study

Related Articles Expand or collapse the "related articles" section about

About related articles close popup.

Lorem Ipsum Sit Dolor Amet

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam ligula odio, euismod ut aliquam et, vestibulum nec risus. Nulla viverra, arcu et iaculis consequat, justo diam ornare tellus, semper ultrices tellus nunc eu tellus.

  • Data Collection in Educational Research
  • Mixed Methods Research
  • Program Evaluation

Other Subject Areas

Forthcoming articles expand or collapse the "forthcoming articles" section.

  • Gender, Power, and Politics in the Academy
  • Girls' Education in the Developing World
  • Non-Formal & Informal Environmental Education
  • Find more forthcoming articles...
  • Export Citations
  • Share This Facebook LinkedIn Twitter

Case Study in Education Research by Lorna Hamilton LAST REVIEWED: 21 April 2021 LAST MODIFIED: 27 June 2018 DOI: 10.1093/obo/9780199756810-0201

It is important to distinguish between case study as a teaching methodology and case study as an approach, genre, or method in educational research. The use of case study as teaching method highlights the ways in which the essential qualities of the case—richness of real-world data and lived experiences—can help learners gain insights into a different world and can bring learning to life. The use of case study in this way has been around for about a hundred years or more. Case study use in educational research, meanwhile, emerged particularly strongly in the 1970s and 1980s in the United Kingdom and the United States as a means of harnessing the richness and depth of understanding of individuals, groups, and institutions; their beliefs and perceptions; their interactions; and their challenges and issues. Writers, such as Lawrence Stenhouse, advocated the use of case study as a form that teacher-researchers could use as they focused on the richness and intensity of their own practices. In addition, academic writers and postgraduate students embraced case study as a means of providing structure and depth to educational projects. However, as educational research has developed, so has debate on the quality and usefulness of case study as well as the problems surrounding the lack of generalizability when dealing with single or even multiple cases. The question of how to define and support case study work has formed the basis for innumerable books and discursive articles, starting with Robert Yin’s original book on case study ( Yin 1984 , cited under General Overview and Foundational Texts of the Late 20th Century ) to the myriad authors who attempt to bring something new to the realm of case study in educational research in the 21st century.

This section briefly considers the ways in which case study research has developed over the last forty to fifty years in educational research usage and reflects on whether the field has finally come of age, respected by creators and consumers of research. Case study has its roots in anthropological studies in which a strong ethnographic approach to the study of peoples and culture encouraged researchers to identify and investigate key individuals and groups by trying to understand the lived world of such people from their points of view. Although ethnography has emphasized the role of researcher as immersive and engaged with the lived world of participants via participant observation, evolving approaches to case study in education has been about the richness and depth of understanding that can be gained through involvement in the case by drawing on diverse perspectives and diverse forms of data collection. Embracing case study as a means of entering these lived worlds in educational research projects, was encouraged in the 1970s and 1980s by researchers, such as Lawrence Stenhouse, who provided a helpful impetus for case study work in education ( Stenhouse 1980 ). Stenhouse wrestled with the use of case study as ethnography because ethnographers traditionally had been unfamiliar with the peoples they were investigating, whereas educational researchers often worked in situations that were inherently familiar. Stenhouse also emphasized the need for evidence of rigorous processes and decisions in order to encourage robust practice and accountability to the wider field by allowing others to judge the quality of work through transparency of processes. Yin 1984 , the first book focused wholly on case study in research, gave a brief and basic outline of case study and associated practices. Various authors followed this approach, striving to engage more deeply in the significance of case study in the social sciences. Key among these are Merriam 1988 and Stake 1995 , along with Yin 1984 , who established powerful groundings for case study work. Additionally, evidence of the increasing popularity of case study can be found in a broad range of generic research methods texts, but these often do not have much scope for the extensive discussion of case study found in case study–specific books. Yin’s books and numerous editions provide a developing or evolving notion of case study with more detailed accounts of the possible purposes of case study, followed by Merriam 1988 and Stake 1995 who wrestled with alternative ways of looking at purposes and the positioning of case study within potential disciplinary modes. The authors referenced in this section are often characterized as the foundational authors on this subject and may have published various editions of their work, cited elsewhere in this article, based on their shifting ideas or emphases.

Merriam, S. B. 1988. Case study research in education: A qualitative approach . San Francisco: Jossey-Bass.

This is Merriam’s initial text on case study and is eminently accessible. The author establishes and reinforces various key features of case study; demonstrates support for positioning the case within a subject domain, e.g., psychology, sociology, etc.; and further shapes the case according to its purpose or intent.

Stake, R. E. 1995. The art of case study research . Thousand Oaks, CA: SAGE.

Stake is a very readable author, accessible and yet engaging with complex topics. The author establishes his key forms of case study: intrinsic, instrumental, and collective. Stake brings the reader through the process of conceptualizing the case, carrying it out, and analyzing the data. The author uses authentic examples to help readers understand and appreciate the nuances of an interpretive approach to case study.

Stenhouse, L. 1980. The study of samples and the study of cases. British Educational Research Journal 6:1–6.

DOI: 10.1080/0141192800060101

A key article in which Stenhouse sets out his stand on case study work. Those interested in the evolution of case study use in educational research should consider this article and the insights given.

Yin, R. K. 1984. Case Study Research: Design and Methods . Beverley Hills, CA: SAGE.

This preliminary text from Yin was very basic. However, it may be of interest in comparison with later books because Yin shows the ways in which case study as an approach or method in research has evolved in relation to detailed discussions of purpose, as well as the practicalities of working through the research process.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login .

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here .

  • About Education »
  • Meet the Editorial Board »
  • Academic Achievement
  • Academic Audit for Universities
  • Academic Freedom and Tenure in the United States
  • Action Research in Education
  • Adjuncts in Higher Education in the United States
  • Administrator Preparation
  • Adolescence
  • Advanced Placement and International Baccalaureate Courses
  • Advocacy and Activism in Early Childhood
  • African American Racial Identity and Learning
  • Alaska Native Education
  • Alternative Certification Programs for Educators
  • Alternative Schools
  • American Indian Education
  • Animals in Environmental Education
  • Art Education
  • Artificial Intelligence and Learning
  • Assessing School Leader Effectiveness
  • Assessment, Behavioral
  • Assessment, Educational
  • Assessment in Early Childhood Education
  • Assistive Technology
  • Augmented Reality in Education
  • Beginning-Teacher Induction
  • Bilingual Education and Bilingualism
  • Black Undergraduate Women: Critical Race and Gender Perspe...
  • Blended Learning
  • Case Study in Education Research
  • Changing Professional and Academic Identities
  • Character Education
  • Children’s and Young Adult Literature
  • Children's Beliefs about Intelligence
  • Children's Rights in Early Childhood Education
  • Citizenship Education
  • Civic and Social Engagement of Higher Education
  • Classroom Learning Environments: Assessing and Investigati...
  • Classroom Management
  • Coherent Instructional Systems at the School and School Sy...
  • College Admissions in the United States
  • College Athletics in the United States
  • Community Relations
  • Comparative Education
  • Computer-Assisted Language Learning
  • Computer-Based Testing
  • Conceptualizing, Measuring, and Evaluating Improvement Net...
  • Continuous Improvement and "High Leverage" Educational Pro...
  • Counseling in Schools
  • Critical Approaches to Gender in Higher Education
  • Critical Perspectives on Educational Innovation and Improv...
  • Critical Race Theory
  • Crossborder and Transnational Higher Education
  • Cross-National Research on Continuous Improvement
  • Cross-Sector Research on Continuous Learning and Improveme...
  • Cultural Diversity in Early Childhood Education
  • Culturally Responsive Leadership
  • Culturally Responsive Pedagogies
  • Culturally Responsive Teacher Education in the United Stat...
  • Curriculum Design
  • Data-driven Decision Making in the United States
  • Deaf Education
  • Desegregation and Integration
  • Design Thinking and the Learning Sciences: Theoretical, Pr...
  • Development, Moral
  • Dialogic Pedagogy
  • Digital Age Teacher, The
  • Digital Citizenship
  • Digital Divides
  • Disabilities
  • Distance Learning
  • Distributed Leadership
  • Doctoral Education and Training
  • Early Childhood Education and Care (ECEC) in Denmark
  • Early Childhood Education and Development in Mexico
  • Early Childhood Education in Aotearoa New Zealand
  • Early Childhood Education in Australia
  • Early Childhood Education in China
  • Early Childhood Education in Europe
  • Early Childhood Education in Sub-Saharan Africa
  • Early Childhood Education in Sweden
  • Early Childhood Education Pedagogy
  • Early Childhood Education Policy
  • Early Childhood Education, The Arts in
  • Early Childhood Mathematics
  • Early Childhood Science
  • Early Childhood Teacher Education
  • Early Childhood Teachers in Aotearoa New Zealand
  • Early Years Professionalism and Professionalization Polici...
  • Economics of Education
  • Education For Children with Autism
  • Education for Sustainable Development
  • Education Leadership, Empirical Perspectives in
  • Education of Native Hawaiian Students
  • Education Reform and School Change
  • Educational Statistics for Longitudinal Research
  • Educator Partnerships with Parents and Families with a Foc...
  • Emotional and Affective Issues in Environmental and Sustai...
  • Emotional and Behavioral Disorders
  • Environmental and Science Education: Overlaps and Issues
  • Environmental Education
  • Environmental Education in Brazil
  • Epistemic Beliefs
  • Equity and Improvement: Engaging Communities in Educationa...
  • Equity, Ethnicity, Diversity, and Excellence in Education
  • Ethical Research with Young Children
  • Ethics and Education
  • Ethics of Teaching
  • Ethnic Studies
  • Evidence-Based Communication Assessment and Intervention
  • Family and Community Partnerships in Education
  • Family Day Care
  • Federal Government Programs and Issues
  • Feminization of Labor in Academia
  • Finance, Education
  • Financial Aid
  • Formative Assessment
  • Future-Focused Education
  • Gender and Achievement
  • Gender and Alternative Education
  • Gender-Based Violence on University Campuses
  • Gifted Education
  • Global Mindedness and Global Citizenship Education
  • Global University Rankings
  • Governance, Education
  • Grounded Theory
  • Growth of Effective Mental Health Services in Schools in t...
  • Higher Education and Globalization
  • Higher Education and the Developing World
  • Higher Education Faculty Characteristics and Trends in the...
  • Higher Education Finance
  • Higher Education Governance
  • Higher Education Graduate Outcomes and Destinations
  • Higher Education in Africa
  • Higher Education in China
  • Higher Education in Latin America
  • Higher Education in the United States, Historical Evolutio...
  • Higher Education, International Issues in
  • Higher Education Management
  • Higher Education Policy
  • Higher Education Research
  • Higher Education Student Assessment
  • High-stakes Testing
  • History of Early Childhood Education in the United States
  • History of Education in the United States
  • History of Technology Integration in Education
  • Homeschooling
  • Inclusion in Early Childhood: Difference, Disability, and ...
  • Inclusive Education
  • Indigenous Education in a Global Context
  • Indigenous Learning Environments
  • Indigenous Students in Higher Education in the United Stat...
  • Infant and Toddler Pedagogy
  • Inservice Teacher Education
  • Integrating Art across the Curriculum
  • Intelligence
  • Intensive Interventions for Children and Adolescents with ...
  • International Perspectives on Academic Freedom
  • Intersectionality and Education
  • Knowledge Development in Early Childhood
  • Leadership Development, Coaching and Feedback for
  • Leadership in Early Childhood Education
  • Leadership Training with an Emphasis on the United States
  • Learning Analytics in Higher Education
  • Learning Difficulties
  • Learning, Lifelong
  • Learning, Multimedia
  • Learning Strategies
  • Legal Matters and Education Law
  • LGBT Youth in Schools
  • Linguistic Diversity
  • Linguistically Inclusive Pedagogy
  • Literacy Development and Language Acquisition
  • Literature Reviews
  • Mathematics Identity
  • Mathematics Instruction and Interventions for Students wit...
  • Mathematics Teacher Education
  • Measurement for Improvement in Education
  • Measurement in Education in the United States
  • Meta-Analysis and Research Synthesis in Education
  • Methodological Approaches for Impact Evaluation in Educati...
  • Methodologies for Conducting Education Research
  • Mindfulness, Learning, and Education
  • Motherscholars
  • Multiliteracies in Early Childhood Education
  • Multiple Documents Literacy: Theory, Research, and Applica...
  • Multivariate Research Methodology
  • Museums, Education, and Curriculum
  • Music Education
  • Narrative Research in Education
  • Native American Studies
  • Note-Taking
  • Numeracy Education
  • One-to-One Technology in the K-12 Classroom
  • Online Education
  • Open Education
  • Organizing for Continuous Improvement in Education
  • Organizing Schools for the Inclusion of Students with Disa...
  • Outdoor Play and Learning
  • Outdoor Play and Learning in Early Childhood Education
  • Pedagogical Leadership
  • Pedagogy of Teacher Education, A
  • Performance Objectives and Measurement
  • Performance-based Research Assessment in Higher Education
  • Performance-based Research Funding
  • Phenomenology in Educational Research
  • Philosophy of Education
  • Physical Education
  • Podcasts in Education
  • Policy Context of United States Educational Innovation and...
  • Politics of Education
  • Portable Technology Use in Special Education Programs and ...
  • Post-humanism and Environmental Education
  • Pre-Service Teacher Education
  • Problem Solving
  • Productivity and Higher Education
  • Professional Development
  • Professional Learning Communities
  • Programs and Services for Students with Emotional or Behav...
  • Psychology Learning and Teaching
  • Psychometric Issues in the Assessment of English Language ...
  • Qualitative Data Analysis Techniques
  • Qualitative, Quantitative, and Mixed Methods Research Samp...
  • Qualitative Research Design
  • Quantitative Research Designs in Educational Research
  • Queering the English Language Arts (ELA) Writing Classroom
  • Race and Affirmative Action in Higher Education
  • Reading Education
  • Refugee and New Immigrant Learners
  • Relational and Developmental Trauma and Schools
  • Relational Pedagogies in Early Childhood Education
  • Reliability in Educational Assessments
  • Religion in Elementary and Secondary Education in the Unit...
  • Researcher Development and Skills Training within the Cont...
  • Research-Practice Partnerships in Education within the Uni...
  • Response to Intervention
  • Restorative Practices
  • Risky Play in Early Childhood Education
  • Scale and Sustainability of Education Innovation and Impro...
  • Scaling Up Research-based Educational Practices
  • School Accreditation
  • School Choice
  • School Culture
  • School District Budgeting and Financial Management in the ...
  • School Improvement through Inclusive Education
  • School Reform
  • Schools, Private and Independent
  • School-Wide Positive Behavior Support
  • Science Education
  • Secondary to Postsecondary Transition Issues
  • Self-Regulated Learning
  • Self-Study of Teacher Education Practices
  • Service-Learning
  • Severe Disabilities
  • Single Salary Schedule
  • Single-sex Education
  • Single-Subject Research Design
  • Social Context of Education
  • Social Justice
  • Social Network Analysis
  • Social Pedagogy
  • Social Science and Education Research
  • Social Studies Education
  • Sociology of Education
  • Standards-Based Education
  • Statistical Assumptions
  • Student Access, Equity, and Diversity in Higher Education
  • Student Assignment Policy
  • Student Engagement in Tertiary Education
  • Student Learning, Development, Engagement, and Motivation ...
  • Student Participation
  • Student Voice in Teacher Development
  • Sustainability Education in Early Childhood Education
  • Sustainability in Early Childhood Education
  • Sustainability in Higher Education
  • Teacher Beliefs and Epistemologies
  • Teacher Collaboration in School Improvement
  • Teacher Evaluation and Teacher Effectiveness
  • Teacher Preparation
  • Teacher Training and Development
  • Teacher Unions and Associations
  • Teacher-Student Relationships
  • Teaching Critical Thinking
  • Technologies, Teaching, and Learning in Higher Education
  • Technology Education in Early Childhood
  • Technology, Educational
  • Technology-based Assessment
  • The Bologna Process
  • The Regulation of Standards in Higher Education
  • Theories of Educational Leadership
  • Three Conceptions of Literacy: Media, Narrative, and Gamin...
  • Tracking and Detracking
  • Traditions of Quality Improvement in Education
  • Transformative Learning
  • Transitions in Early Childhood Education
  • Tribally Controlled Colleges and Universities in the Unite...
  • Understanding the Psycho-Social Dimensions of Schools and ...
  • University Faculty Roles and Responsibilities in the Unite...
  • Using Ethnography in Educational Research
  • Value of Higher Education for Students and Other Stakehold...
  • Virtual Learning Environments
  • Vocational and Technical Education
  • Wellness and Well-Being in Education
  • Women's and Gender Studies
  • Young Children and Spirituality
  • Young Children's Learning Dispositions
  • Young Children's Working Theories
  • Privacy Policy
  • Cookie Policy
  • Legal Notice
  • Accessibility

Powered by:

  • [66.249.64.20|193.7.198.129]
  • 193.7.198.129
  • Case Studies

Teaching Guide

  • Using the Open Case Studies Website
  • Using the UBC Wiki
  • Open Educational Resources
  • Case Implementation
  • Get Involved
  • Process Documentation

Case studies offer a student-centered approach to learning that asks students to identify, explore, and provide solutions to real-world problems by focusing on case-specific examples (Wiek, Xiong, Brundiers, van der Leeuw, 2014, p 434). This approach simulates real life practice in sustainability education in that it illuminates the ongoing complexity of the problems being addressed. Publishing these case studies openly, means they can be re-used in a variety of contexts by others across campus and beyond. Since the cases never “end”; at any time students from all over UBC campus can engage with their content, highlighting their potential as powerful educational tools that can foster inter-disciplinary research of authentic problems. Students contributing to the case studies are making an authentic contribution to a deepening understanding of the complex challenges facing us in terms of environmental ethics and sustainability.

The case studies are housed on the UBC Wiki, and that content is then fed into the Open Case Studies website. The UBC Wiki as a platform for open, collaborative course work enables students to create, respond to and/or edit case studies, using the built in features (such as talk pages, document history and contributor track backs) to make editing transparent. The wiki also also helps students develop important transferable skills such as selection and curation of multimedia (while attending to copyright and re-use specifications), citation and referencing, summarizing research, etc. These activities help build critical thinking, creativity, collaboration, and digital literacy.

