• Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is a Case Study?

Weighing the pros and cons of this method of research

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

case study psychology strengths

Cara Lustik is a fact-checker and copywriter.

case study psychology strengths

Verywell / Colleen Tighe

  • Pros and Cons

What Types of Case Studies Are Out There?

Where do you find data for a case study, how do i write a psychology case study.

A case study is an in-depth study of one person, group, or event. In a case study, nearly every aspect of the subject's life and history is analyzed to seek patterns and causes of behavior. Case studies can be used in many different fields, including psychology, medicine, education, anthropology, political science, and social work.

The point of a case study is to learn as much as possible about an individual or group so that the information can be generalized to many others. Unfortunately, case studies tend to be highly subjective, and it is sometimes difficult to generalize results to a larger population.

While case studies focus on a single individual or group, they follow a format similar to other types of psychology writing. If you are writing a case study, we got you—here are some rules of APA format to reference.  

At a Glance

A case study, or an in-depth study of a person, group, or event, can be a useful research tool when used wisely. In many cases, case studies are best used in situations where it would be difficult or impossible for you to conduct an experiment. They are helpful for looking at unique situations and allow researchers to gather a lot of˜ information about a specific individual or group of people. However, it's important to be cautious of any bias we draw from them as they are highly subjective.

What Are the Benefits and Limitations of Case Studies?

A case study can have its strengths and weaknesses. Researchers must consider these pros and cons before deciding if this type of study is appropriate for their needs.

One of the greatest advantages of a case study is that it allows researchers to investigate things that are often difficult or impossible to replicate in a lab. Some other benefits of a case study:

  • Allows researchers to capture information on the 'how,' 'what,' and 'why,' of something that's implemented
  • Gives researchers the chance to collect information on why one strategy might be chosen over another
  • Permits researchers to develop hypotheses that can be explored in experimental research

On the other hand, a case study can have some drawbacks:

  • It cannot necessarily be generalized to the larger population
  • Cannot demonstrate cause and effect
  • It may not be scientifically rigorous
  • It can lead to bias

Researchers may choose to perform a case study if they want to explore a unique or recently discovered phenomenon. Through their insights, researchers develop additional ideas and study questions that might be explored in future studies.

It's important to remember that the insights from case studies cannot be used to determine cause-and-effect relationships between variables. However, case studies may be used to develop hypotheses that can then be addressed in experimental research.

Case Study Examples

There have been a number of notable case studies in the history of psychology. Much of  Freud's work and theories were developed through individual case studies. Some great examples of case studies in psychology include:

  • Anna O : Anna O. was a pseudonym of a woman named Bertha Pappenheim, a patient of a physician named Josef Breuer. While she was never a patient of Freud's, Freud and Breuer discussed her case extensively. The woman was experiencing symptoms of a condition that was then known as hysteria and found that talking about her problems helped relieve her symptoms. Her case played an important part in the development of talk therapy as an approach to mental health treatment.
  • Phineas Gage : Phineas Gage was a railroad employee who experienced a terrible accident in which an explosion sent a metal rod through his skull, damaging important portions of his brain. Gage recovered from his accident but was left with serious changes in both personality and behavior.
  • Genie : Genie was a young girl subjected to horrific abuse and isolation. The case study of Genie allowed researchers to study whether language learning was possible, even after missing critical periods for language development. Her case also served as an example of how scientific research may interfere with treatment and lead to further abuse of vulnerable individuals.

Such cases demonstrate how case research can be used to study things that researchers could not replicate in experimental settings. In Genie's case, her horrific abuse denied her the opportunity to learn a language at critical points in her development.

This is clearly not something researchers could ethically replicate, but conducting a case study on Genie allowed researchers to study phenomena that are otherwise impossible to reproduce.

There are a few different types of case studies that psychologists and other researchers might use:

  • Collective case studies : These involve studying a group of individuals. Researchers might study a group of people in a certain setting or look at an entire community. For example, psychologists might explore how access to resources in a community has affected the collective mental well-being of those who live there.
  • Descriptive case studies : These involve starting with a descriptive theory. The subjects are then observed, and the information gathered is compared to the pre-existing theory.
  • Explanatory case studies : These   are often used to do causal investigations. In other words, researchers are interested in looking at factors that may have caused certain things to occur.
  • Exploratory case studies : These are sometimes used as a prelude to further, more in-depth research. This allows researchers to gather more information before developing their research questions and hypotheses .
  • Instrumental case studies : These occur when the individual or group allows researchers to understand more than what is initially obvious to observers.
  • Intrinsic case studies : This type of case study is when the researcher has a personal interest in the case. Jean Piaget's observations of his own children are good examples of how an intrinsic case study can contribute to the development of a psychological theory.

The three main case study types often used are intrinsic, instrumental, and collective. Intrinsic case studies are useful for learning about unique cases. Instrumental case studies help look at an individual to learn more about a broader issue. A collective case study can be useful for looking at several cases simultaneously.

The type of case study that psychology researchers use depends on the unique characteristics of the situation and the case itself.

There are a number of different sources and methods that researchers can use to gather information about an individual or group. Six major sources that have been identified by researchers are:

  • Archival records : Census records, survey records, and name lists are examples of archival records.
  • Direct observation : This strategy involves observing the subject, often in a natural setting . While an individual observer is sometimes used, it is more common to utilize a group of observers.
  • Documents : Letters, newspaper articles, administrative records, etc., are the types of documents often used as sources.
  • Interviews : Interviews are one of the most important methods for gathering information in case studies. An interview can involve structured survey questions or more open-ended questions.
  • Participant observation : When the researcher serves as a participant in events and observes the actions and outcomes, it is called participant observation.
  • Physical artifacts : Tools, objects, instruments, and other artifacts are often observed during a direct observation of the subject.

If you have been directed to write a case study for a psychology course, be sure to check with your instructor for any specific guidelines you need to follow. If you are writing your case study for a professional publication, check with the publisher for their specific guidelines for submitting a case study.

Here is a general outline of what should be included in a case study.

Section 1: A Case History

This section will have the following structure and content:

Background information : The first section of your paper will present your client's background. Include factors such as age, gender, work, health status, family mental health history, family and social relationships, drug and alcohol history, life difficulties, goals, and coping skills and weaknesses.

Description of the presenting problem : In the next section of your case study, you will describe the problem or symptoms that the client presented with.

Describe any physical, emotional, or sensory symptoms reported by the client. Thoughts, feelings, and perceptions related to the symptoms should also be noted. Any screening or diagnostic assessments that are used should also be described in detail and all scores reported.

Your diagnosis : Provide your diagnosis and give the appropriate Diagnostic and Statistical Manual code. Explain how you reached your diagnosis, how the client's symptoms fit the diagnostic criteria for the disorder(s), or any possible difficulties in reaching a diagnosis.