This guide is intended to help you get started with your case study project by offering:

  • Information on how to use the UBC Wiki
  • Research that supports case studies as effective tools for active learning
  • Instructional strategies for teaching effectively with case studies
  • Sample case study assignments used by UBC instructors

The UBC Wiki is a set of webpages accessible to anyone with a CWL account and has many unique features in addition to collaborative writing including the ability to revive previous drafts, and notifications setting that can support instructors in monitoring individual student contributions, or support students to better manage their collaborative efforts on their own. Using a wiki successfully in a course, however, requires proper facilitation and support from instructors and TAs.

The following links are helpful in getting started:

General Information:

  • Navigating the Wiki: http://wiki.ubc.ca/Help:Navigation
  • Wiki Help Table of Contents: http://wiki.ubc.ca/Help:Contents
  • Frequently Asked Questions: http://wiki.ubc.ca/Help:Contents#Frequently_Asked_Questions

Self-Guided Wiki Tutorials:

  • Getting Started With UBC Wiki - short video and links to common formatting needs.
  • Beginner: http://wiki.ubc.ca/Documentation:MediaWiki_Basics/Learning_Activities/Beginner
  • Intermediate: http://wiki.ubc.ca/Documentation:MediaWiki_Basics/Learning_Activities/Intermediate
  • Advanced: http://wiki.ubc.ca/Documentation:MediaWiki_Basics/Learning_Activities/Advanced

The idea that learning is "active" is influenced by social constructivism , which emphasizes collaboration in the active co-construction of meaning among learners. Simply put, learning happens when people collaborate and interact with authentic learning tasks and situations. These ideas are becoming increasingly prevalent in the scholarly literature on teaching and learning (see for instance, Wilson 1996) and have important implications for pedagogy, especially in the university where traditional lectures remain the dominant instructional strategy. When students are asked to respond to authentic problems and questions, they assume responsibility for the trajectory of their learning, rather than it being decided upon by the instructor. This practice, also referred to as “student-centered learning” allows the students to become “active” participants in the construction of their understandings.

One of the easiest ways to develop higher order cognitive capacities (critical thinking, problem solving, creativity etc.) is through pedagogies that support inquiry based learning, thereby allowing students the opportunity to “develop [as] inquirers and to use curiosity, the urge to explore and understand...to become researchers and lifelong learners” (Justice, Rice, Roy, Hudspith & Jenkins,2009, p. 843). Because case studies are often collaborative, they provide unique inquiry based learning opportunities that will foster active engagement in student learning, while also teaching transferable skills (teamwork, collaboration, technology literacy). That the cases never “end” and that they can be considered by students and faculty from all over the UBC community, highlights their potential as powerful educational tools that can foster inter-disciplinary research of authentic problems.

Using case studies successfully in a course requires purposefully scaffolded support from the instructor and TA's. Instructors must properly introduce assignments, as well as facilitate and monitor the progress of students while they work on assignments. This will help ensure that students understand the purpose and value of the work they are doing and will also allow instructors and TA's to provide appropriate support and guidance.

The following instructional strategies will help you teach effectively using case studies:

1. Getting Started:

  • Outline Your "Big Picture" Goals and Expectations : Communicate to students what you are hoping they will learn (Or have them tell you why they think you would ask them to work with case studies!). It is also important to discuss the quality of work you expect and offer specific examples of what that looks like. If you have any, look at exemplars of past student work, or simply evaluate existing case studies to generate a list of defining characteristics. Doing this will provide students with valuable tangible and visual examples of what you expect.
  • Define "Case Study" : Don't assume that students understand what case-studies are, especially at the undergraduate level. Take the time to talk about what a case study is and why they are powerful teaching/learning tools. This can be facilitated during a tutorial with small group discussion. See Case Study Resources.
  • Pick Case Studies Purposefully : If you are planning on having students evaluate case studies, make sure to read them in advance and have a clear understanding of why you chose it. This will help facilitate discussion and field student questions.
  • Set the Context for the Evaluating or Creating the Case Study : Whether you are having students write the case studies themselves, or you are having them examine an existing case, it is important to set the parameters for how you want students to approach the problem. For instance, you may have them evaluate the case from the perspective of an industry professional, a community group or member, or even from their own perspective of university students. Whatever you choose, make sure you communicate this clearly.
  • Set the Parameters for Evaluating or Creating the Case Study : Clearly outline all the information you want students to find out, and how you want it reported. You may want students to focus on some areas and disregard others, or you may want them to consider all the facts equally. Whatever you choose, make sure you communicate this clearly.

2. Use, Revise, and/or Create

  • Use the case studies as they are : One way to use the case studies in courses is to have students read and discuss them as they are. They can be read on the open case studies website, downloaded from the wiki and embedded into another website, or downloaded in PDF or Microsoft Word format (see this guide for how to embed or download the case studies)
  • If you are only making minor edits such as fixing a broken link or a typo, please go ahead. You could add a note about this to the "discussion" page to explain (see the tab at the top of each wiki page).
  • You could add a section at the bottom of the case study with a perspective on it from your discipline. Some of the case studies already have sections at the bottom that are titled "What would a ___ do?" You can add a new one of those to give a different disciplinary perspective.
  • If you want to make more substantial changes, it would be best if you copied and pasted the wiki content into a new page so as to preserve the original. The original version may be used in other courses by the instructor/students who created it, so making significant changes could be a problem! And those changes might be reverted by the original instructor and students (wiki pages keep all past versions, and those changes can easily be reverted). If you would like to substantially revise a case study, please contact Christina Hendricks, who can help you get started and then get the new version into the collection: [email protected]
  • Create new case studies : We are always looking for new case studies for the collection! If you think you would like to write one, or involve your students in writing one, please contact Christina Hendricks: [email protected]

3. Guiding Case Study Discussions:

  • Ask open-ended questions : Open-ended questions cannot be answered using "yes" or "no". Be careful when wording discussion questions, allowing them to be as open as possible.
  • Listen Actively : Actively listen to students by paraphrasing what they have said to you and saying it back (e.g. "What I heard is....Is this what you meant?"). This will help you pay close attention to what they say and clarify any possible miscommunication.
  • Role Play : Ask students to take on the perspective of different interested parties in considering the case study.
  • Compare and Contrast : Ask students to compare and contrast cases in similar areas from the open case study collection. Discuss whether there are similar problems or possible solutions for the cases.

4. Staying on Track:

  • Develop a Protocol for Collaboration : Have students outline how they will collaborate at the start of the assignment to ensure that the work is shared evenly and that each student has a purposeful role.
  • Set Benchmark Assignments : Make sure students stay on track by requiring smaller assignments or assessments along the way. This can be as simple as coming to tutorial with a portion of the case-study written for peer critique and analysis.
  • Give Students Adequate Time : Allow students enough time to read and consider case-studies thoughtfully. The more time you can provide, the less overwhelmed students will feel. This will encourage them to go deeper with their case study and their learning.
  • Forestry : In this assignment, students in a graduate course wrote their own case studies. This link provides information on the assignment, a handout given to the students, and a grading rubric: Short-Term Assignment: What is Illegal Logging? - Teacher Guide
  • Political Science : Students in a third-year political science class responded to a case study written by the instructor. They worked in groups to create action plans for climate change problems. This link provides information on the assignment as well as a handout given to the students: Class Activity: Action Plans for Climate Change - Teacher Guide
  • Education : Teacher candidates in the Faculty of Education respond to case studies written by students. They discuss a case study and respond to questions with the goal of identifying the issues raised, perspectives involved and possible ways forward. The goal is to support decision making related to online presence and social media engagement. Digital Tattoo Case Studies for Student Teachers Facilitators' Guide

Search form

  • About Faculty Development and Support
  • Programs and Funding Opportunities

Consultations, Observations, and Services

  • Strategic Resources & Digital Publications
  • Canvas @ Yale Support
  • Learning Environments @ Yale
  • Teaching Workshops
  • Teaching Consultations and Classroom Observations
  • Teaching Programs
  • Spring Teaching Forum
  • Written and Oral Communication Workshops and Panels
  • Writing Resources & Tutorials
  • About the Graduate Writing Laboratory
  • Writing and Public Speaking Consultations
  • Writing Workshops and Panels
  • Writing Peer-Review Groups
  • Writing Retreats and All Writes
  • Online Writing Resources for Graduate Students
  • About Teaching Development for Graduate and Professional School Students
  • Teaching Programs and Grants
  • Teaching Forums
  • Resources for Graduate Student Teachers
  • About Undergraduate Writing and Tutoring
  • Academic Strategies Program
  • The Writing Center
  • STEM Tutoring & Programs
  • Humanities & Social Sciences
  • Center for Language Study
  • Online Course Catalog
  • Antiracist Pedagogy
  • NECQL 2019: NorthEast Consortium for Quantitative Literacy XXII Meeting
  • STEMinar Series
  • Teaching in Context: Troubling Times
  • Helmsley Postdoctoral Teaching Scholars
  • Pedagogical Partners
  • Instructional Materials
  • Evaluation & Research
  • STEM Education Job Opportunities
  • Yale Connect
  • Online Education Legal Statements

You are here

Case-based learning.

Case-based learning (CBL) is an established approach used across disciplines where students apply their knowledge to real-world scenarios, promoting higher levels of cognition (see Bloom’s Taxonomy ). In CBL classrooms, students typically work in groups on case studies, stories involving one or more characters and/or scenarios.  The cases present a disciplinary problem or problems for which students devise solutions under the guidance of the instructor. CBL has a strong history of successful implementation in medical, law, and business schools, and is increasingly used within undergraduate education, particularly within pre-professional majors and the sciences (Herreid, 1994). This method involves guided inquiry and is grounded in constructivism whereby students form new meanings by interacting with their knowledge and the environment (Lee, 2012).

There are a number of benefits to using CBL in the classroom. In a review of the literature, Williams (2005) describes how CBL: utilizes collaborative learning, facilitates the integration of learning, develops students’ intrinsic and extrinsic motivation to learn, encourages learner self-reflection and critical reflection, allows for scientific inquiry, integrates knowledge and practice, and supports the development of a variety of learning skills.

CBL has several defining characteristics, including versatility, storytelling power, and efficient self-guided learning.  In a systematic analysis of 104 articles in health professions education, CBL was found to be utilized in courses with less than 50 to over 1000 students (Thistlethwaite et al., 2012). In these classrooms, group sizes ranged from 1 to 30, with most consisting of 2 to 15 students.  Instructors varied in the proportion of time they implemented CBL in the classroom, ranging from one case spanning two hours of classroom time, to year-long case-based courses. These findings demonstrate that instructors use CBL in a variety of ways in their classrooms.

The stories that comprise the framework of case studies are also a key component to CBL’s effectiveness. Jonassen and Hernandez-Serrano (2002, p.66) describe how storytelling:

Is a method of negotiating and renegotiating meanings that allows us to enter into other’s realms of meaning through messages they utter in their stories,

Helps us find our place in a culture,

Allows us to explicate and to interpret, and

Facilitates the attainment of vicarious experience by helping us to distinguish the positive models to emulate from the negative model.

Neurochemically, listening to stories can activate oxytocin, a hormone that increases one’s sensitivity to social cues, resulting in more empathy, generosity, compassion and trustworthiness (Zak, 2013; Kosfeld et al., 2005). The stories within case studies serve as a means by which learners form new understandings through characters and/or scenarios.

CBL is often described in conjunction or in comparison with problem-based learning (PBL). While the lines are often confusingly blurred within the literature, in the most conservative of definitions, the features distinguishing the two approaches include that PBL involves open rather than guided inquiry, is less structured, and the instructor plays a more passive role. In PBL multiple solutions to the problem may exit, but the problem is often initially not well-defined. PBL also has a stronger emphasis on developing self-directed learning. The choice between implementing CBL versus PBL is highly dependent on the goals and context of the instruction.  For example, in a comparison of PBL and CBL approaches during a curricular shift at two medical schools, students and faculty preferred CBL to PBL (Srinivasan et al., 2007). Students perceived CBL to be a more efficient process and more clinically applicable. However, in another context, PBL might be the favored approach.

In a review of the effectiveness of CBL in health profession education, Thistlethwaite et al. (2012), found several benefits:

Students enjoyed the method and thought it enhanced their learning,

Instructors liked how CBL engaged students in learning,

CBL seemed to facilitate small group learning, but the authors could not distinguish between whether it was the case itself or the small group learning that occurred as facilitated by the case.

Other studies have also reported on the effectiveness of CBL in achieving learning outcomes (Bonney, 2015; Breslin, 2008; Herreid, 2013; Krain, 2016). These findings suggest that CBL is a vehicle of engagement for instruction, and facilitates an environment whereby students can construct knowledge.

Science – Students are given a scenario to which they apply their basic science knowledge and problem-solving skills to help them solve the case. One example within the biological sciences is two brothers who have a family history of a genetic illness. They each have mutations within a particular sequence in their DNA. Students work through the case and draw conclusions about the biological impacts of these mutations using basic science. Sample cases: You are Not the Mother of Your Children ; Organic Chemisty and Your Cellphone: Organic Light-Emitting Diodes ;   A Light on Physics: F-Number and Exposure Time

Medicine – Medical or pre-health students read about a patient presenting with specific symptoms. Students decide which questions are important to ask the patient in their medical history, how long they have experienced such symptoms, etc. The case unfolds and students use clinical reasoning, propose relevant tests, develop a differential diagnoses and a plan of treatment. Sample cases: The Case of the Crying Baby: Surgical vs. Medical Management ; The Plan: Ethics and Physician Assisted Suicide ; The Haemophilus Vaccine: A Victory for Immunologic Engineering

Public Health – A case study describes a pandemic of a deadly infectious disease. Students work through the case to identify Patient Zero, the person who was the first to spread the disease, and how that individual became infected.  Sample cases: The Protective Parent ; The Elusive Tuberculosis Case: The CDC and Andrew Speaker ; Credible Voice: WHO-Beijing and the SARS Crisis

Law – A case study presents a legal dilemma for which students use problem solving to decide the best way to advise and defend a client. Students are presented information that changes during the case.  Sample cases: Mortgage Crisis Call (abstract) ; The Case of the Unpaid Interns (abstract) ; Police-Community Dialogue (abstract)

Business – Students work on a case study that presents the history of a business success or failure. They apply business principles learned in the classroom and assess why the venture was successful or not. Sample cases: SELCO-Determining a path forward ; Project Masiluleke: Texting and Testing to Fight HIV/AIDS in South Africa ; Mayo Clinic: Design Thinking in Healthcare

Humanities - Students consider a case that presents a theater facing financial and management difficulties. They apply business and theater principles learned in the classroom to the case, working together to create solutions for the theater. Sample cases: David Geffen School of Drama

Recommendations

Finding and Writing Cases

Consider utilizing or adapting open access cases - The availability of open resources and databases containing cases that instructors can download makes this approach even more accessible in the classroom. Two examples of open databases are the Case Center on Public Leadership and Harvard Kennedy School (HKS) Case Program , which focus on government, leadership and public policy case studies.

  • Consider writing original cases - In the event that an instructor is unable to find open access cases relevant to their course learning objectives, they may choose to write their own. See the following resources on case writing: Cooking with Betty Crocker: A Recipe for Case Writing ; The Way of Flesch: The Art of Writing Readable Cases ;   Twixt Fact and Fiction: A Case Writer’s Dilemma ; And All That Jazz: An Essay Extolling the Virtues of Writing Case Teaching Notes .

Implementing Cases

Take baby steps if new to CBL - While entire courses and curricula may involve case-based learning, instructors who desire to implement on a smaller-scale can integrate a single case into their class, and increase the number of cases utilized over time as desired.

Use cases in classes that are small, medium or large - Cases can be scaled to any course size. In large classes with stadium seating, students can work with peers nearby, while in small classes with more flexible seating arrangements, teams can move their chairs closer together. CBL can introduce more noise (and energy) in the classroom to which an instructor often quickly becomes accustomed. Further, students can be asked to work on cases outside of class, and wrap up discussion during the next class meeting.

Encourage collaborative work - Cases present an opportunity for students to work together to solve cases which the historical literature supports as beneficial to student learning (Bruffee, 1993). Allow students to work in groups to answer case questions.

Form diverse teams as feasible - When students work within diverse teams they can be exposed to a variety of perspectives that can help them solve the case. Depending on the context of the course, priorities, and the background information gathered about the students enrolled in the class, instructors may choose to organize student groups to allow for diversity in factors such as current course grades, gender, race/ethnicity, personality, among other items.  

Use stable teams as appropriate - If CBL is a large component of the course, a research-supported practice is to keep teams together long enough to go through the stages of group development: forming, storming, norming, performing and adjourning (Tuckman, 1965).

Walk around to guide groups - In CBL instructors serve as facilitators of student learning. Walking around allows the instructor to monitor student progress as well as identify and support any groups that may be struggling. Teaching assistants can also play a valuable role in supporting groups.

Interrupt strategically - Only every so often, for conversation in large group discussion of the case, especially when students appear confused on key concepts. An effective practice to help students meet case learning goals is to guide them as a whole group when the class is ready. This may include selecting a few student groups to present answers to discussion questions to the entire class, asking the class a question relevant to the case using polling software, and/or performing a mini-lesson on an area that appears to be confusing among students.  

Assess student learning in multiple ways - Students can be assessed informally by asking groups to report back answers to various case questions. This practice also helps students stay on task, and keeps them accountable. Cases can also be included on exams using related scenarios where students are asked to apply their knowledge.

Barrows HS. (1996). Problem-based learning in medicine and beyond: a brief overview. New Directions for Teaching and Learning, 68, 3-12.  

Bonney KM. (2015). Case Study Teaching Method Improves Student Performance and Perceptions of Learning Gains. Journal of Microbiology and Biology Education, 16(1): 21-28.

Breslin M, Buchanan, R. (2008) On the Case Study Method of Research and Teaching in Design.  Design Issues, 24(1), 36-40.

Bruffee KS. (1993). Collaborative learning: Higher education, interdependence, and authority of knowledge. Johns Hopkins University Press, Baltimore, MD.

Herreid CF. (2013). Start with a Story: The Case Study Method of Teaching College Science, edited by Clyde Freeman Herreid. Originally published in 2006 by the National Science Teachers Association (NSTA); reprinted by the National Center for Case Study Teaching in Science (NCCSTS) in 2013.

Herreid CH. (1994). Case studies in science: A novel method of science education. Journal of Research in Science Teaching, 23(4), 221–229.

Jonassen DH and Hernandez-Serrano J. (2002). Case-based reasoning and instructional design: Using stories to support problem solving. Educational Technology, Research and Development, 50(2), 65-77.  

Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E. (2005). Oxytocin increases trust in humans. Nature, 435, 673-676.

Krain M. (2016) Putting the learning in case learning? The effects of case-based approaches on student knowledge, attitudes, and engagement. Journal on Excellence in College Teaching, 27(2), 131-153.

Lee V. (2012). What is Inquiry-Guided Learning?  New Directions for Learning, 129:5-14.

Nkhoma M, Sriratanaviriyakul N. (2017). Using case method to enrich students’ learning outcomes. Active Learning in Higher Education, 18(1):37-50.

Srinivasan et al. (2007). Comparing problem-based learning with case-based learning: Effects of a major curricular shift at two institutions. Academic Medicine, 82(1): 74-82.

Thistlethwaite JE et al. (2012). The effectiveness of case-based learning in health professional education. A BEME systematic review: BEME Guide No. 23.  Medical Teacher, 34, e421-e444.

Tuckman B. (1965). Development sequence in small groups. Psychological Bulletin, 63(6), 384-99.

Williams B. (2005). Case-based learning - a review of the literature: is there scope for this educational paradigm in prehospital education? Emerg Med, 22, 577-581.

Zak, PJ (2013). How Stories Change the Brain. Retrieved from: https://greatergood.berkeley.edu/article/item/how_stories_change_brain

YOU MAY BE INTERESTED IN

case study examples about education

Reserve a Room

The Poorvu Center for Teaching and Learning partners with departments and groups on-campus throughout the year to share its space. Please review the reservation form and submit a request.

Nancy Niemi in conversation with a new faculty member at the Greenberg Center

Instructional Enhancement Fund

The Instructional Enhancement Fund (IEF) awards grants of up to $500 to support the timely integration of new learning activities into an existing undergraduate or graduate course. All Yale instructors of record, including tenured and tenure-track faculty, clinical instructional faculty, lecturers, lectors, and part-time acting instructors (PTAIs), are eligible to apply. Award decisions are typically provided within two weeks to help instructors implement ideas for the current semester.

case study examples about education

The Poorvu Center for Teaching and Learning routinely supports members of the Yale community with individual instructional consultations and classroom observations.

  • Center for Innovative Teaching and Learning
  • Instructional Guide

Case Studies

Case studies can be used to help students understand simple and complex issues. They typically are presented to the students as a situation or scenario which is guided by questions such as “What would you do in this situation?” or “How would you solve this problem?” Successful case studies focus on problem situations relevant to course content and which are relevant “both to the interests and experience level of learners” (Illinois Online Network, 2007).

Case studies can be simple problems where students “work out” a solution to more complex scenarios which require role playing and elaborate planning. Case studies typically involve teams although cases can be undertaken individually. Because case studies often are proposed to not have “one right answer” (Kowalski, Weaver, Henson, 1998, p. 4), some students may be challenged to think alternatively than their peers. However, when properly planned, case studies can effectively engage students in problem solving and deriving creative solutions.

The Penn State University’s Teaching and Learning with Technology unit suggests the following elements when planning case studies for use in the classroom.

Case studies actively involve students as they work on issues found in “real-life” situations and, with careful planning, can be used in all academic disciplines.
  • Real-World Scenario. Cases are generally based on real world situations, although some facts may be changed to simplify the scenario or “protect the innocent.”
  • Supporting Data and Documents. Effective case assignments typically provide real world situations for student to analyze. These can be simple data tables, links to URLs, quoted statements or testimony, supporting documents, images, video, audio, or any appropriate material.
  • Open-Ended Problem. Most case assignments require students to answer an open-ended question or develop a solution to an open-ended problem with multiple potential solutions. Requirements can range from a one-paragraph answer to a fully developed team action plan, proposal or decision. (Penn State University, 2006, para. 2).
Most case assignments require students to answer an open-ended question or develop a solution to an open-ended problem with multiple potential solutions.

Instructor Tasks

To help you get started using case studies in the classroom, a number of tasks should be considered. Following this list are tasks to help you prepare students as they participate in the case study.

  • Identify a topic that is based on real-world situations
  • Develop the case that will challenge students’ current knowledge of the topic
  • Link the case to one (or more) of the course goals or objectives
  • Provide students with case study basic information before asking them to work on the case
  • Prepare necessary data, information, that will help students come up with a solution
  • Discuss how this case would relate to real life and career situations
  • Place students in teams in which participants have differing views and opinions to better challenge them in discussing possible solutions to the case
  • Review team dynamics with the students (prepare an outline of team rules and roles)
  • Inform students that they are to find a solution to the case based on their personal experiences, the knowledge gained in class, and challenge one another to solve the problem

Student Tasks

  • Determine team member roles and identify a strategic plan to solve the case
  • Brainstorm and prepare questions to further explore the case
  • Read and critically analyze any data provided by the instructor, discuss the facts related to the case, identify and discuss the relationship of further problems within the case
  • Listen to and be open to viewpoints expressed by each member of the team
  • Assess, refine, and condense solutions that are presented
  • Prepare findings as required by the instructor

Case studies provide students with scenarios in which they can begin to think about their understanding and solutions to problems found in real-world situations. When carefully planned, case studies will challenge students’ critical thinking and problem solving skills in a safe and open learning environment. Case studies can help students analyze and find solutions to complex problems with foresight and confidence.

Illinois Online Network (2007). ION research: Case studies. https://www.ion.uillinois.edu/resources/casestudies/

Kowalski, T. J., Weaver, R. A., & Henson, K. T. (1998). Case studies of beginning teachers. New York, NY: Longman.

Penn State University (2006). Office of Teaching and Learning with Technology. Using cases in teaching. http://tlt.its.psu.edu/suggestions/cases/casewhat.html

Selected Resources

Study Guides and Strategies (2007). Case studies. https://www.studygs.net/casestudy.htm

Creative Commons License

Suggested citation

Northern Illinois University Center for Innovative Teaching and Learning. (2012). Case studies. In Instructional guide for university faculty and teaching assistants. Retrieved from https://www.niu.edu/citl/resources/guides/instructional-guide

Phone: 815-753-0595 Email: [email protected]

Connect with us on

Facebook page Twitter page YouTube page Instagram page LinkedIn page

  • Publications
  • Conferences & Events
  • Professional Learning
  • Science Standards
  • Awards & Competitions
  • Daily Do Lesson Plans
  • Free Resources
  • American Rescue Plan
  • For Preservice Teachers

NCCSTS Case Collection

  • Partner Jobs in Education
  • Interactive eBooks+
  • Digital Catalog
  • Regional Product Representatives
  • e-Newsletters
  • Bestselling Books
  • Latest Books
  • Popular Book Series
  • Prospective Authors
  • Web Seminars
  • Exhibits & Sponsorship
  • Conference Reviewers
  • National Conference • Denver 24
  • Leaders Institute 2024
  • National Conference • New Orleans 24
  • Submit a Proposal
  • Latest Resources
  • Professional Learning Units & Courses
  • For Districts
  • Online Course Providers
  • Schools & Districts
  • College Professors & Students
  • The Standards
  • Teachers and Admin
  • eCYBERMISSION
  • Toshiba/NSTA ExploraVision
  • Junior Science & Humanities Symposium
  • Teaching Awards
  • Climate Change
  • Earth & Space Science
  • New Science Teachers
  • Early Childhood
  • Middle School
  • High School
  • Postsecondary
  • Informal Education
  • Journal Articles
  • Lesson Plans
  • e-newsletters
  • Science & Children
  • Science Scope
  • The Science Teacher
  • Journal of College Sci. Teaching
  • Connected Science Learning
  • NSTA Reports
  • Next-Gen Navigator
  • Science Update
  • Teacher Tip Tuesday
  • Trans. Sci. Learning

MyNSTA Community

  • My Collections

Case Study Listserv

Permissions & Guidelines

Submit a Case Study

Resources & Publications

Enrich your students’ educational experience with case-based teaching

The NCCSTS Case Collection, created and curated by the National Center for Case Study Teaching in Science, on behalf of the University at Buffalo, contains over a thousand peer-reviewed case studies on a variety of topics in all areas of science.

Cases (only) are freely accessible; subscription is required for access to teaching notes and answer keys.

Subscribe Today

Browse Case Studies

Latest Case Studies

NSF logo

Development of the NCCSTS Case Collection was originally funded by major grants to the University at Buffalo from the National Science Foundation , The Pew Charitable Trusts , and the U.S. Department of Education .

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Observational Research

Observational Research – Methods and Guide

Quantitative Research

Quantitative Research – Methods, Types and...

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case Study? | Definition, Examples & Methods

What Is a Case Study? | Definition, Examples & Methods

Published on May 8, 2019 by Shona McCombes . Revised on November 20, 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyze the case, other interesting articles.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Prevent plagiarism. Run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

TipIf your research is more practical in nature and aims to simultaneously investigate an issue as you solve it, consider conducting action research instead.

Unlike quantitative or experimental research , a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

Example of an outlying case studyIn the 1960s the town of Roseto, Pennsylvania was discovered to have extremely low rates of heart disease compared to the US average. It became an important case study for understanding previously neglected causes of heart disease.

However, you can also choose a more common or representative case to exemplify a particular category, experience or phenomenon.

Example of a representative case studyIn the 1920s, two sociologists used Muncie, Indiana as a case study of a typical American city that supposedly exemplified the changing culture of the US at the time.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews , observations , and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data.

Example of a mixed methods case studyFor a case study of a wind farm development in a rural area, you could collect quantitative data on employment rates and business revenue, collect qualitative data on local people’s perceptions and experiences, and analyze local and national media coverage of the development.

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis , with separate sections or chapters for the methods , results and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyze its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Case Study? | Definition, Examples & Methods. Scribbr. Retrieved March 31, 2024, from https://www.scribbr.com/methodology/case-study/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, primary vs. secondary sources | difference & examples, what is a theoretical framework | guide to organizing, what is action research | definition & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Writing A Case Study

Case Study Examples

Barbara P

Brilliant Case Study Examples and Templates For Your Help

15 min read

Case Study Examples

People also read

A Complete Case Study Writing Guide With Examples

Simple Case Study Format for Students to Follow

Understand the Types of Case Study Here

It’s no surprise that writing a case study is one of the most challenging academic tasks for students. You’re definitely not alone here!

Most people don't realize that there are specific guidelines to follow when writing a case study. If you don't know where to start, it's easy to get overwhelmed and give up before you even begin.

Don't worry! Let us help you out!

We've collected over 25 free case study examples with solutions just for you. These samples with solutions will help you win over your panel and score high marks on your case studies.

So, what are you waiting for? Let's dive in and learn the secrets to writing a successful case study.

Arrow Down

  • 1. An Overview of Case Studies
  • 2. Case Study Examples for Students
  • 3. Business Case Study Examples
  • 4. Medical Case Study Examples
  • 5. Psychology Case Study Examples 
  • 6. Sales Case Study Examples
  • 7. Interview Case Study Examples
  • 8. Marketing Case Study Examples
  • 9. Tips to Write a Good Case Study

An Overview of Case Studies

A case study is a research method used to study a particular individual, group, or situation in depth. It involves analyzing and interpreting data from a variety of sources to gain insight into the subject being studied. 

Case studies are often used in psychology, business, and education to explore complicated problems and find solutions. They usually have detailed descriptions of the subject, background info, and an analysis of the main issues.

The goal of a case study is to provide a comprehensive understanding of the subject. Typically, case studies can be divided into three parts, challenges, solutions, and results. 

Here is a case study sample PDF so you can have a clearer understanding of what a case study actually is:

Case Study Sample PDF

How to Write a Case Study Examples

Learn how to write a case study with the help of our comprehensive case study guide.

Case Study Examples for Students

Quite often, students are asked to present case studies in their academic journeys. The reason instructors assign case studies is for students to sharpen their critical analysis skills, understand how companies make profits, etc.

Below are some case study examples in research, suitable for students:

Case Study Example in Software Engineering

Qualitative Research Case Study Sample

Software Quality Assurance Case Study

Social Work Case Study Example

Ethical Case Study

Case Study Example PDF

These examples can guide you on how to structure and format your own case studies.

Struggling with formatting your case study? Check this case study format guide and perfect your document’s structure today.

Business Case Study Examples

A business case study examines a business’s specific challenge or goal and how it should be solved. Business case studies usually focus on several details related to the initial challenge and proposed solution. 

To help you out, here are some samples so you can create case studies that are related to businesses: 

Here are some more business case study examples:

Business Case Studies PDF

Business Case Studies Example

Typically, a business case study discovers one of your customer's stories and how you solved a problem for them. It allows your prospects to see how your solutions address their needs. 

Medical Case Study Examples

Medical case studies are an essential part of medical education. They help students to understand how to diagnose and treat patients. 

Here are some medical case study examples to help you.

Medical Case Study Example

Nursing Case Study Example

Want to understand the various types of case studies? Check out our types of case study blog to select the perfect type.

Psychology Case Study Examples 

Case studies are a great way of investigating individuals with psychological abnormalities. This is why it is a very common assignment in psychology courses. 

By examining all the aspects of your subject’s life, you discover the possible causes of exhibiting such behavior. 

For your help, here are some interesting psychology case study examples:

Psychology Case Study Example

Mental Health Case Study Example

Sales Case Study Examples

Case studies are important tools for sales teams’ performance improvement. By examining sales successes, teams can gain insights into effective strategies and create action plans to employ similar tactics.

By researching case studies of successful sales campaigns, sales teams can more accurately identify challenges and develop solutions.

Sales Case Study Example

Interview Case Study Examples

Interview case studies provide businesses with invaluable information. This data allows them to make informed decisions related to certain markets or subjects.

Interview Case Study Example

Marketing Case Study Examples

Marketing case studies are real-life stories that showcase how a business solves a problem. They typically discuss how a business achieves a goal using a specific marketing strategy or tactic.

They typically describe a challenge faced by a business, the solution implemented, and the results achieved.

This is a short sample marketing case study for you to get an idea of what an actual marketing case study looks like.

 Here are some more popular marketing studies that show how companies use case studies as a means of marketing and promotion:

“Chevrolet Discover the Unexpected” by Carol H. Williams

This case study explores Chevrolet's “ DTU Journalism Fellows ” program. The case study uses the initials “DTU” to generate interest and encourage readers to learn more. 

Multiple types of media, such as images and videos, are used to explain the challenges faced. The case study concludes with an overview of the achievements that were met.

Key points from the case study include:

  • Using a well-known brand name in the title can create interest.
  • Combining different media types, such as headings, images, and videos, can help engage readers and make the content more memorable.
  • Providing a summary of the key achievements at the end of the case study can help readers better understand the project's impact.

“The Met” by Fantasy

“ The Met ” by Fantasy is a fictional redesign of the Metropolitan Museum of Art in New York City, created by the design studio Fantasy. The case study clearly and simply showcases the museum's website redesign.

The Met emphasizes the website’s features and interface by showcasing each section of the interface individually, allowing the readers to concentrate on the significant elements.

For those who prefer text, each feature includes an objective description. The case study also includes a “Contact Us” call-to-action at the bottom of the page, inviting visitors to contact the company.

Key points from this “The Met” include:

  • Keeping the case study simple and clean can help readers focus on the most important aspects.
  • Presenting the features and solutions with a visual showcase can be more effective than writing a lot of text.
  • Including a clear call-to-action at the end of the case study can encourage visitors to contact the company for more information.

“Better Experiences for All” by Herman Miller

Herman Miller's minimalist approach to furniture design translates to their case study, “ Better Experiences for All ”, for a Dubai hospital. The page features a captivating video with closed-captioning and expandable text for accessibility.

The case study presents a wealth of information in a concise format, enabling users to grasp the complexities of the strategy with ease. It concludes with a client testimonial and a list of furniture items purchased from the brand.

Key points from the “Better Experiences” include:

  • Make sure your case study is user-friendly by including accessibility features like closed captioning and expandable text.
  • Include a list of products that were used in the project to guide potential customers.

“NetApp” by Evisort 

Evisort's case study on “ NetApp ” stands out for its informative and compelling approach. The study begins with a client-centric overview of NetApp, strategically directing attention to the client rather than the company or team involved.

The case study incorporates client quotes and explores NetApp’s challenges during COVID-19. Evisort showcases its value as a client partner by showing how its services supported NetApp through difficult times. 

  • Provide an overview of the company in the client’s words, and put focus on the customer. 
  • Highlight how your services can help clients during challenging times.
  • Make your case study accessible by providing it in various formats.

“Red Sox Season Campaign,” by CTP Boston

The “ Red Sox Season Campaign ” showcases a perfect blend of different media, such as video, text, and images. Upon visiting the page, the video plays automatically, there are videos of Red Sox players, their images, and print ads that can be enlarged with a click.

The page features an intuitive design and invites viewers to appreciate CTP's well-rounded campaign for Boston's beloved baseball team. There’s also a CTA that prompts viewers to learn how CTP can create a similar campaign for their brand.

Some key points to take away from the “Red Sox Season Campaign”: 

  • Including a variety of media such as video, images, and text can make your case study more engaging and compelling.
  • Include a call-to-action at the end of your study that encourages viewers to take the next step towards becoming a customer or prospect.

“Airbnb + Zendesk” by Zendesk

The case study by Zendesk, titled “ Airbnb + Zendesk : Building a powerful solution together,” showcases a true partnership between Airbnb and Zendesk. 

The article begins with an intriguing opening statement, “Halfway around the globe is a place to stay with your name on it. At least for a weekend,” and uses stunning images of beautiful Airbnb locations to captivate readers.

Instead of solely highlighting Zendesk's product, the case study is crafted to tell a good story and highlight Airbnb's service in detail. This strategy makes the case study more authentic and relatable.

Some key points to take away from this case study are:

  • Use client's offerings' images rather than just screenshots of your own product or service.
  • To begin the case study, it is recommended to include a distinct CTA. For instance, Zendesk presents two alternatives, namely to initiate a trial or seek a solution.

“Influencer Marketing” by Trend and WarbyParker

The case study "Influencer Marketing" by Trend and Warby Parker highlights the potential of influencer content marketing, even when working with a limited budget. 

The “Wearing Warby” campaign involved influencers wearing Warby Parker glasses during their daily activities, providing a glimpse of the brand's products in use. 

This strategy enhanced the brand's relatability with influencers' followers. While not detailing specific tactics, the case study effectively illustrates the impact of third-person case studies in showcasing campaign results.

Key points to take away from this case study are:

  • Influencer marketing can be effective even with a limited budget.
  • Showcasing products being used in everyday life can make a brand more approachable and relatable.
  • Third-person case studies can be useful in highlighting the success of a campaign.

Marketing Case Study Example

Marketing Case Study Template

Now that you have read multiple case study examples, hop on to our tips.