Section 2: Treatment Plan

This portion of the paper will address the chosen treatment for the condition. This might also include the theoretical basis for the chosen treatment or any other evidence that might exist to support why this approach was chosen.

  • Cognitive behavioral approach : Explain how a cognitive behavioral therapist would approach treatment. Offer background information on cognitive behavioral therapy and describe the treatment sessions, client response, and outcome of this type of treatment. Make note of any difficulties or successes encountered by your client during treatment.
  • Humanistic approach : Describe a humanistic approach that could be used to treat your client, such as client-centered therapy . Provide information on the type of treatment you chose, the client's reaction to the treatment, and the end result of this approach. Explain why the treatment was successful or unsuccessful.
  • Psychoanalytic approach : Describe how a psychoanalytic therapist would view the client's problem. Provide some background on the psychoanalytic approach and cite relevant references. Explain how psychoanalytic therapy would be used to treat the client, how the client would respond to therapy, and the effectiveness of this treatment approach.
  • Pharmacological approach : If treatment primarily involves the use of medications, explain which medications were used and why. Provide background on the effectiveness of these medications and how monotherapy may compare with an approach that combines medications with therapy or other treatments.

This section of a case study should also include information about the treatment goals, process, and outcomes.

When you are writing a case study, you should also include a section where you discuss the case study itself, including the strengths and limitiations of the study. You should note how the findings of your case study might support previous research. 

In your discussion section, you should also describe some of the implications of your case study. What ideas or findings might require further exploration? How might researchers go about exploring some of these questions in additional studies?

Need More Tips?

Here are a few additional pointers to keep in mind when formatting your case study:

  • Never refer to the subject of your case study as "the client." Instead, use their name or a pseudonym.
  • Read examples of case studies to gain an idea about the style and format.
  • Remember to use APA format when citing references .

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach .  BMC Med Res Methodol . 2011;11:100.

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach . BMC Med Res Methodol . 2011 Jun 27;11:100. doi:10.1186/1471-2288-11-100

Gagnon, Yves-Chantal.  The Case Study as Research Method: A Practical Handbook . Canada, Chicago Review Press Incorporated DBA Independent Pub Group, 2010.

Yin, Robert K. Case Study Research and Applications: Design and Methods . United States, SAGE Publications, 2017.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

case study psychology strengths

Final dates! Join the tutor2u subject teams in London for a day of exam technique and revision at the cinema. Learn more →

Reference Library

Collections

  • See what's new
  • All Resources
  • Student Resources
  • Assessment Resources
  • Teaching Resources
  • CPD Courses
  • Livestreams

Study notes, videos, interactive activities and more!

Psychology news, insights and enrichment

Currated collections of free resources

Browse resources by topic

  • All Psychology Resources

Resource Selections

Currated lists of resources

Study Notes

Case Studies

Last updated 22 Mar 2021

  • Share on Facebook
  • Share on Twitter
  • Share by Email

Case studies are very detailed investigations of an individual or small group of people, usually regarding an unusual phenomenon or biographical event of interest to a research field. Due to a small sample, the case study can conduct an in-depth analysis of the individual/group.

Evaluation of case studies:

- Case studies create opportunities for a rich yield of data, and the depth of analysis can in turn bring high levels of validity (i.e. providing an accurate and exhaustive measure of what the study is hoping to measure).

- Studying abnormal psychology can give insight into how something works when it is functioning correctly, such as brain damage on memory (e.g. the case study of patient KF, whose short-term memory was impaired following a motorcycle accident but left his long-term memory intact, suggesting there might be separate physical stores in the brain for short and long-term memory).

- The detail collected on a single case may lead to interesting findings that conflict with current theories, and stimulate new paths for research.

- There is little control over a number of variables involved in a case study, so it is difficult to confidently establish any causal relationships between variables.

- Case studies are unusual by nature, so will have poor reliability as replicating them exactly will be unlikely.

- Due to the small sample size, it is unlikely that findings from a case study alone can be generalised to a whole population.

- The case study’s researcher may become so involved with the study that they exhibit bias in their interpretation and presentation of the data, making it challenging to distinguish what is truly objective/factual.

  • Case Studies

You might also like

A level psychology topic quiz - research methods.

Quizzes & Activities

Case Studies: Example Answer Video for A Level SAM 3, Paper 1, Q4 (5 Marks)

Topic Videos

Research Methods: MCQ Revision Test 1 for AQA A Level Psychology

Example answers for research methods: a level psychology, paper 2, june 2018 (aqa).

Exam Support

Our subjects

  • › Criminology
  • › Economics
  • › Geography
  • › Health & Social Care
  • › Psychology
  • › Sociology
  • › Teaching & learning resources
  • › Student revision workshops
  • › Online student courses
  • › CPD for teachers
  • › Livestreams
  • › Teaching jobs

Boston House, 214 High Street, Boston Spa, West Yorkshire, LS23 6AD Tel: 01937 848885

  • › Contact us
  • › Terms of use
  • › Privacy & cookies

© 2002-2024 Tutor2u Limited. Company Reg no: 04489574. VAT reg no 816865400.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Perspective
  • Published: 22 November 2022

Single case studies are a powerful tool for developing, testing and extending theories

  • Lyndsey Nickels   ORCID: orcid.org/0000-0002-0311-3524 1 , 2 ,
  • Simon Fischer-Baum   ORCID: orcid.org/0000-0002-6067-0538 3 &
  • Wendy Best   ORCID: orcid.org/0000-0001-8375-5916 4  

Nature Reviews Psychology volume  1 ,  pages 733–747 ( 2022 ) Cite this article

627 Accesses

5 Citations

26 Altmetric

Metrics details

  • Neurological disorders

Psychology embraces a diverse range of methodologies. However, most rely on averaging group data to draw conclusions. In this Perspective, we argue that single case methodology is a valuable tool for developing and extending psychological theories. We stress the importance of single case and case series research, drawing on classic and contemporary cases in which cognitive and perceptual deficits provide insights into typical cognitive processes in domains such as memory, delusions, reading and face perception. We unpack the key features of single case methodology, describe its strengths, its value in adjudicating between theories, and outline its benefits for a better understanding of deficits and hence more appropriate interventions. The unique insights that single case studies have provided illustrate the value of in-depth investigation within an individual. Single case methodology has an important place in the psychologist’s toolkit and it should be valued as a primary research tool.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 digital issues and online access to articles

55,14 € per year

only 4,60 € per issue

Buy this article

  • Purchase on Springer Link
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

case study psychology strengths

Similar content being viewed by others

case study psychology strengths

Comparing meta-analyses and preregistered multiple-laboratory replication projects

Amanda Kvarven, Eirik Strømland & Magnus Johannesson

case study psychology strengths

The fundamental importance of method to theory

Rick Dale, Anne S. Warlaumont & Kerri L. Johnson

case study psychology strengths

A critical evaluation of the p-factor literature

Ashley L. Watts, Ashley L. Greene, … Eiko I. Fried

Corkin, S. Permanent Present Tense: The Unforgettable Life Of The Amnesic Patient, H. M . Vol. XIX, 364 (Basic Books, 2013).