Tips to Write a Good Case Study

Here are some note-worthy tips to craft a winning case study 

  • Define the purpose of the case study This will help you to focus on the most important aspects of the case. The case study objective helps to ensure that your finished product is concise and to the point.
  • Choose a real-life example. One of the best ways to write a successful case study is to choose a real-life example. This will give your readers a chance to see how the concepts apply in a real-world setting.
  • Keep it brief. This means that you should only include information that is directly relevant to your topic and avoid adding unnecessary details.
  • Use strong evidence. To make your case study convincing, you will need to use strong evidence. This can include statistics, data from research studies, or quotes from experts in the field.
  • Edit and proofread your work. Before you submit your case study, be sure to edit and proofread your work carefully. This will help to ensure that there are no errors and that your paper is clear and concise.

There you go!

We’re sure that now you have secrets to writing a great case study at your fingertips! This blog teaches the key guidelines of various case studies with samples. So grab your pen and start crafting a winning case study right away!

Having said that, we do understand that some of you might be having a hard time writing compelling case studies.

But worry not! Our expert case study writing service is here to take all your case-writing blues away! 

With 100% thorough research guaranteed, our professional essay writing service can craft an amazing case study within 6 hours! 

So why delay? Let us help you shine in the eyes of your instructor!

AI Essay Bot

Write Essay Within 60 Seconds!

Barbara P

Dr. Barbara is a highly experienced writer and author who holds a Ph.D. degree in public health from an Ivy League school. She has worked in the medical field for many years, conducting extensive research on various health topics. Her writing has been featured in several top-tier publications.

Get Help

Paper Due? Why Suffer? That’s our Job!

Keep reading

Case Study

Examples logo

Student Case Study

Student Case Study 1

Delving into student case studies offers invaluable insights into educational methodologies and student behaviors. This guide, complete with detailed case study examples , is designed to help educators, researchers, and students understand the nuances of creating and analyzing case studies in an educational context. By exploring various case study examples, you will gain the tools and knowledge necessary to effectively interpret and apply these studies, enhancing both teaching and learning experiences in diverse academic settings.

What is a Student Case Study? – Meaning A student case study is an in-depth analysis of a student or a group of students to understand various educational, psychological, or social aspects. It involves collecting detailed information through observations, interviews, and reviewing records, to form a comprehensive picture. The goal of a case study analysis is to unravel the complexities of real-life situations that students encounter, making it a valuable tool in educational research. In a case study summary, key findings are presented, often leading to actionable insights. Educators and researchers use these studies to develop strategies for improving learning environments. Additionally, a case study essay allows students to demonstrate their understanding by discussing the analysis and implications of the case study, fostering critical thinking and analytical skills.

student case study bundle

Download Student Case Study Bundle

Schools especially those that offers degree in medicine, law, public policy and public health teaches students to learn how to conduct a case study. Some students say they love case studies . For what reason? Case studies offer real world challenges. They help in preparing the students how to deal with their future careers. They are considered to be the vehicle for theories and concepts that enables you to be good at giving detailed discussions and even debates. Case studies are useful not just in the field of education, but also in adhering to the arising issues in business, politics and other organizations.

Student Case Study Format

Case Study Title : Clear and descriptive title reflecting the focus of the case study. Student’s Name : Name of the student the case study is about. Prepared by : Name of the person or group preparing the case study. School Name : Name of the school or educational institution. Date : Date of completion or submission.

Introduction

Background Information : Briefly describe the student’s background, including age, grade level, and relevant personal or academic history. Purpose of the Case Study : State the reason for conducting this case study, such as understanding a particular behavior, learning difficulty, or achievement.

Case Description

Situation or Challenge : Detail the specific situation, challenge, or condition that the student is facing. Observations and Evidence : Include observations from teachers, parents, or the students themselves, along with any relevant academic or behavioral records.
Problem Analysis : Analyze the situation or challenge, identifying potential causes or contributing factors. Impact on Learning : Discuss how the situation affects the student’s learning or behavior in school.

Intervention Strategies

Action Taken : Describe any interventions or strategies implemented to address the situation. This could include educational plans, counseling, or specific teaching strategies. Results of Intervention : Detail the outcome of these interventions, including any changes in the student’s behavior or academic performance.

Conclusion and Recommendations

Summary of Findings : Summarize the key insights gained from the case study. Recommendations : Offer suggestions for future actions or strategies to further support the student. This might include recommendations for teachers, parents, or the student themselves.

Best Example of Student Case Study

Overcoming Reading Challenges: A Case Study of Emily Clark, Grade 3 Prepared by: Laura Simmons, Special Education Teacher Sunset Elementary School Date: May 12, 2024   Emily Clark, an 8-year-old student in the third grade at Sunset Elementary School, has been facing significant challenges with reading and comprehension since the first grade. Known for her enthusiasm and creativity, Emily’s struggles with reading tasks have been persistent and noticeable. The primary purpose of this case study is to analyze Emily’s reading difficulties, implement targeted interventions, and assess their effectiveness.   Emily exhibits difficulty in decoding words, reading fluently, and understanding text, as observed by her teachers since first grade. Her reluctance to read aloud and frustration with reading tasks have been consistently noted. Assessments indicate that her reading level is significantly below the expected standard for her grade. Parental feedback has also highlighted Emily’s struggles with reading-related homework.   Analysis of Emily’s situation suggests a potential learning disability in reading, possibly dyslexia. This is evidenced by her consistent difficulty with word recognition and comprehension. These challenges have impacted not only her reading skills but also her confidence and participation in class activities, especially those involving reading.   To address these challenges, an individualized education plan (IEP) was developed. This included specialized reading instruction focusing on phonemic awareness and decoding skills, multisensory learning approaches, and regular sessions with a reading specialist. Over a period of six months, Emily demonstrated significant improvements. She engaged more confidently in reading activities, and her reading assessment scores showed notable progress.   In conclusion, the intervention strategies implemented for Emily have been effective. Her case highlights the importance of early identification and the implementation of tailored educational strategies for students with similar challenges. It is recommended that Emily continues to receive specialized instruction and regular monitoring. Adjustments to her IEP should be made as necessary to ensure ongoing progress. Additionally, fostering a positive reading environment at home is also recommended.

18+ Student Case Study Examples

1. student case study.

student case study example

2. College Student Case Study

college student case study

3. Student Case Study in the Classroom

student case study in the classroom

Free Download

4. Student Case Study Format Template

student case study template

  • Google Docs

Size: 153 KB

5. Sample Student Case Study Example

student case study template

stu.westga.edu

Size: 241 KB

6. Education Case Study Examples for Students

case study examples for students

ceedar.education.ufl.edu

Size: 129 KB

7. Graduate Student Case Study Example

graduate student case study

educate.bankstreet.edu

8. Student Profile Case Study Example

student profile case study

wholeschooling.net

Size: 51 KB

9. Short Student Case Study Example

student case study example

files.eric.ed.gov

Size: 192 KB

10. High School Student Case Study Example

high school student case study

educationforatoz.com

Size: 135 KB

11. Student Research Case Study Example

student research case study

Size: 67 KB

12. Classroom Case Study Examples

classroom case study examples

Size: 149 KB

13. Case Study of a Student

case study of a student

14. Sample Student Assignment Case Study Example

sample student assignment case study

oise.utoronto.ca

Size: 43 KB

15. College Student Case Study Example

printable student case study

Size: 221 KB

16. Basic Student Case Study Example

basic student case study

Size: 206 KB

17. Free Student Impact Case Study Example

student impact case study

Size: 140 KB

18. Student Case Study in DOC Example

student case study in doc

old.sjsu.edu

Size: 12 KB

19. Case Study Of a Student with Anxiety

case study of a student with anxiety

Size: 178 KB

Case Study Definition

A case study is defined as a research methodology that allows you to conduct an intensive study about a particular person, group of people, community, or some unit in which the researcher could provide an in-depth data in relation to the variables. Case studies can examine a phenomena in the natural setting. This increases your ability to understand why the subjects act such. You may be able to describe how this method allows every researcher to take a specific topic to narrow it down making it into a manageable research question. The researcher gain an in-depth understanding about the subject matter through collecting qualitative research and quantitative research datasets about the phenomenon.

Benefits and Limitations of Case Studies

If a researcher is interested to study about a phenomenon, he or she will be assigned to a single-case study that will allow him or her to gain an understanding about the phenomenon. Multiple-case study would allow a researcher to understand the case as a group through comparing them based on the embedded similarities and differences. However, the volume of data in case studies will be difficult to organize and the process of analysis and strategies needs to be carefully decided upon. Reporting of findings could also be challenging at times especially when you are ought to follow for word limits.

Example of Case Study

Nurses’ pediatric pain management practices.

One of the authors of this paper (AT) has used a case study approach to explore nurses’ pediatric pain management practices. This involved collecting several datasets:

Observational data to gain a picture about actual pain management practices.

Questionnaire data about nurses’ knowledge about pediatric pain management practices and how well they felt they managed pain in children.

Questionnaire data about how critical nurses perceived pain management tasks to be.

These datasets were analyzed separately and then compared and demonstrated that nurses’ level of theoretical did not impact on the quality of their pain management practices. Nor did individual nurse’s perceptions of how critical a task was effect the likelihood of them carrying out this task in practice. There was also a difference in self-reported and observed practices; actual (observed) practices did not confirm to best practice guidelines, whereas self-reported practices tended to.

How do you Write a Case Study for Students?

1. choose an interesting and relevant topic:.

Select a topic that is relevant to your course and interesting to your audience. It should be specific and focused, allowing for in-depth analysis.

2. Conduct Thorough Research :

Gather information from reputable sources such as books, scholarly articles, interviews, and reliable websites. Ensure you have a good understanding of the topic before proceeding.

3. Identify the Problem or Research Question:

Clearly define the problem or research question your case study aims to address. Be specific about the issues you want to explore and analyze.

4. Introduce the Case:

Provide background information about the subject, including relevant historical, social, or organizational context. Explain why the case is important and what makes it unique.

5. Describe the Methods Used:

Explain the methods you used to collect data. This could include interviews, surveys, observations, or analysis of existing documents. Justify your choice of methods.

6. Present the Findings:

Present the data and findings in a clear and organized manner. Use charts, graphs, and tables if applicable. Include direct quotes from interviews or other sources to support your points.

7. Analytical Interpretation:

Analyze the data and discuss the patterns, trends, or relationships you observed. Relate your findings back to the research question. Use relevant theories or concepts to support your analysis.

8. Discuss Limitations:

Acknowledge any limitations in your study, such as constraints in data collection or research methods. Addressing limitations shows a critical awareness of your study’s scope.

9. Propose Solutions or Recommendations:

If your case study revolves around a problem, propose practical solutions or recommendations based on your analysis. Support your suggestions with evidence from your findings.

10. Write a Conclusion:

Summarize the key points of your case study. Restate the importance of the topic and your findings. Discuss the implications of your study for the broader field.

What are the objectives of a Student Case Study?

1. learning and understanding:.

  • To deepen students’ understanding of a particular concept, theory, or topic within their field of study.
  • To provide real-world context and practical applications for theoretical knowledge.

2. Problem-Solving Skills:

  • To enhance students’ critical thinking and problem-solving abilities by analyzing complex issues or scenarios.
  • To encourage students to apply their knowledge to real-life situations and develop solutions.

3. Research and Analysis:

  • To develop research skills, including data collection, data analysis , and the ability to draw meaningful conclusions from information.
  • To improve analytical skills in interpreting data and making evidence-based decisions.

4. Communication Skills:

  • To improve written and oral communication skills by requiring students to present their findings in a clear, organized, and coherent manner.
  • To enhance the ability to communicate complex ideas effectively to both academic and non-academic audiences.

5. Ethical Considerations:

To promote awareness of ethical issues related to research and decision-making, such as participant rights, privacy, and responsible conduct.

6. Interdisciplinary Learning:

To encourage cross-disciplinary or interdisciplinary thinking, allowing students to apply knowledge from multiple areas to address a problem or issue.

7. Professional Development:

  • To prepare students for future careers by exposing them to real-world situations and challenges they may encounter in their chosen profession.
  • To develop professional skills, such as teamwork, time management, and project management.

8. Reflection and Self-Assessment:

  • To prompt students to reflect on their learning and evaluate their strengths and weaknesses in research and analysis.
  • To foster self-assessment and a commitment to ongoing improvement.

9. Promoting Innovation:

  • To inspire creativity and innovation in finding solutions to complex problems or challenges.
  • To encourage students to think outside the box and explore new approaches.

10. Building a Portfolio:

To provide students with tangible evidence of their academic and problem-solving abilities that can be included in their academic or professional portfolios.

What are the Elements of a Case Study?

A case study typically includes an introduction, background information, presentation of the main issue or problem, analysis, solutions or interventions, and a conclusion. It often incorporates supporting data and references.

How Long is a Case Study?

The length of a case study can vary, but it generally ranges from 500 to 1500 words. This length allows for a detailed examination of the subject while maintaining conciseness and focus.

How Big Should a Case Study Be?

The size of a case study should be sufficient to comprehensively cover the topic, typically around 2 to 5 pages. This size allows for depth in analysis while remaining concise and readable.

What Makes a Good Case Study?

A good case study is clear, concise, and well-structured, focusing on a relevant and interesting issue. It should offer insightful analysis, practical solutions, and demonstrate real-world applications or implications.

Case studies bring people into the real world to allow themselves engage in different fields such as in business examples, politics, health related aspect where each individuals could find an avenue to make difficult decisions. It serves to provide framework for analysis and evaluation of the different societal issues. This is one of the best way to focus on what really matters, to discuss about issues and to know what can we do about it.

case study examples about education

AI Generator

Text prompt

  • Instructive
  • Professional

Education Case Study Examples for Students

Graduate Student Case Study Example

Student Profile Case Study Example

High School Student Case Study Example

Student Research Case Study Example

  • Open access
  • Published: 25 March 2024

Automated content analysis as a tool to compare content in sexual selection research with examples of sexual selection in evolutionary biology textbooks: implications for teaching the nature of science

  • J. Kasi Jackson 1 ,
  • Linda Fuselier 2 &
  • Perri Eason 2  

Evolution: Education and Outreach volume  17 , Article number:  3 ( 2024 ) Cite this article

87 Accesses

Metrics details

 We used college-level evolution textbooks to examine the presentation of sexual selection research—a field with ongoing debates related to sex, sexuality and gender identity. Many classic sexual selection concepts have been criticized for androcentrism and other forms of gender-sex bias, specifically for de-emphasizing the female role in reproductive behaviors and over-reliance on gender-sex binaries. These classic concepts are fundamentally captured in the idea that animal reproductive-related behaviors can be grouped in sex roles (e.g. competitive males and selective females). Recently developed alternative concepts provide a more nuanced understanding of the flexibility of sexual and reproductive-related behaviors, stemming in part from growing attention to a broader range of female behavior. To assess whether students are receiving content reflecting these insights, we measured the congruence between textbook content and the scientific literature, using insects as a case study because of the importance of this group in the development of sexual selection theory, its prevalence in current sexual selection research, and the number of insect examples included in textbooks. We first coded textbook content for sexual selection concepts. We used automated content analysis to analyze a database of citations, keywords and abstracts in sexual selection research published between 1990 and 2014, inclusive of the period covered by the textbooks.

The textbooks and research literatures prioritized the same taxa (e.g., fruit flies) and sex roles as embodied in classic sexual selection theory. Both the research literature and some textbooks acknowledge androcentrism and other forms of gender-sex bias in classic sexual selection paradigms, especially competitive male and selective female sex roles. Yet, while the research literature included alternative models, textbooks neglected these alternatives, even when researchers had studied both classic and alternative views in the same insect.

Conclusions

 We recommend using this kind of analysis of textbook content to engage students in a conversation around the social factors that impact knowledge construction, a key part of the epistemological understanding they need for a robust grasp of the Nature of Science and of evolutionary theory.

Attempts to promote students’ understanding of the socio-scientific nature of knowledge construction, while maintaining their trust in the endeavor of science, are often framed within the context of the Nature of Science (NOS). Gender-sex and race are powerful societal, cultural, historical and biological phenomena. They are understood within complex knowledge frameworks that are challenging to capture in scientific knowledge systems. This is because those systems are often reliant on reductionist, binary-categorical, and essentialist models, which originated within racist, sexist and heteronormative frameworks (Longino 2013 ; Schiebinger 2004 ). To address this history, NOS integrates an understanding of how knowledge is shaped within simultaneously social (having to do with the interactions among scientists and within research communities) and rational (having to do with how scientists and research communities engage with their object of study) contexts. This social/rational context includes the scientific discipline and its theories and methodologies, as well as its members’ and research communities’ place within the larger society, and its attendant histories. This is manifest in the following three principles: (1) “Scientific knowledge is open to revision in light of new evidence (e.g. Scientific argumentation is a mode of logical discourse used to clarify the strength of relationships between ideas and evidence that may result in revision of an explanation);” (2) “Science is a way of knowing (e.g. Scientists’ backgrounds, theoretical commitments, and fields of endeavor influence the nature of their findings);” and (3) “Science is a human endeavor (e.g. Science knowledge has a history that includes the refinement of, and changes to, theories, ideas, and beliefs over time)” (National Research Council 2013 ). An understanding of NOS is a key ingredient in student acceptance of evolution. Specifically, students have higher acceptance of evolution when they appreciate the diversity of scientific methodologies and the nature of theory building and testing, even when controlling for interest and background in science (Lombrozo et al. 2008 ).

Understanding these NOS principles provides a foundation to challenge how science—combined with racism, sexism, heteronormativity and homophobia—maintains power differentials along presumed lines of difference. For example, eugenics—now deemed racist and sexist, among many other problems—was the mainstream and dominant research paradigm during the birth of modern evolutionary science. Scientists working within this framework were following scientific principles as they understood them, most often grounded in a positivist framework emphasizing reductionism and control. This served to maintain the status of the dominant groups, even though not all scientists at this time had this as their explicit goal (Gould 1996 ; Graves 2019 ; Subramaniam 2014 ).

Thus, teaching students about ongoing efforts to use evolutionary theory and other science either to justify or to challenge racial and other stratifications in society requires more than pointing out bias and misapplication of scientific methodologies– it must also incorporate how scientific knowledge production is intertwined with histories of racialized and gendered difference. This is especially important given the translation of scientific knowledge about human racial, sex and gender difference to the public, including biology students. For example, both interactionist and reductionist studies of hormones, sexuality and aggression have explanatory power and receive significant attention in the research community. Yet, the reductionist studies, implying that biology determines difference, have gained more coverage by the media, as well as some textbooks (Ray King et al. 2021 ). This supports an oversimplified societal narrative about hormones (biology) determining behavior that is not aligned with current scientific research (Longino 2013 ).

Although acknowledgement of the problematic history of evolutionary biology is becoming increasingly mainstream, strategies to move forward are lacking. In their absence, there has been increasing pushback and efforts to eliminate critical thinking about these issues, in large part either by banning the teaching of content that represents the current scientific consensus—especially in the area of gender-sex—or by curtailing critical frameworks that question systemic oppressions, eg critical race theory, gender studies and other critical frameworks (Rufo 2023a , 2023b ; Wallis-Wells 2021 ). The pushback against critical analyses of racism and sexism rests (1) on shifting the focus to individual identity and (2) using presumed negative impacts on these individuals, especially those from socially dominant groups, to rally support for these bans (Rufo 2023c , 2023d ; Wallis-Wells 2021 ). Thus, engaging in knowledge construction, or epistemological, frameworks that move beyond individual experience is critical.

Critical Contextual Empiricism (CCE) addresses this by framing knowledge as a communal rather than an individual pursuit (Longino 2002 ). Thus, NOS benefits from guideposts, like CCE, for navigating the social/rational processes that are included in the NOS principles, such as discourse, backgrounds, theoretical commitments, fields and histories. One CCE tenet is the argument that scientific research practices are strongest when scientific research communities are composed of more diverse groups—as long as those groups establish equitable frameworks to share and critique knowledge (Longino 2002 ). Underlying this approach is the understanding that rather than being about the identity of the individuals doing science, what is significant is their positionality, i.e. where those individuals reside in a complex matrix of identity categories and whether those with membership in these identity categories can access the power of knowledge production (Collins 2019 ). The objectivity associated with science has been privileged and historically assigned to those whose identities claim the most social, economic, and political power, leading to research outcomes supporting this division of power (Haraway 1988 ; Harding 1986 ).

CCE, coupled with the NOS principles, makes visible for students the ways in which knowledge is constructed by providing concrete examples of how scientific knowledge responds to critique. One way to capture this is to consider textbooks as a site of knowledge production, given that (1) the success of textbooks rests in their adoption by the community, and (2) they play a key role in introducing new members of the community to disciplinary norms (Bazzul 2014 ). Here we present a case study on sexual selection research on insects, which investigates how textbook content aligns with changes in research related to gender-sex, an area with changing paradigms drawn in part from larger societal and scientific discourses.

Textbooks as the Site of NOS engagement

Biology, as a research field, has begun addressing racism, sexism and heteronormativity in two ways—by attending to plasticity, variation and context when studying organisms and by acknowledging the socially constructed nature of race, gender-sex and sexuality as knowledge systems (Ah-King 2022 ; Eliot 2010 ; Fausto-Sterling 2012 ; Hyde et al. 2019 ; Lett et al. 2022 ; Montañez 2017 ; Roughgarden 2013 ; Zambrana and Williams 2022 ). Researchers have also begun to scrutinize how science textbooks address and can impact social issues related to race, gender-sex, and sexuality and gender identity (Vojíř and Rusek 2019 ).

Unfortunately, many changes in research paradigms to address racism, sexism and heteronormativity are not being transferred to the textbooks, where, outside of brief acknowledgements of past problems, textbooks often follow a strategy of avoidance (Bazzul and Sykes 2011 ; Bickford 2022 ; Donovan 2015 ). Although most include disclaimers about biology being destiny and allude to the fact that science does not provide a framework for ethical decision-making (a part of NOS), textbooks largely fail to present information to help students robustly think about race and gender-sex from a biological perspective. For example, content analyses focused on gender and sexuality found that scientific textbooks contained heteronormative assumptions (Ah-King 2013b ; Bazzul and Sykes 2011 ; Bickford 2022 ; Røthing 2017 ), gender-biased language and assumptions (Ah-King 2013b ), and gender-biased or sexist imagery (Elgar 2004 ; Good and Woodzicka 2010 ; Parker et al. 2017 ; Rosa and Gomes da Silva 2020 ; Spaulding and Fuselier 2023 ; Fuselier et al. 2018 ). In the case of race, although books are careful to challenge the idea that race is a biological construct and include evolutionary information to the contrary, they fail to challenge racism, often supported by pseudoscience, directly (Bickford 2022 ; Donovan 2015 ). For example, through a content analysis of 153 biology books (86 textbooks, 44 curricular supplements, and 23 trade books), Bickford ( 2022 ) found that although these books covered evolutionary content accurately, they did not present scientific evidence that would refute white supremacy or cis-heteronormativity. For example, Bickford ( 2022 ) found that the books often presented the lack of the validity of race as a biological construct but failed to attend to its significant role as a societal construct or to the use of science to justify racialized oppression (eg. eugenics). Overall, students lack exposure to the historical debates within biology that have led to changes in how researchers conceive of race, sex and gender as constructs in their work (reviewed in Donovan and Nehm 2020 ).

This selective or missing coverage can lead to an increase in student assumptions around biological essentialism associated with race, gender, sexuality, and gender identity. A failure to challenge social constructs of race, often grounded in pseudoscience, leads to increases in racism—even when students are then provided information intended to interrogate racialized disparities. Several studies have suggested that when biology textbooks give examples of outcomes such as diseases that are more common in one race than in others—as an attempt to address health disparities—students may develop or strengthen a belief in racial essentialism and extrapolate into other areas with racial disparities, including educational attainment (reviewed in Donovan 2015 ). To address this, Willinsky ( 2020 ) provides an overview of mixed messages about race—critiquing the falsity of race as a biological variable, while separately presenting content that uses racial groupings as a variable—in high school biology textbooks that, he argues, also reflects the how race as a concept appears in current research on race within biology. He argues that educators should integrate a historical understanding of biology’s contributions to racialized research, especially eugenics, and use the contradictory messaging present within textbooks to demonstrate the complexities of conducting research on systemic racism and racialized outcomes in health and other biological fields (Willinsky 2020 ).

Similar findings hold for beliefs about gender and sex difference. Donovan et al. ( 2019a ) investigated the impact when 8th-10th grade students read selections from biology textbooks on the students’ belief in a neurogenetic basis for sex differences in humans and interest in science. They compared a passage refuting neurogenetic sex differences with two passages endorsing neurogenetic differences—one in humans and one in plants. Students self-identifying as girls who read the endorsing passages, whether in plants or humans, were more likely to believe in sex differences grounded in neurogenetics; girls in these treatments also indicated less interest in science. A further examination of student writing after reading the passages indicated that students tended to use both sex and gender language in all treatments, with some evidence that they were distinguishing between the concepts to refute essentialism in the refutational text treatment (Stuhlsatz et al. 2020 ). Recognizing that biology textbooks also conflate biological sex differences with gendered social outcomes, the authors recommend an approach emphasizing the complex histories of science research on both sex and gender, accompanied by training for teachers on how to address this content with their students. Our study aims to provide such a resource in the case of sexual selection.

Sexual selection and changing paradigms

One area in which scientific research and other scholarly work have begun to address at least some gender-biased assumptions is sexual selection research (Ah-King 2022 ; Ah-King and Ahnesjö, 2013 ). In our previous work, we found that although some evolutionary biology textbooks acknowledge the critique of gender bias in scientific research, their presentation of sexual selection research in text, and especially in images, retains an emphasis on the work that has been critiqued for said gender-sex bias (Fuselier et al. 2016 , 2018 ). This also occurs in animal behavior textbooks, which devote more space to sexual selection (Spaulding and Fuselier 2023 ).

Although sexual selection is typically covered in evolution courses, little research has been done to ascertain how it is taught and how students understand it (Ziadie and Andrews 2018 ). Sexual selection research originated as a study of extreme differences between males and females, e.g. strong sexual size dimorphisms or other traits that occur or are highly exaggerated in only one sex, such as the classic example of the peacock’s ornamental tail. The classic view of sexual selection emphasizes stable binary sex roles with males competing, either by fighting with other males or by displaying to females who may choose the males as mates based on their displays or dominance over other males. The roles may be reversed, with female competition for mates, given changes in the environment, such as restricted nesting sites, resulting in more female animals ready to mate than have access to resources needed for mating —but this phenomena was seen to support the existence of the binary itself (Ah-King and Ahnesjö, 2013 ; Trivers 1976 ).

Feminist critiques of androcentric bias in sexual selection theory began soon after its publication (Blackwell 1875 ; Hamlin 2015 ), and work critiquing androcentric bias and offering solutions has been ongoing in the field ever since (reviewed in Jackson 2001a , b , 2014 ). After the 2000’s, the frequency of such research in mainstream animal behavior and evolution journals has increased (reviewed in Fuselier et al. 2016 ). The field has been critiqued most often for importing assumptions about human sex roles into the study of non-human organisms (e.g. Hrdy 1986 ). Additional ongoing areas of concern include acknowledging the context-specific nature of sexual behavior and mating patterns (Gowaty 2013 ; Kokko and Johnstone 2002 ), though the extent of the challenge to traditional notions of sexual selection is a subject for debate (see for example the exchange between Ah-King 2013a ; Kokko et al. 2013 ). Researchers in sexual selection have acknowledged the lack of studies of female organisms (Clutton-Brock 2009 ) and have highlighted not only sexual selection on females but also several alternative behaviors that expand the classic understanding of sexual selection, such as male mate choice, female ornaments, male parental care, female-female competition and flexible sex roles (reviewed in Fuselier et al. 2016 ).

College-level evolutionary biology textbooks present primarily classic sexual selection binary sex-role theory, although some textbooks do present some examples of alternatives to classic roles, most commonly extra-pair copulations and polyandry—situations in which female animals mate with multiple males (Fuselier et al. 2016 ). Yet, the images included in the textbooks display a more conservative representation of classically understood sex roles than the content covered in the writing (Fuselier et al. 2018 ). It is unclear how the content presented in textbooks reflects the scientific literature. One challenge to research in this area is the difficulty of synthesizing the vast amounts of information available in the literature for comparison with the textbooks, a necessity for making recommendations for how to modify content or examining how the instructor frames what the books do—or, more importantly, fail to do. Here we explore the efficacy of automated content analysis (ACA) as a tool to assess the alignment of textbook content with the scientific literature.

Automated content analysis (ACA) essentially turns text into data, using sets of algorithms to construct models that allow researchers to determine the concepts on which authors focus, as well as the relationships among those concepts. ACA has been used recently to assess and identify trends and shifts in ecology and evolutionary biology (Nunez-Mir et al 2016 ; McCallen et al. 2019 ). Essentially, ACA programs based on machine-learning (ML) identify words or word combinations that are commonly associated with one another in text by determining how frequently they co-occur in small blocks of text (3–4 lines) versus how frequently they occur elsewhere. Leximancer does not use a training set like other artificial intelligence programs might; more information about algorithms used in the program is reviewed in Smith and Humphreys ( 2006 ). Through machine learning, ACA identifies and quantifies the associations of terms to develop a thesaurus and create “concepts” and groups of concepts related to the same theme. The frequency of and relationships among concepts and themes can be calculated, assessed, and visualized. The power of this type of analysis is the large amount of literature (or text) that can be assessed in a relatively short time. ACA is thus an excellent tool for comparing the content of textbooks to the topics emphasized within the literature on a given subject. It can reveal how researchers address particular topics both currently and over time, as well as gaps or lags in textbooks’ coverage of a field.

We used insects as a proof of concept for the ML-based ACA technique because our prior research demonstrated that a wider range of sexual selection roles was presented in this taxon than in any other group used in the textbooks (Fuselier et al. 2016 ). After completing analysis of the peer-reviewed articles, we then compared all the concepts that were studied in insects to the concepts that textbooks used these insects to exemplify. We also examined whether the insects used to represent specific behaviors in textbooks reflected the insect taxa in which these behaviors were most studied in the peer-reviewed articles. We addressed the following specific research questions:

What sexual selection behaviors are studied in insect taxa in peer-reviewed literature?

Do the insect taxa described in textbook discussions of sexual selection match the insect taxa studied in peer-reviewed articles in the sexual selection literature?

How does the range of sexual selection behaviors covered in textbooks compare to the range of behaviors discussed in peer-reviewed articles?

We used four recent evolutionary biology textbooks (Table  1 ) published between 2012 and 2013 that in 2016 represented over 95% of the market share of college-level evolution textbooks in the United States. The textbooks were the same used in our prior research (Fuselier et al. 2016 , 2018 ).

We created an inventory of all insects used as examples in textbook sections devoted to sexual selection topics. The examples were classified as fitting into one of two understandings of sexual selection: classic (e.g., male-male competition, female choice) or expanded (e.g., competition among females, reproductive constraints among males, or mate choice as a mutual process).

Literature search and dataset

To construct a literature database, we used the Zoological Record collection within Web of Science (Clarivate Analytics) to identify proceedings, peer-reviewed journal articles, books and book chapters focused on sexual selection in insects. We focused on the Zoological Record because this database is the oldest database focused on animal science and is known for its focus on zoology and animal biology. It covers international journals on behavior, with an emphasis on knowledge pertinent to the study of non-human animals in the wild; it thus contains the literature most relevant to our study (Zoological Record​ on Web of Science 2024 ). Its organization by taxonomy also mirrors our study’s emphasis on taxonomic differences, and thus its structure was particularly amenable to the ways that we needed to sort the literature to answer our research questions. We limited our search to the years 1990–2014, dates for which we were able to access abstracts for the papers. This period marks a significant time frame for a renewal of interest in sexual selection, and an associated feminist critique of androcentric bias. Given that the latest publication date of our selected books was 2013, it also included the literature most likely to be covered in the books and thus ensured that the records were those most pertinent to our research questions.

We constructed our search using Boolean operators, identifying papers with topics including both ‘sexual selection’ and ‘insect’ or its variants (e.g., insects, Insecta). After reviewing the literature, we realized that this search also included research in which the insect was not the focus of the study, e.g., studies on sexual selection in flowers mediated by insect pollinators, and studies of the impacts of sexual selection on bird traits in which the traits were signaling resistance to an insect parasite. To remove these studies, we added a supertaxon search term to search separately for papers in which the supertaxon was or was not Insecta. Most studies identified by this revised search were those with the supertaxon Insecta, and all of these (n = 1581) focused on sexual selection in insects. In a smaller set of studies (n = 105), the supertaxon was not Insecta. We reviewed these manually and removed 52 publications that did not focus on sexual selection in insects. The remaining 53 papers, which did cover sexual selection in insects, were often reviews or comparative studies in which sexual selection in an insect was being compared to sexual selection in another taxon, e.g., studies comparing nuptial gifts in spiders (Arachnida) versus crickets (Insecta). These papers were included in our final dataset of 1634 papers.

We then imported the full records (including full citations, abstracts, automatic tags, and other metadata) into a database. We manually reviewed the 1634 records to sort them into our final taxonomic groupings. This resulted in nine groups, which included seven insect orders, the genus Drosophila (fruit flies), and an ‘other’ group that included all taxa that were the focus of fewer than 20 studies each. We separated Drosophila from its parent taxon Diptera (flies) because of the large number of studies on Drosophila ; there were more studies on Drosophila than on any other group (Table  2 ). We then exported these to Microsoft Excel © for automated content analysis.

  • Automated content analysis

We analyzed spreadsheets containing article titles, abstracts and manual search terms for the nine groups of insect taxa using Leximancer, a machine-learning-based program for automated content analysis (Leximancer 2019 ). To identify the most commonly studied topics in sexual selection in insects among the 1634 papers, we used an “overall” analysis of concepts in which we allowed the program to find concepts and build a thesaurus from automatically generated terms. For a second, “profiled” analysis we added “user-defined concepts” specifically related to alternatives to classic sex roles such as polyandry, mutual mate choice, alliances, etc. To verify that user-defined concepts aligned with the meaning in the text, an investigator checked the meaning in the text with the excerpts identified by the program. For example, using the compound term “female + competition” when searching for papers that addressed competition among females for mates, text excerpts that contained the two words in a sentence but did not refer to female competition were excluded (e.g., “competition experiments…showed males mated with more females”). We modified the compound concepts (e.g., “female + competition + NOT male”) and re-ran analyses until we minimized the occurrence of inaccurate matches with the text. We used measures (produced by Leximancer ® ) of the frequency and strength of association to identify what topics were most commonly studied among which taxa; we used prominence values to quantify the relationship between taxa and topic. Prominence is a combination of strength and frequency within a taxon, and prominence values > 1 indicate that the association happens more often than expected by chance.

1) What sexual selection behaviors are studied in insect taxa in peer-reviewed literature?

Overall analysis

The overall analysis identified 64 commonly occurring concepts (see Table  3 and Appendix A). The concept ‘male’ was the most commonly encountered concept in the dataset, and thus was more common than ‘female.’ Examination of the concepts most frequently co-occurring with the five top concepts revealed that research on sexual selection in insects has emphasized males over females and focused on post-copulatory selection, communication (e.g., calling), and biometrics, among other topics. All taxa had a high frequency of association with the concepts, meaning that given the taxon, we were highly likely to find papers that included the concept. But, given the concept, the strength of association with a particular taxon was low, indicating that all the commonly encountered concepts were studied in all taxa. Interestingly, the concept ‘female’ occurred most often in association with the concept ‘re-mating’ and, secondly, ‘choice.’ Re-mating was used in studies of conflict, which was one of the top associations with the term ‘sexual,’ indicating that there is a wealth of literature on sexual conflict and that it includes an examination of females re-mating, which is one of the expanded views of sexual selection because it emphasizes multiple mating by females.

Profiled analysis

In this analysis we removed very general concepts, (e.g., male, female, sexual, evolution, behavior, reproduction, and variation) that were studied in all taxa and included 16 user-defined concepts that emphasized alternatives to classic sexual selection. Removing general concepts provided the opportunity to examine more closely which insects were used to study expanded sexual selection. For example, the sheer number of studies on speciation in fruit flies impeded the program’s ability to detect associations of fruit flies with non-traditional concepts (e.g., condition-dependent mate choice).

Four of the nine taxonomic groups were strongly and frequently associated with particular expanded concepts (Table  4 ): beetles, fruit flies, butterflies/moths, and flies. Beetles and fruit flies were frequently associated with concepts related to sperm competition and conflict (sperm competition, male costs, sperm storage, conflict, polyandry, and multiple female mating). Fruit flies, beetles and crickets were associated with condition-dependent mate choice, male mate choice and female aggression. Finally, butterflies/moths were associated with female signals, mainly pheromones, and flies were associated with conflict.