Lilienfeld, S. O. Psychology: From Inquiry To Understanding (Pearson, 2019).

Schacter, D. L., Gilbert, D. T., Nock, M. K. & Wegner, D. M. Psychology (Worth Publishers, 2019).

Eysenck, M. W. & Brysbaert, M. Fundamentals Of Cognition (Routledge, 2018).

Squire, L. R. Memory and brain systems: 1969–2009. J. Neurosci. 29 , 12711–12716 (2009).

Article   PubMed   PubMed Central   Google Scholar  

Corkin, S. What’s new with the amnesic patient H.M.? Nat. Rev. Neurosci. 3 , 153–160 (2002).

Article   PubMed   Google Scholar  

Schubert, T. M. et al. Lack of awareness despite complex visual processing: evidence from event-related potentials in a case of selective metamorphopsia. Proc. Natl Acad. Sci. USA 117 , 16055–16064 (2020).

Behrmann, M. & Plaut, D. C. Bilateral hemispheric processing of words and faces: evidence from word impairments in prosopagnosia and face impairments in pure alexia. Cereb. Cortex 24 , 1102–1118 (2014).

Plaut, D. C. & Behrmann, M. Complementary neural representations for faces and words: a computational exploration. Cogn. Neuropsychol. 28 , 251–275 (2011).

Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293 , 2425–2430 (2001).

Hirshorn, E. A. et al. Decoding and disrupting left midfusiform gyrus activity during word reading. Proc. Natl Acad. Sci. USA 113 , 8162–8167 (2016).

Kosakowski, H. L. et al. Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants. Curr. Biol. 32 , 265–274.e5 (2022).

Harlow, J. Passage of an iron rod through the head. Boston Med. Surgical J . https://doi.org/10.1176/jnp.11.2.281 (1848).

Broca, P. Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech). Bull. Soc. Anat. 6 , 330–357 (1861).

Google Scholar  

Dejerine, J. Contribution A L’étude Anatomo-pathologique Et Clinique Des Différentes Variétés De Cécité Verbale: I. Cécité Verbale Avec Agraphie Ou Troubles Très Marqués De L’écriture; II. Cécité Verbale Pure Avec Intégrité De L’écriture Spontanée Et Sous Dictée (Société de Biologie, 1892).

Liepmann, H. Das Krankheitsbild der Apraxie (“motorischen Asymbolie”) auf Grund eines Falles von einseitiger Apraxie (Fortsetzung). Eur. Neurol. 8 , 102–116 (1900).

Article   Google Scholar  

Basso, A., Spinnler, H., Vallar, G. & Zanobio, M. E. Left hemisphere damage and selective impairment of auditory verbal short-term memory. A case study. Neuropsychologia 20 , 263–274 (1982).

Humphreys, G. W. & Riddoch, M. J. The fractionation of visual agnosia. In Visual Object Processing: A Cognitive Neuropsychological Approach 281–306 (Lawrence Erlbaum, 1987).

Whitworth, A., Webster, J. & Howard, D. A Cognitive Neuropsychological Approach To Assessment And Intervention In Aphasia (Psychology Press, 2014).

Caramazza, A. On drawing inferences about the structure of normal cognitive systems from the analysis of patterns of impaired performance: the case for single-patient studies. Brain Cogn. 5 , 41–66 (1986).

Caramazza, A. & McCloskey, M. The case for single-patient studies. Cogn. Neuropsychol. 5 , 517–527 (1988).

Shallice, T. Cognitive neuropsychology and its vicissitudes: the fate of Caramazza’s axioms. Cogn. Neuropsychol. 32 , 385–411 (2015).

Shallice, T. From Neuropsychology To Mental Structure (Cambridge Univ. Press, 1988).

Coltheart, M. Assumptions and methods in cognitive neuropscyhology. In The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (ed. Rapp, B.) 3–22 (Psychology Press, 2001).

McCloskey, M. & Chaisilprungraung, T. The value of cognitive neuropsychology: the case of vision research. Cogn. Neuropsychol. 34 , 412–419 (2017).

McCloskey, M. The future of cognitive neuropsychology. In The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (ed. Rapp, B.) 593–610 (Psychology Press, 2001).

Lashley, K. S. In search of the engram. In Physiological Mechanisms in Animal Behavior 454–482 (Academic Press, 1950).

Squire, L. R. & Wixted, J. T. The cognitive neuroscience of human memory since H.M. Annu. Rev. Neurosci. 34 , 259–288 (2011).

Stone, G. O., Vanhoy, M. & Orden, G. C. V. Perception is a two-way street: feedforward and feedback phonology in visual word recognition. J. Mem. Lang. 36 , 337–359 (1997).

Perfetti, C. A. The psycholinguistics of spelling and reading. In Learning To Spell: Research, Theory, And Practice Across Languages 21–38 (Lawrence Erlbaum, 1997).

Nickels, L. The autocue? self-generated phonemic cues in the treatment of a disorder of reading and naming. Cogn. Neuropsychol. 9 , 155–182 (1992).

Rapp, B., Benzing, L. & Caramazza, A. The autonomy of lexical orthography. Cogn. Neuropsychol. 14 , 71–104 (1997).

Bonin, P., Roux, S. & Barry, C. Translating nonverbal pictures into verbal word names. Understanding lexical access and retrieval. In Past, Present, And Future Contributions Of Cognitive Writing Research To Cognitive Psychology 315–522 (Psychology Press, 2011).

Bonin, P., Fayol, M. & Gombert, J.-E. Role of phonological and orthographic codes in picture naming and writing: an interference paradigm study. Cah. Psychol. Cogn./Current Psychol. Cogn. 16 , 299–324 (1997).

Bonin, P., Fayol, M. & Peereman, R. Masked form priming in writing words from pictures: evidence for direct retrieval of orthographic codes. Acta Psychol. 99 , 311–328 (1998).

Bentin, S., Allison, T., Puce, A., Perez, E. & McCarthy, G. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8 , 551–565 (1996).

Jeffreys, D. A. Evoked potential studies of face and object processing. Vis. Cogn. 3 , 1–38 (1996).

Laganaro, M., Morand, S., Michel, C. M., Spinelli, L. & Schnider, A. ERP correlates of word production before and after stroke in an aphasic patient. J. Cogn. Neurosci. 23 , 374–381 (2011).

Indefrey, P. & Levelt, W. J. M. The spatial and temporal signatures of word production components. Cognition 92 , 101–144 (2004).

Valente, A., Burki, A. & Laganaro, M. ERP correlates of word production predictors in picture naming: a trial by trial multiple regression analysis from stimulus onset to response. Front. Neurosci. 8 , 390 (2014).

Kittredge, A. K., Dell, G. S., Verkuilen, J. & Schwartz, M. F. Where is the effect of frequency in word production? Insights from aphasic picture-naming errors. Cogn. Neuropsychol. 25 , 463–492 (2008).

Domdei, N. et al. Ultra-high contrast retinal display system for single photoreceptor psychophysics. Biomed. Opt. Express 9 , 157 (2018).

Poldrack, R. A. et al. Long-term neural and physiological phenotyping of a single human. Nat. Commun. 6 , 8885 (2015).

Coltheart, M. The assumptions of cognitive neuropsychology: reflections on Caramazza (1984, 1986). Cogn. Neuropsychol. 34 , 397–402 (2017).

Badecker, W. & Caramazza, A. A final brief in the case against agrammatism: the role of theory in the selection of data. Cognition 24 , 277–282 (1986).

Fischer-Baum, S. Making sense of deviance: Identifying dissociating cases within the case series approach. Cogn. Neuropsychol. 30 , 597–617 (2013).

Nickels, L., Howard, D. & Best, W. On the use of different methodologies in cognitive neuropsychology: drink deep and from several sources. Cogn. Neuropsychol. 28 , 475–485 (2011).

Dell, G. S. & Schwartz, M. F. Who’s in and who’s out? Inclusion criteria, model evaluation, and the treatment of exceptions in case series. Cogn. Neuropsychol. 28 , 515–520 (2011).

Schwartz, M. F. & Dell, G. S. Case series investigations in cognitive neuropsychology. Cogn. Neuropsychol. 27 , 477–494 (2010).

Cohen, J. A power primer. Psychol. Bull. 112 , 155–159 (1992).

Martin, R. C. & Allen, C. Case studies in neuropsychology. In APA Handbook Of Research Methods In Psychology Vol. 2 Research Designs: Quantitative, Qualitative, Neuropsychological, And Biological (eds Cooper, H. et al.) 633–646 (American Psychological Association, 2012).

Leivada, E., Westergaard, M., Duñabeitia, J. A. & Rothman, J. On the phantom-like appearance of bilingualism effects on neurocognition: (how) should we proceed? Bilingualism 24 , 197–210 (2021).

Arnett, J. J. The neglected 95%: why American psychology needs to become less American. Am. Psychol. 63 , 602–614 (2008).

Stolz, J. A., Besner, D. & Carr, T. H. Implications of measures of reliability for theories of priming: activity in semantic memory is inherently noisy and uncoordinated. Vis. Cogn. 12 , 284–336 (2005).

Cipora, K. et al. A minority pulls the sample mean: on the individual prevalence of robust group-level cognitive phenomena — the instance of the SNARC effect. Preprint at psyArXiv https://doi.org/10.31234/osf.io/bwyr3 (2019).

Andrews, S., Lo, S. & Xia, V. Individual differences in automatic semantic priming. J. Exp. Psychol. Hum. Percept. Perform. 43 , 1025–1039 (2017).

Tan, L. C. & Yap, M. J. Are individual differences in masked repetition and semantic priming reliable? Vis. Cogn. 24 , 182–200 (2016).

Olsson-Collentine, A., Wicherts, J. M. & van Assen, M. A. L. M. Heterogeneity in direct replications in psychology and its association with effect size. Psychol. Bull. 146 , 922–940 (2020).

Gratton, C. & Braga, R. M. Editorial overview: deep imaging of the individual brain: past, practice, and promise. Curr. Opin. Behav. Sci. 40 , iii–vi (2021).

Fedorenko, E. The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience. Curr. Opin. Behav. Sci. 40 , 105–112 (2021).

Xue, A. et al. The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. J. Neurophysiol. 125 , 358–384 (2021).

Petit, S. et al. Toward an individualized neural assessment of receptive language in children. J. Speech Lang. Hear. Res. 63 , 2361–2385 (2020).

Jung, K.-H. et al. Heterogeneity of cerebral white matter lesions and clinical correlates in older adults. Stroke 52 , 620–630 (2021).

Falcon, M. I., Jirsa, V. & Solodkin, A. A new neuroinformatics approach to personalized medicine in neurology: the virtual brain. Curr. Opin. Neurol. 29 , 429–436 (2016).

Duncan, G. J., Engel, M., Claessens, A. & Dowsett, C. J. Replication and robustness in developmental research. Dev. Psychol. 50 , 2417–2425 (2014).

Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349 , aac4716 (2015).

Tackett, J. L., Brandes, C. M., King, K. M. & Markon, K. E. Psychology’s replication crisis and clinical psychological science. Annu. Rev. Clin. Psychol. 15 , 579–604 (2019).

Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1 , 0021 (2017).

Oldfield, R. C. & Wingfield, A. The time it takes to name an object. Nature 202 , 1031–1032 (1964).

Oldfield, R. C. & Wingfield, A. Response latencies in naming objects. Q. J. Exp. Psychol. 17 , 273–281 (1965).

Brysbaert, M. How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. J. Cogn. 2 , 16 (2019).

Brysbaert, M. Power considerations in bilingualism research: time to step up our game. Bilingualism https://doi.org/10.1017/S1366728920000437 (2020).

Machery, E. What is a replication? Phil. Sci. 87 , 545–567 (2020).

Nosek, B. A. & Errington, T. M. What is replication? PLoS Biol. 18 , e3000691 (2020).

Li, X., Huang, L., Yao, P. & Hyönä, J. Universal and specific reading mechanisms across different writing systems. Nat. Rev. Psychol. 1 , 133–144 (2022).

Rapp, B. (Ed.) The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (Psychology Press, 2001).

Code, C. et al. Classic Cases In Neuropsychology (Psychology Press, 1996).

Patterson, K., Marshall, J. C. & Coltheart, M. Surface Dyslexia: Neuropsychological And Cognitive Studies Of Phonological Reading (Routledge, 2017).

Marshall, J. C. & Newcombe, F. Patterns of paralexia: a psycholinguistic approach. J. Psycholinguist. Res. 2 , 175–199 (1973).

Castles, A. & Coltheart, M. Varieties of developmental dyslexia. Cognition 47 , 149–180 (1993).

Khentov-Kraus, L. & Friedmann, N. Vowel letter dyslexia. Cogn. Neuropsychol. 35 , 223–270 (2018).

Winskel, H. Orthographic and phonological parafoveal processing of consonants, vowels, and tones when reading Thai. Appl. Psycholinguist. 32 , 739–759 (2011).