Overall, expanded concepts were studied in many insect taxa, and all expanded concepts appeared prominently in two or more taxonomic groups. On average, for each concept (e.g., “female ornaments”) there were three taxa with significant prominence values. The most infrequently studied expanded concept was female reproductive success, which was only prominently associated with beetles and butterflies/moths. Beetles and fruit flies were central to the studies of expanded concepts of sexual selection. Although studies using fruit flies made up the largest proportion of papers we identified for our dataset, more expanded concepts (n = 10) were significantly prominent in beetles than in fruit flies (n = 8).

Comparison to textbooks

2) Do the insect taxa described in textbook discussions of sexual selection match the insect taxa studied in peer-reviewed articles in the sexual selection literature?

Overall, fruit flies, beetles and crickets/grasshoppers were the most commonly studied groups in the scientific literature (Table  5 ). All flies (Diptera) including fruit flies accounted for 31% of the experimental science studies. This matches well with the proportions of examples used across all textbooks combined for flies, which was also 31%. However, when we looked at individual textbooks, the proportion of examples that used fruit flies or flies ranged from 16 to 50%, with one textbook (Pearson, 33%) matching the distribution of taxa in the literature but the others with far greater or lower representation than expected based on the literature.

3) How does the range of sexual selection behaviors covered in textbooks compare to the range of behaviors discussed in peer-reviewed articles?

The profiled analysis showed that most of the alternatives to traditional sex roles were covered in two taxonomic groups—fruit flies and beetles. Therefore, if the textbooks are covering these alternatives, we would expect to see at least one of these taxa discussed in all textbooks. At least one of the two taxa did appear in all books: fruit flies appeared in all four textbooks, and beetles appeared in three of the four. However, we found that although beetles, fruit flies and flies were strongly and frequently associated with expanded examples in the literature, they were used primarily for classic examples in the textbooks. In the literature, butterflies and moths exemplified expanded sexual selection, specifically focused on female chemical signals; the books did not attend to these taxa or this topic. What did textbooks use fruit flies and beetles to exemplify? Fruit flies exemplified both classic concepts and one expanded sexual selection concept (sexual conflict) in all books. However, beetles were used only to exemplify classic sexual selection. Thus, although studies of expanded concepts in beetles are available in the literature, they are not typically used to exemplify these concepts in the textbooks.

A similar mismatch is found among the grasshoppers/crickets. Grasshoppers/crickets were often used to study expanded concepts in the literature and also occurred in all four textbooks (Tables 4 ,  5 ). However, the textbooks used them to exemplify mainly classic sex roles. Female-female interactions, signals, and aggression were prominent concepts among grasshoppers and crickets in the literature. Yet in textbooks, the expanded roles received only brief coverage—one, scent marking of males by females, was only listed in a table rather than as a detailed example in the text of the chapter. Another text used a cricket as an example of a flexible sex role, but this appeared only in the end-of-chapter questions.

The significance of our findings, in comparison to most current literature on textbooks, is that we have examined how textbooks track trends in the sexual selection research literature, responding to critiques of gendered and androcentric bias dating back to Darwin’s original writings about sexual selection (Hamlin 2015 ; Jackson 2001a ,  b ,  2014 ). Although we previously found that some textbooks acknowledge the importance of the critique of gendered and androcentric bias in their discussion of sexual selection research (Fuselier et al. 2016 ), their selected images reinforce a traditional view of classic sexual selection theory (Fuselier et al. 2018 ). In this study we find that they also do not engage with its implications when they present the content of sexual selection to their student audience.

Our work concerns the decision-making processes that affect the presentation of knowledge, using the textbooks as a case study and CCE as a framework. Key to this approach is our main finding that in general, the textbooks do not provide a thorough representation of how research in the field of evolution, specifically in sexual selection, has shifted. Our analysis of 1634 unique research papers on sexual selection in insect taxa revealed that although most studies produced work that aligned with the classic paradigm, there were many examples that expanded upon this paradigm; polyandry and other concepts related to female multiple matings were common, as was male mate choice. Additionally, relative to the textbooks, the peer-reviewed research literature reported a greater number of alternatives to classic sex roles occurring in more and different taxa.

Several insect taxa that were included in the textbooks have been used to study alternative concepts; however, instead of reflecting this diversity, the textbooks used those taxa to illustrate classic concepts of sexual selection and excluded the expanded concepts. Thus, we see more attention being paid to alternatives to classic concepts in research articles than in textbooks. One reason for this discrepancy might be due to the taxa that are used to exemplify the concepts. We found some support for this idea in that some taxa in which the alternatives were most frequently studied were not included in textbooks. But this is not the full story because even when textbook authors included taxa that were most strongly associated with alternative concepts, they still focused on the classic concepts instead of addressing the alternatives. This indicates that textbooks maintain a bias toward classic concepts over those that expand the understanding of sexual selection beyond stereotypical sex roles. For example, in the research literature on insect sexual selection, female remating is a common concept, and ‘remating’ has an association with ‘female’ that is even stronger than the association of ‘female’ with ‘choice.’ However, well-studied charismatic insects that would illustrate the benefits of mating multiply for females are not included in textbooks. One example is the honeybee ( Apis mellifera ), a species in which a queen mates with twelve males on average (Tarpy et al. 2004 ); experimental data showed that queens with more than one mate are more attractive to workers, which may give queens longer tenure and thus higher success (Richard et al. 2007 ).

This is significant in the context of research indicating that reading passages in textbooks that reinforce biological bases of difference, whether about humans or not, can lead to more student endorsement of a biological basis behind racial and gendered stratification in society (Donovan et al. 2019b ; Stuhlsatz et al. 2020 ). Thus, there is a critical need to expose students to the kinds of examples about variation in sexual behavior that we found in our review of the research literature on insects in sexual selection, whether through examples provided in the textbooks or in supplementary material to the textbook provided by the instructors. The provision of supplementary materials also offers the chance to engage directly with NOS principles, using the textbooks themselves as the place where scientific knowledge is being constructed. Our work is significant because our case study provides an example instructors can use to address this gap within the framework provided by CCE.

Recommendations for evolution education

Our recommendations align with those made by (Willinsky 2020 ). He found mixed messages both challenging and supporting genetic essentialism in a review of textbook content related to genetics and race. As a teaching strategy, he suggests that instructors directly discuss the variation in how textbooks discuss race and genetics, using this to exemplify the complexity of studying racialized biological outcomes within the historical racist context of science. We concur with his suggestion and position our work as a method to allow instructors to engage more critically with textbook content by exploring with students the social/rational process of scientific work—which necessitates a deeper dive into the formation of the research literature than is present in many textbook summations of scientific content. Our study provides strategies to strengthen the epistemological understandings that students need to ground a robust conception of NOS, by considering the communal, rather than individual, nature of knowledge construction (CCE) in the area of sex and gender difference—an area in which students, indeed all of us, are being bombarded with controversial information.

Students with a more robust understanding of the NOS, especially around the complexities of theory building and testing, understand that knowledge production involves gray areas of nuance and context (Cho et al. 2011 ). To use our work to encourage students to do this, an instructor could ask students to reflect on their views of textbooks. Rather than seeing them as all-knowing repositories that cannot be questioned, such a conversation would encourage what Bazzul ( 2014 ) describes as a reflexive process whereby students engage in ownership of the content of their fields by questioning and considering the nuances of information received. The point of this exercise is not to reinforce a simplistic understanding of the history of racism and sexism in science as a case of bias now corrected, but to have the students use the textbook as a place to think about how information is selected and shaped.

In this instance, our study would provide a strategy to consider knowledge production at the level of the community, with the community at play being the group of evolutionary biology texts, rather than any one individual book. The textbooks that we examined collectively provided coverage of insects that was more representative of the scientific literature than any individual book did. Although there was no single book whose examples of evolution in insects matched the diversity of insect taxa found in the literature, when the books were combined, their coverage came much closer to that diversity.

The use of multiple texts and resources (instead of reliance on one textbook as an authoritative source) has been used in several fields to improve students’ understanding. For example, in history, multiple texts have been used to guide college students to understand the importance of the availability of source material, which can for example be used to indicate which groups have been deemed worth preserving in the historical record and the accompanying writing of history; however, the researchers note that students require training to understand this, given that high school classes present history as a collection of facts to be memorized (Hynd 1999 ). In political science, researchers have identified a hidden curriculum within introductory textbooks that centers institutions and those who have the most power within them (mostly white men), and de-emphasizes or ignores the political contributions of those who have had to fight for equity by segregating coverage of movements for gender, sexual, and racial/ethnic equity into sections linked only to diversity and thus reinforcing the notion that those issues are outside the mainstream (Atchison 2017 ; Cassese and Bos 2013 ); the use of original source material and/or diverse sources from the field’s research literature could ameliorate this bias. Within mathematics, there has been a shift in the conception of how teachers use textbooks, with a new emphasis on teachers’ pedagogical design capacity or the ability of teachers to make decisions about how to use, adapt or add to content provided in textbooks grounded in their understanding of how to help their students learn (Matić, 2019 ). Overall, across a broad range of fields, there is growing recognition that students do not simply receive knowledge from textbooks, teachers or any other source; rather students integrate what they learn with their own frameworks, prior knowledge and goals. Projects that expose for students how textbook authors make choices in their presentation of topics thus offer a way to engage with student sense-making processes and enhance learning (Sikorski and Hammer 2017 ). Comparison across textbooks—making visible their differences as well and what they share—provides a strategy to address this.

Our finding that collectively the books did a better job than any one book in coverage of the field is key here. Instructors could share with their students how their specific class textbook covers topics in contrast to other books. This could lead to conversations about the selection of what to include and not to include and what mediates those decisions, including the authors’ positionalities—not just their identity put a multitude of associated factors based on how they move through the social world—of those doing the research or writing the books—an issue identified as critical to the construction of science by feminist scholars (reviewed in Intemann 2010 ).

Key to this conversation would be including how some of the textbooks’ authors offer overviews of the critique of androcentrism in their fields, framed by noting how those historically excluded from the research community—in the case of gender bias, normally women—corrected this bias by attending to the behavior of female animals (Fuselier et al. 2016 ). Although the discussion indicates the authors saw the value of the critique, it fails to account for the continuing emphasis on classic sexual selection theory, with its androcentric focus and gender binaries. This parallels the split presentation that other researchers found within textbooks—with mixed messaging about race, sex and gender—deconstructing bias in one place, while sharing examples that reinforce it in another passage (Bickford 2022 ; Donovan 2015 ; Willinsky 2020 ). A CCE framework opens the door for a nuanced conversation with students for the reasons behind this finding.

Bringing attention to the increased attention to female behaviors in the context of a discussion of historical and contemporary critiques of sexual selection models for androcentrism would provide a concrete example of the NOS principle that “Scientific knowledge is open to revision in light of new evidence.” This could be accomplished in part by making small shifts in the framing of some concepts and by augmenting textbook examples with examples from different taxa, such as more coleopterans, to represent a wider variety of concepts. In the research literature, Coleoptera and Drosophila were closely associated with concepts related to sperm competition and conflict (sperm competition, male costs, sperm storage, conflict, polyandry, multiple female mating), which require multiple matings among females. Reframing the presentation of sperm competition in textbooks to emphasize multiple mating by females—and the often-positive fitness consequences for females of multiple matings –would put textbooks in closer alignment with the research in this field. Having open discussions with students on the implications of centering sperm competition versus multiple mating or remating by females offers a chance to engage with the NOS principle that ‘Science is a way of knowing’ by having a discussion about the impacts of language choice on who is perceived as having or lacking agency in scientific research.

Further, some taxa used to exemplify classic sex roles, could also be used to show alternatives. A good example would be an orthopteran such as a katydid species that has flexible, condition-dependent sex roles. Although crickets, which are also orthopterans, were used in all textbooks, they were leveraged primarily to support classic sex roles. Again, a small change—adopting examples of orthopteran flexible sex roles in the main body of the chapter—would better align the books with the experimental science. In fact, research on multiple mating by females in orthopterans began in the nineties (Tregenza and Wedell 1998 ). In addition, a class discussion about the reasons why textbooks continue to center classic sex roles could engage students with the NOS principle that “Science is a human endeavor” and is thus subject to the decisions made by humans in terms of what to emphasize, de-emphasize or not to discuss.

Using ACA to track the progress of fields and how they are synthesized in textbooks

For researchers interested in extending this approach to other topics within and beyond sexual selection, we found that ACA is a promising tool for exploring how textbooks reflect the research being done in a particular field, especially which the field is undergoing change in how it approaches key concepts. Our work builds on prior attempts to assess textbook quality by comparing textbooks to the coverage of disciplinary research. For example, Bierema et al. ( 2017 ) used a combination of manual and automated content analysis to identify main topics covered in animal behavior textbooks. For automated analysis, these authors used a program that found terms in text. The difference between this and Leximancer is that Leximancer “learns” from the text and creates a thesaurus of related terms for a particular code. The investigator can then cull the inappropriate terms and ultimately “train” the program to match content with context. This is instructive because it permits researchers to see the relationships among terms and the “composition” of those terms, and then use measures of conditional probability and network analysis to quantify and visualize relationships.

The analysis by Bierema et al. ( 2017 ) determined the proportion of research articles’ abstracts that included four different central ideas in the field of animal behavior. That study used the frequency of occurrence of central ideas in this selection of journal articles, and then compared this to journal impact factor to estimate impact in the field. When they compared these results to textbooks, they found that the textbooks overall matched the literature from 28 journals in that there were similar patterns of proportions across the main topics covered. Using ACA allowed us to conduct a more detailed analysis that provided insights into the relationships among concepts. Also, our research question about taxa was specific enough that we could limit the dataset by taxa rather than by journal; this permitted a broader survey of many journals as opposed to choosing only a selection based on readership or other metrics. Instead of assessing which broad disciplinary topics are covered, we emphasize a focal area within evolutionary biology: sexual selection and the evolution of sex roles and reproductive behavior. This level of detail and nuance was significant for our topic because of our focus on a topic that arose from a critique of mainstream research. Further studies which were outside of the classic view of sexual selection appeared in taxon specific or subfield oriented journals decades before studies were published in mainstream journals (Jackson 2001a , b , 2014 ). Thus, our approach to using ACA is, therefore, appropriate when looking for emergent trends that may counter dominant narratives.

A cautionary note

There are important cautions to bear in mind for those wishing to apply the method of auto-content analysis. One of the biggest challenges is the optimization of search terms to ensure an accurate match between the concept-of-interest and the context in which it is used in the publication. For example, in this study, "multiple female matings" was used more often than “polyandry,” and thus the two terms had to be linked in the thesaurus we created. But then sentences containing the words “multiple,” “female,” and “mating” were considered to be “hits” even when the context of the sentence was not about polyandry (e.g., “…males mating with multiple females…”). Thus, validation, i.e. assessment to determine whether the program is correctly linking the concept to its appropriate context, is critical for an accurate analysis. Human knowledge is required for validation. In our case, the researchers have doctoral degrees in evolutionary biology, animal behavior and gender studies—a diverse group with deep knowledge of the scientific content, including its relation to social movements for gender equality. Additionally, we paid careful attention to the construction of the database, focusing on a collection of papers with a taxonomic focus and manually verifying that the included papers matched our criteria. The technique should be used in conjunction with other methodologies, including thematic coding of text and image analysis, as we have done in other publications (Fuselier et al. 2016 ; 2018 ).

We advocate for the textbooks in a novel way to integrate students understanding of NOS within the context of their study of content. Rather than presenting the textbook as an authoritative source of information, we suggest guiding students through a process of comparing it with the relevant research literature to understand decision making about what aspects of evolution are presented as ‘fact’ to students. This engages students with several tasks shown to be beneficial to the understanding of evolution—metacognitive vigilance (González Galli et al. 2020 ), appreciation of the Nature of Science, especially the tentative and provisional nature of science and the importance of multiple theories, understanding of epistemological beliefs–specifically that learning is changeable, not innate, and knowledge does not come from all-knowing sources– which provide the foundation for a robust understanding of both NOS and evolution (Cho et al. 2011 ).

Availability of data and materials

Data are available by request from the authors.

Ah-King M. On anisogamy and the evolution of ‘sex roles.’ Trends Ecol Evol. 2013a;28(1):1–2. https://doi.org/10.1016/j.tree.2012.04.004 .

Article   PubMed   Google Scholar  

Ah-King M. Queering animal sexual behavior in biology textbooks. Confero Essays Educ, Philos Polit. 2013b;1(2):46–89.

Google Scholar  

Ah-King M. The female turn: how evolutionary science shifted perceptions about females. Berlin: Springer Nature; 2022. https://doi.org/10.1007/978-981-19-7161-7 .

Book   Google Scholar  

Ah-King M, Ahnesjö I. The “sex role” concept: an overview and evaluation. Evol Biol. 2013;40:461–70.

Article   Google Scholar  

Atchison AL. Where are the women? An analysis of gender mainstreaming in introductory political science textbooks. J Polit Sci Educ. 2017;13(2):185–99. https://doi.org/10.1080/15512169.2017.1279549 .

Bazzul J. Critical discourse analysis and science education texts: employing foucauldian notions of discourse and subjectivity. Rev Educ Pedag Cult Stud. 2014;36(5):422–37. https://doi.org/10.1080/10714413.2014.958381 .

Bazzul J, Sykes H. The secret identity of a biology textbook: Straight and naturally sexed. Cult Sci Edu. 2011;6(2):265–86. https://doi.org/10.1007/s11422-010-9297-z .

Bergstrom C, Dugatkin L. Evolution. New York, NY: Norton; 2012.

Bickford JH. Examining biology curricular resources’ scientific depictions of evolution, race, sexuality, and identity. Sci Educ. 2022. https://doi.org/10.1007/s11191-022-00384-6 .

Bierema AM-K, Schwartz R, Gill S. To what extent does current scientific research and textbook content align? A methodology and case study. J Res Sci Teach. 2017;54:1097–118. https://doi.org/10.1002/tea.21399 .

Blackwell ALB. The sexes throughout nature. New York: Putnam; 1875.

Cassese EC, Bos AL. A hidden curriculum? Examining the gender content in introductory-level political science textbooks. Polit Gend. 2013;9(2):214–23. https://doi.org/10.1017/S1743923X13000068 .

Cho M-H, Lankford DM, Wescott DJ. Exploring the relationships among epistemological beliefs, nature of science, and conceptual change in the learning of evolutionary theory. Evol Educ Outreach. 2011. https://doi.org/10.1007/s12052-011-0324-7 .

Clutton-Brock T. Sexual selection in females. Anim Behav. 2009;77(1):3–11. https://doi.org/10.1016/j.anbehav.2008.08.026 .

Collins PH. Intersectionality as critical social theory. Durham: Duke University Press; 2019.

Donovan BM. Reclaiming race as a topic of the U. S. biology textbook curriculum. Sci Educ. 2015;99(6):1092–117. https://doi.org/10.1002/sce.21173 .

Donovan B, Nehm RH. Genetics and identity. Sci Educ. 2020;29(6):1451–8. https://doi.org/10.1007/s11191-020-00180-0 .

Donovan BM, Stuhlsatz MAM, Edelson DC, Bracey ZEB. Gendered genetics: How reading about the genetic basis of sex differences in biology textbooks could affect beliefs associated with science gender disparities. Sci Educ. 2019a;103(4):719.

Donovan BM, Stuhlsatz MAM, Edelson DC, Bracey ZEB. Gendered genetics: how reading about the genetic basis of sex differences in biology textbooks could affect beliefs associated with science gender disparities. Sci Educ. 2019b;103(4):719.

Elgar AG. Science textbooks for lower secondary schools in Brunei: issues of gender equity. Int J Sci Educ. 2004;26:875–94. https://doi.org/10.1080/0950069032000138888 .

Eliot L. Pink Brain, Blue Brain. New York: HarperCollins; 2010.

Fausto-Sterling A. Sex/gender biology in a social world. Abingdon: Routledge; 2012.

Fuselier LC, Jackson JK, Stoiko R. Social and rational: the presentation of nature of science and the uptake of change in evolution textbooks. Sci Educ. 2016;100(2):239–65. https://doi.org/10.1002/sce.21205 .

Fuselier L, Eason PK, Jackson JK, Spaulding S. Images of Objective Knowledge Construction in Sexual Selection Chapters of Evolution Textbooks. Science and Education. 2018. https://doi.org/10.1007/s11191-018-9978-7 .

Futuyma DJ. Evolution. 3rd ed. Sunderland: Sinauer Associates is an imprint of Oxford University Press; 2013.

González Galli L, Peréz G, Gómez Galindo AA. The self-regulation of teleological thinking in natural selection learning. Evol: Educ Outreach. 2020;13(1):6. https://doi.org/10.1186/s12052-020-00120-0 .

Good J, Woodzicka J. The effects of gender stereotypic and counter-stereotypic textbook images on science performance. 2010. https://www.researchgate.net/publication/43180259_The_Effects_of_Gender_Stereotypic_and_Counter-Stereotypic_Textbook_Images_on_Science_Performance . Accessed 17 Oct 2023.

Gould SJ. The mismeasure of man (Rev. and expanded). Tempe: Norton; 1996.

Gowaty PA. Adaptively flexible polyandry. Anim Behav. 2013;86(5):877–84. https://doi.org/10.1016/j.anbehav.2013.08.015 .

Graves JL. African Americans in evolutionary science: where we have been, and what’s next. Evol Educ Outreach. 2019;12(1):18. https://doi.org/10.1186/s12052-019-0110-5 .

Hamlin KA. From Eve to evolution: darwin, science, and women’s rights in gilded age America. Chicago: University of Chicago Press; 2015.

Haraway D. Situated knowledges: the science question in feminism and the privilege of partial perspective. Fem Stud. 1988;14(3):575–99. https://doi.org/10.2307/3178066 .

Harding SG. The science question in feminism. Ithaca: Cornell University Press; 1986.

Herron J, Freeman S. Evolutionary analysis. 5th ed. London: Pearson; 2013.

Hrdy S. Empathy, Polyandry, and the Myth of the Coy Female. In: Bleier R, editor. Feminist approaches to science. Pergamon; 1986. p. 119–46.

Hyde JS, Bigler RS, Joel D, Tate CC, van Anders SM. The future of sex and gender in psychology: five challenges to the gender binary. Am Psychol. 2019;74(2):171–93. https://doi.org/10.1037/amp0000307 .

Hynd CR. Teaching students to think critically using multiple texts in history. J Adolesc Adult Lit. 1999;42(6):428–36.

Intemann K. 25 years of feminist empiricism and standpoint theory: where are we now? Hypatia. 2010;25(4):778–96. https://doi.org/10.1111/j.1527-2001.2010.01138.x .

Jackson JK. Unequal partners: Rethinking gender roles in animal behavior. In: Mayberry M, Subramaniam B, Weasel L, editors. A New Generation of Feminist Science Studies. Routledge; 2001.

Jackson JK. Coloration in female child. In: child research: state of the art. J Aquaric Aquat Sci (special ed.), Ed. R. Coleman; 2001.

Jackson JK. Science studies perspectives on animal behavior research: towards a deeper understanding of gendered impacts. Hypatia. 2014;29(4):738–54. https://doi.org/10.1111/hypa.12091 .

Kokko H, Johnstone R. Why is mutual mate choice not the norm? Operational sex ratios, sex roles and the evolution of sexually dimorphic and monomorphic signalling. Philos Trans Royal Soc Lond Ser B-Biol Sci. 2002;357(1419):319–30. https://doi.org/10.1098/rstb.2001.0926 .

Kokko H, Booksmythe I, Jennions MD. Causality and sex roles: prejudice against patterns? A reply to Ah-King. Trends Ecol Evol. 2013;28(1):2–4. https://doi.org/10.1016/j.tree.2012.08.008 .

Lett E, Asabor E, Beltrán S, Cannon AM, Arah OA. Conceptualizing, contextualizing, and operationalizing race in quantitative health sciences research. Ann Fam Med. 2022;20(2):157–63. https://doi.org/10.1370/afm.2792 .

Article   PubMed   PubMed Central   Google Scholar  

Leximancer. Leximancer user guide. 5th ed. Brisbane: Leximancer Pty Ltd; 2019.

Lombrozo T, Thanukos A, Weisberg M. The importance of understanding the nature of science for accepting evolution | evolution: education and outreach | full text. Evol Educ Outreach. 2008;1:290–8. https://doi.org/10.1007/s12052-008-0061-8 .

Longino HE. The fate of knowledge. Princeton: Princeton University Press; 2002.

Longino HE. Studying human behavior: how scientists investigate aggression and sexuality. Chicago: University of Chicago Press; 2013.

Matić LJ. The teacher as a lesson designer. Cent Educ Policy Stud J. 2019. https://doi.org/10.26529/cepsj.722 .

McCallen E, Knott J, Nunez-Mir G, Taylor B, Jo I, Fe S. Trends in ecology: shifts in ecological research themes over the past four decades. Front Ecol Environ. 2019;17(2):109–16. https://doi.org/10.1002/fee.1993 .

Montañez A. Beyond XX and XY: the extraordinary complexity of sex determination. Sci Am. 2017. https://doi.org/10.1038/scientificamerican0917-50 .

National Research Council. APPENDIX H: Understanding the Scientific Enterprise: The Nature of Science in the Next Generation Science Standards. In: Next Generation Science Standards: For States, By States . The National Academies Press. 2013. https://doi.org/10.17226/18290

Nunez-Mir GC, Iannone BV III, Pijanowski BC, Kong N, Fei S. Automated content analysis: addressing the big literature challenge in ecology and evolution. Methods Ecol Evol. 2016;7:1262–72. https://doi.org/10.1111/2041-210X.12602 .

Parker R, Larkin T, Cockburn J. A visual analysis of gender bias in contemporary anatomy textbooks. Soc Sci Med. 2017;1982(180):106–13. https://doi.org/10.1016/j.socscimed.2017.03.032 .

Ray King K, Fuselier L, Sirvisetty H. LGBTQIA+ invisibility in nursing anatomy/physiology textbooks. J Prof Nurs. 2021;37(5):816–27. https://doi.org/10.1016/j.profnurs.2021.06.004 .

Richard F-J, Tarpy DR, Grozinger CM. Effects of insemination quantity on honey bee queen physiology. PLoS ONE. 2007;2(10): e980. https://doi.org/10.1371/journal.pone.0000980 .

Rosa K, da Gomes Silva MR. Is my physics textbook sexist? Phys Teach. 2020;58:625–7. https://doi.org/10.1119/10.0002726 .

Røthing Å. Sexual orientation in Norwegian science textbooks: Heteronormativity and selective inclusion in textbooks and teaching. ScienceDirect. 2017. https://www.sciencedirect.com/science/article/abs/pii/S0742051X16305315 . Accessed 17 Oct 2023.

Roughgarden J. Evolution’s rainbow: diversity, gender, and sexuality in nature and people. 10th ed. Oakland: University of California Press; 2013.

Rufo C. Abolish DEI bureaucracies and restore colorblind equality in public universities. Manhattan Institute; 2023a https://manhattan.institute/article/abolish-dei-bureaucracies-and-restore-colorblind-equality-in-public-universities . Accessed 17 Oct 2023.

Rufo C. A model for school practices relating to sexuality and gender. 2023b. https://manhattan.institute/article/a-model-for-school-practices-relating-to-sexuality-and-gender/ . Accessed 17 Oct 2023.

Rufo C. Opinion | Christopher Rufo: University DEI programs work against liberal education. The New York Times. 2023c. https://www.nytimes.com/2023/07/27/opinion/christopher-rufo-diversity-desantis-florida-university.html . Accessed 17 Oct 2023.

Rufo C. No to the Politics of “Whiteness.” City J. 2023d. https://www.city-journal.org/article/no-to-the-politics-of-whiteness/ . Accessed 17 Oct 2023.

Schiebinger LL. Nature’s body: gender in the making of modern science. New Brunswick: Rutgers University Press; 2004.

Sikorski T-R, Hammer D. Looking for coherence in science curriculum—Sikorski—2017—Science Education—Wiley Online Library. Sci Educ. 2017;101(6):929–43. https://doi.org/10.1002/sce.21299 .

Smith A, Humphreys M. Evaluation of unsupervised semantic mapping of natural language with Leximancer concept mapping. Behav Res Methods. 2006;38(2):262–9.

Spaulding S, Fuselier L. Images of nonhuman animals in animal behaviour textbooks communicate an androcentric view of reproductive-related behaviours. Anim Behav. 2023;205:117–29. https://doi.org/10.1016/j.anbehav.2023.08.003 .

Stuhlsatz MAM, Buck Bracey ZE, Donovan BM. Investigating conflation of sex and gender language in student writing about genetics. Sci Educ. 2020;29(6):1567–94. https://doi.org/10.1007/s11191-020-00177-9 .

Subramaniam B. UI Press | Banu Subramaniam | Ghost Stories for Darwin. Champaign: University of Illinois Press; 2014.

Tarpy DR, Gilley DC, Seeley TD. Levels of selection in a social insect: a review of conflict and cooperation during honey bee (Apis mellifera) queen replacement. Behav Ecol Sociobiol. 2004;55(6):513–23. https://doi.org/10.1007/s00265-003-0738-5 .

Tregenza T, Wedell N. Benefits of multiple mates in the cricket Gryllus bimaculatus. Evolution. 1998;52:1726–30.

Trivers R. Sexual selection and resource-accruing abilities in Anolis-Garmani. Evolution. 1976;30(2):253–69. https://doi.org/10.2307/2407700 .

Vojíř K, Rusek M. Science education textbook research trends: a systematic literature review. Int J Sci Educ. 2019. https://doi.org/10.1080/09500693.2019.1613584 .

Wallis-Wells B. How a conservative activist invented the conflict over critical race theory. The New Yorker; 2021. https://www.newyorker.com/news/annals-of-inquiry/how-a-conservative-activist-invented-the-conflict-over-critical-race-theory . Accessed 17 Oct 2023.

Willinsky J. The confounding of race in high school biology textbooks, 2014–2019. Sci Educ. 2020;29(6):1459–76. https://doi.org/10.1007/s11191-020-00104-y .

Zambrana RE, Williams DR. The intellectual roots of current knowledge on racism and health: relevance to policy and the national equity discourse. Health Aff. 2022;41(2):163–70. https://doi.org/10.1377/hlthaff.2021.01439 .

Ziadie MA, Andrews TC. Moving evolution education forward: a systematic analysis of literature to identify gaps in collective knowledge for teaching. CBE—Life Sci Educ. 2018;17(1):ar11. https://doi.org/10.1187/cbe.17-08-0190 .

Zimmer C, Emlen PD. Evolution: making sense of Life. 1st ed. Greenwood Village: Roberts and Company Publishers; 2012.

Zoological Record​ on Web of Science. Clarivate; 2024. https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/web-of-science-zoological-records/ . Accessed 19 Mar 2024.

Download references

Acknowledgements

Thanks to Briea St. Clair, Rayna Momen, Rachel Stoiko and Sarah Spaulding for their contributions to database construction and prior analyses.

Leximancer fees were funded by a 2020 BLUE-Explorance Faculty Grant.

Author information

Authors and affiliations.

West Virginia University, Morgantown, USA

J. Kasi Jackson

University of Louisville, Louisville, USA

Linda Fuselier & Perri Eason

You can also search for this author in PubMed   Google Scholar

Contributions

JKJ constructed the database of peer reviewed articles by taxon. LF conducted the Automated Content Analysis and interpreted the results. PE categorized the taxa used in the textbooks for examples. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to J. Kasi Jackson .

Ethics declarations

Competing interests.

Not applicable.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

See Table  6

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Jackson, J.K., Fuselier, L. & Eason, P. Automated content analysis as a tool to compare content in sexual selection research with examples of sexual selection in evolutionary biology textbooks: implications for teaching the nature of science. Evo Edu Outreach 17 , 3 (2024). https://doi.org/10.1186/s12052-024-00198-w

Download citation

Received : 27 October 2023

Accepted : 11 March 2024

Published : 25 March 2024

DOI : https://doi.org/10.1186/s12052-024-00198-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Biology education
  • Feminist science studies
  • Sexual selection
  • Androcentrism

Evolution: Education and Outreach

ISSN: 1936-6434

case study examples about education

NASA Logo

There is unequivocal evidence that Earth is warming at an unprecedented rate. Human activity is the principal cause.

case study examples about education

  • While Earth’s climate has changed throughout its history , the current warming is happening at a rate not seen in the past 10,000 years.
  • According to the Intergovernmental Panel on Climate Change ( IPCC ), "Since systematic scientific assessments began in the 1970s, the influence of human activity on the warming of the climate system has evolved from theory to established fact." 1
  • Scientific information taken from natural sources (such as ice cores, rocks, and tree rings) and from modern equipment (like satellites and instruments) all show the signs of a changing climate.
  • From global temperature rise to melting ice sheets, the evidence of a warming planet abounds.

The rate of change since the mid-20th century is unprecedented over millennia.

Earth's climate has changed throughout history. Just in the last 800,000 years, there have been eight cycles of ice ages and warmer periods, with the end of the last ice age about 11,700 years ago marking the beginning of the modern climate era — and of human civilization. Most of these climate changes are attributed to very small variations in Earth’s orbit that change the amount of solar energy our planet receives.

CO2_graph

The current warming trend is different because it is clearly the result of human activities since the mid-1800s, and is proceeding at a rate not seen over many recent millennia. 1 It is undeniable that human activities have produced the atmospheric gases that have trapped more of the Sun’s energy in the Earth system. This extra energy has warmed the atmosphere, ocean, and land, and widespread and rapid changes in the atmosphere, ocean, cryosphere, and biosphere have occurred.

Earth-orbiting satellites and new technologies have helped scientists see the big picture, collecting many different types of information about our planet and its climate all over the world. These data, collected over many years, reveal the signs and patterns of a changing climate.

Scientists demonstrated the heat-trapping nature of carbon dioxide and other gases in the mid-19th century. 2 Many of the science instruments NASA uses to study our climate focus on how these gases affect the movement of infrared radiation through the atmosphere. From the measured impacts of increases in these gases, there is no question that increased greenhouse gas levels warm Earth in response.

Scientific evidence for warming of the climate system is unequivocal.

case study examples about education

Intergovernmental Panel on Climate Change

Ice cores drawn from Greenland, Antarctica, and tropical mountain glaciers show that Earth’s climate responds to changes in greenhouse gas levels. Ancient evidence can also be found in tree rings, ocean sediments, coral reefs, and layers of sedimentary rocks. This ancient, or paleoclimate, evidence reveals that current warming is occurring roughly 10 times faster than the average rate of warming after an ice age. Carbon dioxide from human activities is increasing about 250 times faster than it did from natural sources after the last Ice Age. 3

The Evidence for Rapid Climate Change Is Compelling:

Sunlight over a desert-like landscape.

Global Temperature Is Rising

The planet's average surface temperature has risen about 2 degrees Fahrenheit (1 degrees Celsius) since the late 19th century, a change driven largely by increased carbon dioxide emissions into the atmosphere and other human activities. 4 Most of the warming occurred in the past 40 years, with the seven most recent years being the warmest. The years 2016 and 2020 are tied for the warmest year on record. 5 Image credit: Ashwin Kumar, Creative Commons Attribution-Share Alike 2.0 Generic.

Colonies of “blade fire coral” that have lost their symbiotic algae, or “bleached,” on a reef off of Islamorada, Florida.

The Ocean Is Getting Warmer

The ocean has absorbed much of this increased heat, with the top 100 meters (about 328 feet) of ocean showing warming of 0.67 degrees Fahrenheit (0.33 degrees Celsius) since 1969. 6 Earth stores 90% of the extra energy in the ocean. Image credit: Kelsey Roberts/USGS

Aerial view of ice sheets.

The Ice Sheets Are Shrinking

The Greenland and Antarctic ice sheets have decreased in mass. Data from NASA's Gravity Recovery and Climate Experiment show Greenland lost an average of 279 billion tons of ice per year between 1993 and 2019, while Antarctica lost about 148 billion tons of ice per year. 7 Image: The Antarctic Peninsula, Credit: NASA

Glacier on a mountain.

Glaciers Are Retreating

Glaciers are retreating almost everywhere around the world — including in the Alps, Himalayas, Andes, Rockies, Alaska, and Africa. 8 Image: Miles Glacier, Alaska Image credit: NASA

Image of snow from plane

Snow Cover Is Decreasing

Satellite observations reveal that the amount of spring snow cover in the Northern Hemisphere has decreased over the past five decades and the snow is melting earlier. 9 Image credit: NASA/JPL-Caltech

Norfolk flooding

Sea Level Is Rising

Global sea level rose about 8 inches (20 centimeters) in the last century. The rate in the last two decades, however, is nearly double that of the last century and accelerating slightly every year. 10 Image credit: U.S. Army Corps of Engineers Norfolk District

Arctic sea ice.

Arctic Sea Ice Is Declining

Both the extent and thickness of Arctic sea ice has declined rapidly over the last several decades. 11 Credit: NASA's Scientific Visualization Studio

Flooding in a European city.