Hepner, C., McCloskey, M. & Rapp, B. Do reading and spelling share orthographic representations? Evidence from developmental dysgraphia. Cogn. Neuropsychol. 34 , 119–143 (2017).

Hanley, J. R. & Sotiropoulos, A. Developmental surface dysgraphia without surface dyslexia. Cogn. Neuropsychol. 35 , 333–341 (2018).

Zihl, J. & Heywood, C. A. The contribution of single case studies to the neuroscience of vision: single case studies in vision neuroscience. Psych. J. 5 , 5–17 (2016).

Bouvier, S. E. & Engel, S. A. Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb. Cortex 16 , 183–191 (2006).

Zihl, J. & Heywood, C. A. The contribution of LM to the neuroscience of movement vision. Front. Integr. Neurosci. 9 , 6 (2015).

Dotan, D. & Friedmann, N. Separate mechanisms for number reading and word reading: evidence from selective impairments. Cortex 114 , 176–192 (2019).

McCloskey, M. & Schubert, T. Shared versus separate processes for letter and digit identification. Cogn. Neuropsychol. 31 , 437–460 (2014).

Fayol, M. & Seron, X. On numerical representations. Insights from experimental, neuropsychological, and developmental research. In Handbook of Mathematical Cognition (ed. Campbell, J.) 3–23 (Psychological Press, 2005).

Bornstein, B. & Kidron, D. P. Prosopagnosia. J. Neurol. Neurosurg. Psychiat. 22 , 124–131 (1959).

Kühn, C. D., Gerlach, C., Andersen, K. B., Poulsen, M. & Starrfelt, R. Face recognition in developmental dyslexia: evidence for dissociation between faces and words. Cogn. Neuropsychol. 38 , 107–115 (2021).

Barton, J. J. S., Albonico, A., Susilo, T., Duchaine, B. & Corrow, S. L. Object recognition in acquired and developmental prosopagnosia. Cogn. Neuropsychol. 36 , 54–84 (2019).

Renault, B., Signoret, J.-L., Debruille, B., Breton, F. & Bolgert, F. Brain potentials reveal covert facial recognition in prosopagnosia. Neuropsychologia 27 , 905–912 (1989).

Bauer, R. M. Autonomic recognition of names and faces in prosopagnosia: a neuropsychological application of the guilty knowledge test. Neuropsychologia 22 , 457–469 (1984).

Haan, E. H. F., de, Young, A. & Newcombe, F. Face recognition without awareness. Cogn. Neuropsychol. 4 , 385–415 (1987).

Ellis, H. D. & Lewis, M. B. Capgras delusion: a window on face recognition. Trends Cogn. Sci. 5 , 149–156 (2001).

Ellis, H. D., Young, A. W., Quayle, A. H. & De Pauw, K. W. Reduced autonomic responses to faces in Capgras delusion. Proc. R. Soc. Lond. B 264 , 1085–1092 (1997).

Collins, M. N., Hawthorne, M. E., Gribbin, N. & Jacobson, R. Capgras’ syndrome with organic disorders. Postgrad. Med. J. 66 , 1064–1067 (1990).

Enoch, D., Puri, B. K. & Ball, H. Uncommon Psychiatric Syndromes 5th edn (Routledge, 2020).

Tranel, D., Damasio, H. & Damasio, A. R. Double dissociation between overt and covert face recognition. J. Cogn. Neurosci. 7 , 425–432 (1995).

Brighetti, G., Bonifacci, P., Borlimi, R. & Ottaviani, C. “Far from the heart far from the eye”: evidence from the Capgras delusion. Cogn. Neuropsychiat. 12 , 189–197 (2007).

Coltheart, M., Langdon, R. & McKay, R. Delusional belief. Annu. Rev. Psychol. 62 , 271–298 (2011).

Coltheart, M. Cognitive neuropsychiatry and delusional belief. Q. J. Exp. Psychol. 60 , 1041–1062 (2007).

Coltheart, M. & Davies, M. How unexpected observations lead to new beliefs: a Peircean pathway. Conscious. Cogn. 87 , 103037 (2021).

Coltheart, M. & Davies, M. Failure of hypothesis evaluation as a factor in delusional belief. Cogn. Neuropsychiat. 26 , 213–230 (2021).

McCloskey, M. et al. A developmental deficit in localizing objects from vision. Psychol. Sci. 6 , 112–117 (1995).

McCloskey, M., Valtonen, J. & Cohen Sherman, J. Representing orientation: a coordinate-system hypothesis and evidence from developmental deficits. Cogn. Neuropsychol. 23 , 680–713 (2006).

McCloskey, M. Spatial representations and multiple-visual-systems hypotheses: evidence from a developmental deficit in visual location and orientation processing. Cortex 40 , 677–694 (2004).

Gregory, E. & McCloskey, M. Mirror-image confusions: implications for representation and processing of object orientation. Cognition 116 , 110–129 (2010).

Gregory, E., Landau, B. & McCloskey, M. Representation of object orientation in children: evidence from mirror-image confusions. Vis. Cogn. 19 , 1035–1062 (2011).

Laine, M. & Martin, N. Cognitive neuropsychology has been, is, and will be significant to aphasiology. Aphasiology 26 , 1362–1376 (2012).

Howard, D. & Patterson, K. The Pyramids And Palm Trees Test: A Test Of Semantic Access From Words And Pictures (Thames Valley Test Co., 1992).

Kay, J., Lesser, R. & Coltheart, M. PALPA: Psycholinguistic Assessments Of Language Processing In Aphasia. 2: Picture & Word Semantics, Sentence Comprehension (Erlbaum, 2001).

Franklin, S. Dissociations in auditory word comprehension; evidence from nine fluent aphasic patients. Aphasiology 3 , 189–207 (1989).

Howard, D., Swinburn, K. & Porter, G. Putting the CAT out: what the comprehensive aphasia test has to offer. Aphasiology 24 , 56–74 (2010).

Conti-Ramsden, G., Crutchley, A. & Botting, N. The extent to which psychometric tests differentiate subgroups of children with SLI. J. Speech Lang. Hear. Res. 40 , 765–777 (1997).

Bishop, D. V. M. & McArthur, G. M. Individual differences in auditory processing in specific language impairment: a follow-up study using event-related potentials and behavioural thresholds. Cortex 41 , 327–341 (2005).

Bishop, D. V. M., Snowling, M. J., Thompson, P. A. & Greenhalgh, T., and the CATALISE-2 consortium. Phase 2 of CATALISE: a multinational and multidisciplinary Delphi consensus study of problems with language development: terminology. J. Child. Psychol. Psychiat. 58 , 1068–1080 (2017).

Wilson, A. J. et al. Principles underlying the design of ‘the number race’, an adaptive computer game for remediation of dyscalculia. Behav. Brain Funct. 2 , 19 (2006).

Basso, A. & Marangolo, P. Cognitive neuropsychological rehabilitation: the emperor’s new clothes? Neuropsychol. Rehabil. 10 , 219–229 (2000).

Murad, M. H., Asi, N., Alsawas, M. & Alahdab, F. New evidence pyramid. Evidence-based Med. 21 , 125–127 (2016).

Greenhalgh, T., Howick, J. & Maskrey, N., for the Evidence Based Medicine Renaissance Group. Evidence based medicine: a movement in crisis? Br. Med. J. 348 , g3725–g3725 (2014).

Best, W., Ping Sze, W., Edmundson, A. & Nickels, L. What counts as evidence? Swimming against the tide: valuing both clinically informed experimentally controlled case series and randomized controlled trials in intervention research. Evidence-based Commun. Assess. Interv. 13 , 107–135 (2019).

Best, W. et al. Understanding differing outcomes from semantic and phonological interventions with children with word-finding difficulties: a group and case series study. Cortex 134 , 145–161 (2021).

OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 2. CEBM https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (2011).

Holler, D. E., Behrmann, M. & Snow, J. C. Real-world size coding of solid objects, but not 2-D or 3-D images, in visual agnosia patients with bilateral ventral lesions. Cortex 119 , 555–568 (2019).

Duchaine, B. C., Yovel, G., Butterworth, E. J. & Nakayama, K. Prosopagnosia as an impairment to face-specific mechanisms: elimination of the alternative hypotheses in a developmental case. Cogn. Neuropsychol. 23 , 714–747 (2006).

Hartley, T. et al. The hippocampus is required for short-term topographical memory in humans. Hippocampus 17 , 34–48 (2007).

Pishnamazi, M. et al. Attentional bias towards and away from fearful faces is modulated by developmental amygdala damage. Cortex 81 , 24–34 (2016).

Rapp, B., Fischer-Baum, S. & Miozzo, M. Modality and morphology: what we write may not be what we say. Psychol. Sci. 26 , 892–902 (2015).

Yong, K. X. X., Warren, J. D., Warrington, E. K. & Crutch, S. J. Intact reading in patients with profound early visual dysfunction. Cortex 49 , 2294–2306 (2013).

Rockland, K. S. & Van Hoesen, G. W. Direct temporal–occipital feedback connections to striate cortex (V1) in the macaque monkey. Cereb. Cortex 4 , 300–313 (1994).

Haynes, J.-D., Driver, J. & Rees, G. Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex. Neuron 46 , 811–821 (2005).

Tanaka, K. Mechanisms of visual object recognition: monkey and human studies. Curr. Opin. Neurobiol. 7 , 523–529 (1997).

Fischer-Baum, S., McCloskey, M. & Rapp, B. Representation of letter position in spelling: evidence from acquired dysgraphia. Cognition 115 , 466–490 (2010).

Houghton, G. The problem of serial order: a neural network model of sequence learning and recall. In Current Research In Natural Language Generation (eds Dale, R., Mellish, C. & Zock, M.) 287–319 (Academic Press, 1990).

Fieder, N., Nickels, L., Biedermann, B. & Best, W. From “some butter” to “a butter”: an investigation of mass and count representation and processing. Cogn. Neuropsychol. 31 , 313–349 (2014).

Fieder, N., Nickels, L., Biedermann, B. & Best, W. How ‘some garlic’ becomes ‘a garlic’ or ‘some onion’: mass and count processing in aphasia. Neuropsychologia 75 , 626–645 (2015).

Schröder, A., Burchert, F. & Stadie, N. Training-induced improvement of noncanonical sentence production does not generalize to comprehension: evidence for modality-specific processes. Cogn. Neuropsychol. 32 , 195–220 (2015).

Stadie, N. et al. Unambiguous generalization effects after treatment of non-canonical sentence production in German agrammatism. Brain Lang. 104 , 211–229 (2008).

Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M. & Turk-Browne, N. B. The necessity of the medial temporal lobe for statistical learning. J. Cogn. Neurosci. 26 , 1736–1747 (2014).

Schapiro, A. C., Kustner, L. V. & Turk-Browne, N. B. Shaping of object representations in the human medial temporal lobe based on temporal regularities. Curr. Biol. 22 , 1622–1627 (2012).

Baddeley, A., Vargha-Khadem, F. & Mishkin, M. Preserved recognition in a case of developmental amnesia: implications for the acaquisition of semantic memory? J. Cogn. Neurosci. 13 , 357–369 (2001).

Snyder, J. J. & Chatterjee, A. Spatial-temporal anisometries following right parietal damage. Neuropsychologia 42 , 1703–1708 (2004).

Ashkenazi, S., Henik, A., Ifergane, G. & Shelef, I. Basic numerical processing in left intraparietal sulcus (IPS) acalculia. Cortex 44 , 439–448 (2008).

Lebrun, M.-A., Moreau, P., McNally-Gagnon, A., Mignault Goulet, G. & Peretz, I. Congenital amusia in childhood: a case study. Cortex 48 , 683–688 (2012).

Vannuscorps, G., Andres, M. & Pillon, A. When does action comprehension need motor involvement? Evidence from upper limb aplasia. Cogn. Neuropsychol. 30 , 253–283 (2013).

Jeannerod, M. Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage 14 , S103–S109 (2001).

Blakemore, S.-J. & Decety, J. From the perception of action to the understanding of intention. Nat. Rev. Neurosci. 2 , 561–567 (2001).

Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27 , 169–192 (2004).

Forde, E. M. E., Humphreys, G. W. & Remoundou, M. Disordered knowledge of action order in action disorganisation syndrome. Neurocase 10 , 19–28 (2004).

Mazzi, C. & Savazzi, S. The glamor of old-style single-case studies in the neuroimaging era: insights from a patient with hemianopia. Front. Psychol. 10 , 965 (2019).

Coltheart, M. What has functional neuroimaging told us about the mind (so far)? (Position Paper Presented to the European Cognitive Neuropsychology Workshop, Bressanone, 2005). Cortex 42 , 323–331 (2006).

Page, M. P. A. What can’t functional neuroimaging tell the cognitive psychologist? Cortex 42 , 428–443 (2006).

Blank, I. A., Kiran, S. & Fedorenko, E. Can neuroimaging help aphasia researchers? Addressing generalizability, variability, and interpretability. Cogn. Neuropsychol. 34 , 377–393 (2017).

Niv, Y. The primacy of behavioral research for understanding the brain. Behav. Neurosci. 135 , 601–609 (2021).