Extreme Events Are Increasing in Frequency

The number of record high temperature events in the United States has been increasing, while the number of record low temperature events has been decreasing, since 1950. The U.S. has also witnessed increasing numbers of intense rainfall events. 12 Image credit: Régine Fabri,  CC BY-SA 4.0 , via Wikimedia Commons

Unhealthy coral.

Ocean Acidification Is Increasing

Since the beginning of the Industrial Revolution, the acidity of surface ocean waters has increased by about 30%. 13 , 14 This increase is due to humans emitting more carbon dioxide into the atmosphere and hence more being absorbed into the ocean. The ocean has absorbed between 20% and 30% of total anthropogenic carbon dioxide emissions in recent decades (7.2 to 10.8 billion metric tons per year). 1 5 , 16 Image credit: NOAA

1. IPCC Sixth Assessment Report, WGI, Technical Summary . B.D. Santer et.al., “A search for human influences on the thermal structure of the atmosphere.” Nature 382 (04 July 1996): 39-46. https://doi.org/10.1038/382039a0. Gabriele C. Hegerl et al., “Detecting Greenhouse-Gas-Induced Climate Change with an Optimal Fingerprint Method.” Journal of Climate 9 (October 1996): 2281-2306. https://doi.org/10.1175/1520-0442(1996)009<2281:DGGICC>2.0.CO;2. V. Ramaswamy, et al., “Anthropogenic and Natural Influences in the Evolution of Lower Stratospheric Cooling.” Science 311 (24 February 2006): 1138-1141. https://doi.org/10.1126/science.1122587. B.D. Santer et al., “Contributions of Anthropogenic and Natural Forcing to Recent Tropopause Height Changes.” Science 301 (25 July 2003): 479-483. https://doi.org/10.1126/science.1084123. T. Westerhold et al., "An astronomically dated record of Earth’s climate and its predictability over the last 66 million years." Science 369 (11 Sept. 2020): 1383-1387. https://doi.org/10.1126/science.1094123

2. In 1824, Joseph Fourier calculated that an Earth-sized planet, at our distance from the Sun, ought to be much colder. He suggested something in the atmosphere must be acting like an insulating blanket. In 1856, Eunice Foote discovered that blanket, showing that carbon dioxide and water vapor in Earth's atmosphere trap escaping infrared (heat) radiation. In the 1860s, physicist John Tyndall recognized Earth's natural greenhouse effect and suggested that slight changes in the atmospheric composition could bring about climatic variations. In 1896, a seminal paper by Swedish scientist Svante Arrhenius first predicted that changes in atmospheric carbon dioxide levels could substantially alter the surface temperature through the greenhouse effect. In 1938, Guy Callendar connected carbon dioxide increases in Earth’s atmosphere to global warming. In 1941, Milutin Milankovic linked ice ages to Earth’s orbital characteristics. Gilbert Plass formulated the Carbon Dioxide Theory of Climate Change in 1956.

3. IPCC Sixth Assessment Report, WG1, Chapter 2 Vostok ice core data; NOAA Mauna Loa CO2 record O. Gaffney, W. Steffen, "The Anthropocene Equation." The Anthropocene Review 4, issue 1 (April 2017): 53-61. https://doi.org/abs/10.1177/2053019616688022.

4. https://www.ncei.noaa.gov/monitoring https://crudata.uea.ac.uk/cru/data/temperature/ http://data.giss.nasa.gov/gistemp

5. https://www.giss.nasa.gov/research/news/20170118/

6. S. Levitus, J. Antonov, T. Boyer, O Baranova, H. Garcia, R. Locarnini, A. Mishonov, J. Reagan, D. Seidov, E. Yarosh, M. Zweng, " NCEI ocean heat content, temperature anomalies, salinity anomalies, thermosteric sea level anomalies, halosteric sea level anomalies, and total steric sea level anomalies from 1955 to present calculated from in situ oceanographic subsurface profile data (NCEI Accession 0164586), Version 4.4. (2017) NOAA National Centers for Environmental Information. https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/index3.html K. von Schuckmann, L. Cheng, L,. D. Palmer, J. Hansen, C. Tassone, V. Aich, S. Adusumilli, H. Beltrami, H., T. Boyer, F. Cuesta-Valero, D. Desbruyeres, C. Domingues, A. Garcia-Garcia, P. Gentine, J. Gilson, M. Gorfer, L. Haimberger, M. Ishii, M., G. Johnson, R. Killick, B. King, G. Kirchengast, N. Kolodziejczyk, J. Lyman, B. Marzeion, M. Mayer, M. Monier, D. Monselesan, S. Purkey, D. Roemmich, A. Schweiger, S. Seneviratne, A. Shepherd, D. Slater, A. Steiner, F. Straneo, M.L. Timmermans, S. Wijffels. "Heat stored in the Earth system: where does the energy go?" Earth System Science Data 12, Issue 3 (07 September 2020): 2013-2041. https://doi.org/10.5194/essd-12-2013-2020.

7. I. Velicogna, Yara Mohajerani, A. Geruo, F. Landerer, J. Mouginot, B. Noel, E. Rignot, T. Sutterly, M. van den Broeke, M. Wessem, D. Wiese, "Continuity of Ice Sheet Mass Loss in Greenland and Antarctica From the GRACE and GRACE Follow-On Missions." Geophysical Research Letters 47, Issue 8 (28 April 2020): e2020GL087291. https://doi.org/10.1029/2020GL087291.

8. National Snow and Ice Data Center World Glacier Monitoring Service

9. National Snow and Ice Data Center D.A. Robinson, D. K. Hall, and T. L. Mote, "MEaSUREs Northern Hemisphere Terrestrial Snow Cover Extent Daily 25km EASE-Grid 2.0, Version 1 (2017). Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0530.001 . http://nsidc.org/cryosphere/sotc/snow_extent.html Rutgers University Global Snow Lab. Data History

10. R.S. Nerem, B.D. Beckley, J. T. Fasullo, B.D. Hamlington, D. Masters, and G.T. Mitchum, "Climate-change–driven accelerated sea-level rise detected in the altimeter era." PNAS 15, no. 9 (12 Feb. 2018): 2022-2025. https://doi.org/10.1073/pnas.1717312115.

11. https://nsidc.org/cryosphere/sotc/sea_ice.html Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS, Zhang and Rothrock, 2003) http://psc.apl.washington.edu/research/projects/arctic-sea-ice-volume-anomaly/ http://psc.apl.uw.edu/research/projects/projections-of-an-ice-diminished-arctic-ocean/

12. USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Volume I [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 470 pp, https://doi.org/10.7930/j0j964j6 .

13. http://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F

14. http://www.pmel.noaa.gov/co2/story/Ocean+Acidification

15. C.L. Sabine, et al., “The Oceanic Sink for Anthropogenic CO2.” Science 305 (16 July 2004): 367-371. https://doi.org/10.1126/science.1097403.

16. Special Report on the Ocean and Cryosphere in a Changing Climate , Technical Summary, Chapter TS.5, Changing Ocean, Marine Ecosystems, and Dependent Communities, Section 5.2.2.3. https://www.ipcc.ch/srocc/chapter/technical-summary/

Header image shows clouds imitating mountains as the sun sets after midnight as seen from Denali's backcountry Unit 13 on June 14, 2019. Credit: NPS/Emily Mesner Image credit in list of evidence: Ashwin Kumar, Creative Commons Attribution-Share Alike 2.0 Generic.

Discover More Topics From NASA

Explore Earth Science

case study examples about education

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

case study examples about education

  • Frontiers in Conservation Science
  • Animal Conservation
  • Research Topics

Long-Term Research on Avian Conservation Ecology in the Age of Global Change and Citizen Science

Total Downloads

Total Views and Downloads

About this Research Topic

Long-term bird monitoring, ecological research and conservation projects that integrate community involvement, citizen science, capacity-building, outreach, environmental education and local job creation provide some of the best examples of biodiversity monitoring and conservation programs. The goal of this research topic is to provide a global overview and exemplary case studies of long-term (10+ years) bird monitoring, ecological research and conservation projects focused on the effects of global change on tropical bird communities. Long-term and locally based biodiversity monitoring programs are essential for understanding and mitigating the effects of global change on tropical biodiversity while providing capacity-building, environmental education and public outreach. However, these programs are lacking in most tropical countries that harbor most of the world’s biodiversity. Birds are the best-known major group of organisms, comprise excellent environmental indicators, are relatively easy to monitor, and, as charismatic flagship species, are met with enthusiasm and interest by people worldwide. Bird monitoring programs using mist nets and bird banding (ringing) are especially valuable, as these safe and well-established techniques enable the use of capture-mark-recapture (CMR) models to measure population change and other demographic parameters, while making it possible to obtain blood and feather samples for genetic and isotopic analyses, examine the birds for parasites and pathogens, and study home range size, habitat use and movement ecology of the birds by tracking them with geolocators, radio or satellite transmitters. Equally important for conservation, the ability to capture and release birds makes it possible to conduct hands-on ornithological training, environmental education, awareness raising and community outreach activities with students, conservationists, villagers, decision-makers, journalists, and other local people. Bird banding, tracking and nest monitoring programs provide local jobs for research assistants, who often go on to productive careers in conservation, education, research, or ecotourism. The costs involved are relatively modest and most of the money is spent locally on salaries, room, board, and services. Long-term bird banding and ornithological research stations often provide the nuclei, infrastructure, and staff for monitoring, education, and conservation programs focused on other taxa. Bird monitoring and ecological research programs that integrate conservation, ecological research, environmental education, capacity-building, and income generation are cost-effective tools to achieve the goals of community-based biodiversity conservation and poverty reduction in the developing world. Such locally based and long-term bird monitoring programs should be encouraged, established, and supported throughout the tropics. For this special issue, we will especially solicit long-term (10+ years) research papers that: • Take place in understudied regions and work with underserved communities, • Focus on the impacts of climate change, infectious diseases and other emerging threats, • Investigate particularly susceptible avian taxa and the reasons for their declines, • Address the ecological implications of these declines, including reductions in scavenging, seed dispersal, pollination, predation, nutrient deposition and ecosystem engineering, • Study bird populations with banding, nest monitoring or geolocator/radio/satellite-tracking, and • Provide examples of best practice in integrating avian conservation and ecology research with community-based conservation, citizen science, capacity-building, and environmental education.

Keywords : Biodiversity Monitoring, Birds, Capacity-building, Climate Change, CMR, Community Science, Conservation Biology, Environmental Education, LTER, Ornithology, Tropical Biology

Important Note : All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Topic coordinators, submission deadlines, participating journals.

Manuscripts can be submitted to this Research Topic via the following journals:

total views

  • Demographics

No records found

total views article views downloads topic views

Top countries

Top referring sites, about frontiers research topics.

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

IMAGES

  1. FREE 10+ Sample Case Study Templates in PDF

    case study examples about education

  2. how to write a case study in early childhood education

    case study examples about education

  3. Case Studies For Education

    case study examples about education

  4. Ofsted outstanding Case Studies Examples to show impact of teaching and

    case study examples about education

  5. 49 Free Case Study Templates ( + Case Study Format Examples + )

    case study examples about education

  6. FREE 11+ Student Case Study Templates in PDF

    case study examples about education

VIDEO

  1. How to write Case Study|| How to do Case Study|| Case Study|| কেস স্টাডি ||Case Study on ASA

  2. What Is Programmatic SEO? Beginner's Introduction [2024]

  3. Energize Your Startup with Your Personal Brand

  4. The Three Conditions of a Worker Case Study ایک مزدور کی تین شرائط سبق آموزواقعہ BY HAROON TV

  5. Connecting Research with Education: 20 research scenarios that require new computational practice

  6. Case Studies Build Trust-- Audience Ops

COMMENTS

  1. Case studies and practical examples: Supporting teaching and improving

    Whether we realise it or not, we seek stories and real-world examples to help us learn every day - from watching a video about baking a chocolate cake, to watching a personal trainer demonstrate the correct way to do a plank. Learning by example can be invaluable in helping to illuminate where theory (a recipe) meets practice (beating eggs).

  2. PDF CASE STUDY

    1. Eleven case studies Each case study highlights educator 'moves' and strategies to embed social-emotional skills, mindsets, and competencies throughout the school day and within academics. Each case study concludes with a reflection prompt that challenges readers to examine their own practice.

  3. Making Learning Relevant With Case Studies

    A case study product can be something like several pieces of evidence of students collaborating to solve the case study, and ultimately presenting their solution with a detailed slide deck or an essay—you can scaffold this by providing specified headings for the sections of the essay. ... a project maintained by EL Education and the Harvard ...

  4. Education case studies

    Overview. Education knowledge management dashboard. Case studies Adolescent education and skills. Improving students' mental health in Bangladesh. Improving the quality of lower secondary through inquiry-based learning and skills development (Argentina)

  5. Case Studies

    Case Studies. Case studies are stories that are used as a teaching tool to show the application of a theory or concept to real situations. Dependent on the goal they are meant to fulfill, cases can be fact-driven and deductive where there is a correct answer, or they can be context driven where multiple solutions are possible.

  6. Case Study Compilation

    The Case Study Compilation includes: Eleven case studies: Each case study highlights educator 'moves' and strategies to embed social-emotional skills, mindsets, and competencies throughout the school day and within academics. They each conclude with a reflection prompt that challenges readers to examine their own practice. The case studies ...

  7. Case Study in Education Research

    The study of samples and the study of cases. British Educational Research Journal 6:1-6. DOI: 10.1080/0141192800060101. A key article in which Stenhouse sets out his stand on case study work. Those interested in the evolution of case study use in educational research should consider this article and the insights given. Yin, R. K. 1984.

  8. Teaching Guide

    Case studies offer a student-centered approach to learning that asks students to identify, explore, and provide solutions to real-world problems by focusing on case-specific examples (Wiek, Xiong, Brundiers, van der Leeuw, 2014, p 434). This approach simulates real life practice in sustainability education in that it illuminates the ongoing complexity of the problems being addressed.

  9. Case-Based Learning

    Case-Based Learning. Case-based learning (CBL) is an established approach used across disciplines where students apply their knowledge to real-world scenarios, promoting higher levels of cognition (see Bloom's Taxonomy ). In CBL classrooms, students typically work in groups on case studies, stories involving one or more characters and/or ...

  10. Case Studies

    Summary. Case studies provide students with scenarios in which they can begin to think about their understanding and solutions to problems found in real-world situations. When carefully planned, case studies will challenge students' critical thinking and problem solving skills in a safe and open learning environment.

  11. NCCSTS Case Studies

    The NCCSTS Case Collection, created and curated by the National Center for Case Study Teaching in Science, on behalf of the University at Buffalo, contains over a thousand peer-reviewed case studies on a variety of topics in all areas of science. Cases (only) are freely accessible; subscription is required for access to teaching notes and ...

  12. Frontiers

    Social networking systems, games for learning, and digital fabrication (making) will be further examined in this paper with case study examples. These case examples are chosen with regard to their likely impact on learning and instruction in current and future educational designs (Woolf, 2010; Chang et al., 2018; Huang et al., 2019).

  13. Write a teaching case study

    The Emerald Cases Hub. Register on the Emerald Cases Hub to access free resources designed by case-writing experts to help you write and publish a quality case study. Develop your skills and knowledge with a course on writing a case study and teaching note, view sample cases, or explore modules on teaching/leaning through the case method.

  14. PDF Handout 2 Case Studies

    Handout #2 provides case histories of four students: Chuck, a curious, highly verbal, and rambunctious six-year-old boy with behavior disorders who received special education services in elementary school. Juanita, a charming but shy six-year-old Latina child who was served as an at-risk student with Title 1 supports in elementary school.

  15. Case Studying Educational Research: A Way of Looking at Reality

    The research was predominantly qualitative and category-based, having as sample 42 Master´s dissertations, including single and multiple case studies, from students attending a Portuguese university.

  16. PDF Case-Based Pedagogy for Teacher Education: An Instructional Model

    Despite the challenges in case-based teaching and learning, many studies reported the benefits of using case-based pedagogy in teacher education (Angeli, 2004; Butler et al., 2006; Choi & Lee, 2009; Kim & Hannafin, 2008; Yoon et al., 2006); however, the lack of resources and instructional models to support teachers' and

  17. Case Study

    A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  18. What Is a Case Study?

    Revised on November 20, 2023. A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are ...

  19. Case Studies for Higher Education Leaders

    The case studies in this workbook have five parts: 1. Short and Long Versions: Each case study is provided in two forms, so that their use can be tailored to the time available for discussion. 2. Recorder's Form: A form is provided for each case study to help guide discussion, to track

  20. Case Studies in Higher Education

    Teaching case studies can help students put theories into practice and is often useful in identifying problems not revealed through a more traditional approach. Gale Case Studies was created by university faculty and developed specifically for the classroom. This new higher education tool gives undergraduate students the chance to sharpen their ...

  21. Journal of Cases in Educational Leadership: Sage Journals

    The Journal of Cases in Educational Leadership (JCEL) publishes peer-reviewed cases appropriate for use in programs that prepare educational leaders. The journal offers a wide range of cases that embody relevant and timely presentations of issues … | View full journal description. This journal is a member of the Committee on Publication ...

  22. 28+ Case Study Examples

    Example of Case Study Suitable for Students. Title: Energy Efficiency Upgrade: A Case Study of GreenTech Office. Introduction: GreenTech Office embarked on an energy efficiency upgrade to reduce its environmental impact. This case study delves into the facts and figures behind the initiative's success.

  23. Student Case Study

    A student case study is an in-depth analysis of a student or a group of students to understand various educational, psychological, or social aspects. It involves collecting detailed information through observations, interviews, and reviewing records, to form a comprehensive picture. The goal of a case study analysis is to unravel the ...

  24. Automated content analysis as a tool to compare content in sexual

    Our work is significant because our case study provides an example instructors can use to address this gap within the framework provided by CCE. Recommendations for evolution education. Our recommendations align with those made by (Willinsky 2020). He found mixed messages both challenging and supporting genetic essentialism in a review of ...

  25. Evidence

    The planet's average surface temperature has risen about 2 degrees Fahrenheit (1 degrees Celsius) since the late 19th century, a change driven largely by increased carbon dioxide emissions into the atmosphere and other human activities. 4 Most of the warming occurred in the past 40 years, with the seven most recent years being the warmest.

  26. Long-Term Research on Avian Conservation Ecology in the Age ...

    Long-term bird monitoring, ecological research and conservation projects that integrate community involvement, citizen science, capacity-building, outreach, environmental education and local job creation provide some of the best examples of biodiversity monitoring and conservation programs. The goal of this research topic is to provide a global overview and exemplary case studies of long-term ...