Crawford, J. R. & Howell, D. C. Comparing an individual’s test score against norms derived from small samples. Clin. Neuropsychol. 12 , 482–486 (1998).

Crawford, J. R., Garthwaite, P. H. & Ryan, K. Comparing a single case to a control sample: testing for neuropsychological deficits and dissociations in the presence of covariates. Cortex 47 , 1166–1178 (2011).

McIntosh, R. D. & Rittmo, J. Ö. Power calculations in single-case neuropsychology: a practical primer. Cortex 135 , 146–158 (2021).

Patterson, K. & Plaut, D. C. “Shallow draughts intoxicate the brain”: lessons from cognitive science for cognitive neuropsychology. Top. Cogn. Sci. 1 , 39–58 (2009).

Lambon Ralph, M. A., Patterson, K. & Plaut, D. C. Finite case series or infinite single-case studies? Comments on “Case series investigations in cognitive neuropsychology” by Schwartz and Dell (2010). Cogn. Neuropsychol. 28 , 466–474 (2011).

Horien, C., Shen, X., Scheinost, D. & Constable, R. T. The individual functional connectome is unique and stable over months to years. NeuroImage 189 , 676–687 (2019).

Epelbaum, S. et al. Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept. Cortex 44 , 962–974 (2008).

Fischer-Baum, S. & Campana, G. Neuroplasticity and the logic of cognitive neuropsychology. Cogn. Neuropsychol. 34 , 403–411 (2017).

Paul, S., Baca, E. & Fischer-Baum, S. Cerebellar contributions to orthographic working memory: a single case cognitive neuropsychological investigation. Neuropsychologia 171 , 108242 (2022).

Feinstein, J. S., Adolphs, R., Damasio, A. & Tranel, D. The human amygdala and the induction and experience of fear. Curr. Biol. 21 , 34–38 (2011).

Crawford, J., Garthwaite, P. & Gray, C. Wanted: fully operational definitions of dissociations in single-case studies. Cortex 39 , 357–370 (2003).

McIntosh, R. D. Simple dissociations for a higher-powered neuropsychology. Cortex 103 , 256–265 (2018).

McIntosh, R. D. & Brooks, J. L. Current tests and trends in single-case neuropsychology. Cortex 47 , 1151–1159 (2011).

Best, W., Schröder, A. & Herbert, R. An investigation of a relative impairment in naming non-living items: theoretical and methodological implications. J. Neurolinguistics 19 , 96–123 (2006).

Franklin, S., Howard, D. & Patterson, K. Abstract word anomia. Cogn. Neuropsychol. 12 , 549–566 (1995).

Coltheart, M., Patterson, K. E. & Marshall, J. C. Deep Dyslexia (Routledge, 1980).

Nickels, L., Kohnen, S. & Biedermann, B. An untapped resource: treatment as a tool for revealing the nature of cognitive processes. Cogn. Neuropsychol. 27 , 539–562 (2010).

Download references

Acknowledgements

The authors thank all of those pioneers of and advocates for single case study research who have mentored, inspired and encouraged us over the years, and the many other colleagues with whom we have discussed these issues.

Author information

Authors and affiliations.

School of Psychological Sciences & Macquarie University Centre for Reading, Macquarie University, Sydney, New South Wales, Australia

Lyndsey Nickels

NHMRC Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Australia

Psychological Sciences, Rice University, Houston, TX, USA

Simon Fischer-Baum

Psychology and Language Sciences, University College London, London, UK

You can also search for this author in PubMed   Google Scholar

Contributions

L.N. led and was primarily responsible for the structuring and writing of the manuscript. All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Lyndsey Nickels .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Reviews Psychology thanks Yanchao Bi, Rob McIntosh, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Nickels, L., Fischer-Baum, S. & Best, W. Single case studies are a powerful tool for developing, testing and extending theories. Nat Rev Psychol 1 , 733–747 (2022). https://doi.org/10.1038/s44159-022-00127-y

Download citation

Accepted : 13 October 2022

Published : 22 November 2022

Issue Date : December 2022

DOI : https://doi.org/10.1038/s44159-022-00127-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

case study psychology strengths

  • First Online: 27 October 2022

Cite this chapter

Book cover

  • R. M. Channaveer 4 &
  • Rajendra Baikady 5  

2193 Accesses

1 Citations

This chapter reviews the strengths and limitations of case study as a research method in social sciences. It provides an account of an evidence base to justify why a case study is best suitable for some research questions and why not for some other research questions. Case study designing around the research context, defining the structure and modality, conducting the study, collecting the data through triangulation mode, analysing the data, and interpreting the data and theory building at the end give a holistic view of it. In addition, the chapter also focuses on the types of case study and when and where to use case study as a research method in social science research.

  • Qualitative research approach
  • Social work research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Ang, C. S., Lee, K. F., & Dipolog-Ubanan, G. F. (2019). Determinants of first-year student identity and satisfaction in higher education: A quantitative case study. SAGE Open, 9 (2), 215824401984668. https://doi.org/10.1177/2158244019846689

Baxter, P., & Jack, S. (2015). Qualitative case study methodology: Study design and implementation for novice researchers. The Qualitative Report . Published. https://doi.org/10.46743/2160-3715/2008.1573

Bhatta, T. P. (2018). Case study research, philosophical position and theory building: A methodological discussion. Dhaulagiri Journal of Sociology and Anthropology, 12 , 72–79. https://doi.org/10.3126/dsaj.v12i0.22182

Article   Google Scholar  

Bromley, P. D. (1990). Academic contributions to psychological counselling. A philosophy of science for the study of individual cases. Counselling Psychology Quarterly , 3 (3), 299–307.

Google Scholar  

Crowe, S., Cresswell, K., Robertson, A., Huby, G., Avery, A., & Sheikh, A. (2011). The case study approach. BMC Medical Research Methodology, 11 (1), 1–9.

Grässel, E., & Schirmer, B. (2006). The use of volunteers to support family carers of dementia patients: Results of a prospective longitudinal study investigating expectations towards and experience with training and professional support. Zeitschrift Fur Gerontologie Und Geriatrie, 39 (3), 217–226.

Greenwood, D., & Lowenthal, D. (2005). Case study as a means of researching social work and improving practitioner education. Journal of Social Work Practice, 19 (2), 181–193. https://doi.org/10.1080/02650530500144782

Gülseçen, S., & Kubat, A. (2006). Teaching ICT to teacher candidates using PBL: A qualitative and quantitative evaluation. Journal of Educational Technology & Society, 9 (2), 96–106.

Gomm, R., Hammersley, M., & Foster, P. (2000). Case study and generalization. Case study method , 98–115.

Hamera, J., Denzin, N. K., & Lincoln, Y. S. (2011). Performance ethnography . SAGE.

Hayes, N. (2000). Doing psychological research (p. 133). Open University Press.

Harrison, H., Birks, M., Franklin, R., & Mills, J. (2017). Case study research: Foundations and methodological orientations. In Forum qualitative sozialforschung/forum: Qualitative social research (Vol. 18, No. 1).

Iwakabe, S., & Gazzola, N. (2009). From single-case studies to practice-based knowledge: Aggregating and synthesizing case studies. Psychotherapy Research, 19 (4–5), 601–611. https://doi.org/10.1080/10503300802688494

Johnson, M. P. (2006). Decision models for the location of community corrections centers. Environment and Planning b: Planning and Design, 33 (3), 393–412. https://doi.org/10.1068/b3125

Kaarbo, J., & Beasley, R. K. (1999). A practical guide to the comparative case study method in political psychology. Political Psychology, 20 (2), 369–391. https://doi.org/10.1111/0162-895x.00149

Lovell, G. I. (2006). Justice excused: The deployment of law in everyday political encounters. Law Society Review, 40 (2), 283–324. https://doi.org/10.1111/j.1540-5893.2006.00265.x

McDonough, S., & McDonough, S. (1997). Research methods as part of English language teacher education. English Language Teacher Education and Development, 3 (1), 84–96.

Meredith, J. (1998). Building operations management theory through case and field research. Journal of Operations Management, 16 (4), 441–454. https://doi.org/10.1016/s0272-6963(98)00023-0

Mills, A. J., Durepos, G., & Wiebe, E. (Eds.). (2009). Encyclopedia of case study research . Sage Publications.

Ochieng, P. A. (2009). An analysis of the strengths and limitation of qualitative and quantitative research paradigms. Problems of Education in the 21st Century , 13 , 13.

Page, E. B., Webb, E. J., Campell, D. T., Schwart, R. D., & Sechrest, L. (1966). Unobtrusive measures: Nonreactive research in the social sciences. American Educational Research Journal, 3 (4), 317. https://doi.org/10.2307/1162043

Rashid, Y., Rashid, A., Warraich, M. A., Sabir, S. S., & Waseem, A. (2019). Case study method: A step-by-step guide for business researchers. International Journal of Qualitative Methods, 18 , 160940691986242. https://doi.org/10.1177/1609406919862424

Ridder, H. G. (2017). The theory contribution of case study research designs. Business Research, 10 (2), 281–305. https://doi.org/10.1007/s40685-017-0045-z

Sadeghi Moghadam, M. R., Ghasemnia Arabi, N., & Khoshsima, G. (2021). A Review of case study method in operations management research. International Journal of Qualitative Methods, 20 , 160940692110100. https://doi.org/10.1177/16094069211010088

Sommer, B. B., & Sommer, R. (1997). A practical guide to behavioral research: Tools and techniques . Oxford University Press.

Stake, R. E. (2010). Qualitative research: Studying how things work .

Stake, R. E. (1995). The Art of Case Study Research . Sage Publications.

Stoecker, R. (1991). Evaluating and rethinking the case study. The Sociological Review, 39 (1), 88–112.

Suryani, A. (2013). Comparing case study and ethnography as qualitative research approaches .

Taylor, S., & Berridge, V. (2006). Medicinal plants and malaria: An historical case study of research at the London School of Hygiene and Tropical Medicine in the twentieth century. Transactions of the Royal Society of Tropical Medicine and Hygiene, 100 (8), 707–714. https://doi.org/10.1016/j.trstmh.2005.11.017

Tellis, W. (1997). Introduction to case study. The Qualitative Report . Published. https://doi.org/10.46743/2160-3715/1997.2024

Towne, L., & Shavelson, R. J. (2002). Scientific research in education . National Academy Press Publications Sales Office.

Widdowson, M. D. J. (2011). Case study research methodology. International Journal of Transactional Analysis Research, 2 (1), 25–34.

Yin, R. K. (2004). The case study anthology . Sage.

Yin, R. K. (2003). Design and methods. Case Study Research , 3 (9.2).

Yin, R. K. (1994). Case study research: Design and methods (2nd ed.). Sage Publishing.

Yin, R. (1984). Case study research: Design and methods . Sage Publications Beverly Hills.

Yin, R. (1993). Applications of case study research . Sage Publishing.

Zainal, Z. (2003). An investigation into the effects of discipline-specific knowledge, proficiency and genre on reading comprehension and strategies of Malaysia ESP Students. Unpublished Ph. D. Thesis. University of Reading , 1 (1).

Zeisel, J. (1984). Inquiry by design: Tools for environment-behaviour research (No. 5). CUP archive.

Download references

Author information

Authors and affiliations.

Department of Social Work, Central University of Karnataka, Kadaganchi, India

R. M. Channaveer

Department of Social Work, University of Johannesburg, Johannesburg, South Africa

Rajendra Baikady

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to R. M. Channaveer .

Editor information

Editors and affiliations.

Centre for Family and Child Studies, Research Institute of Humanities and Social Sciences, University of Sharjah, Sharjah, United Arab Emirates

M. Rezaul Islam

Department of Development Studies, University of Dhaka, Dhaka, Bangladesh

Niaz Ahmed Khan

Department of Social Work, School of Humanities, University of Johannesburg, Johannesburg, South Africa

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Channaveer, R.M., Baikady, R. (2022). Case Study. In: Islam, M.R., Khan, N.A., Baikady, R. (eds) Principles of Social Research Methodology. Springer, Singapore. https://doi.org/10.1007/978-981-19-5441-2_21

Download citation

DOI : https://doi.org/10.1007/978-981-19-5441-2_21

Published : 27 October 2022

Publisher Name : Springer, Singapore

Print ISBN : 978-981-19-5219-7

Online ISBN : 978-981-19-5441-2

eBook Packages : Social Sciences

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Providing a study guide and revision resources for students and psychology teaching resources for teachers.

Case Studies

March 7, 2021 - Paper 2 Psychology in Context | Research Methods

  • Back to Paper 2 - Research Methods

Description, AO1 of Case Studies:

  • An in-depth, detailed investigation of an individual or group.
  • It would usually include biographical details, as well as details of behaviours or experiences of interest to the researcher.
  • Usually carried out in the real world
  • Can use a variety of Psychology research methods (experimental and non-experimental) in order to collect data for the case study.

Methods used to collect information for case studies:

  • Questionnaires (open and closed questions)
  • Observations

Evaluation of Case Studies:

(1)  POINT:  A strength of a case study is that it produces rich, detailed data.  EXAMPLE:  For example, a case study of an individual’s life is incredibly detailed and may highlight a number of important experiences that could have combined to cause them to become mentally ill.  EVALUATION:  This is positive because information that may be overlooked using other methods is likely to be identified.

(2)  POINT:  A strength os a cause study is that it provices insight into individuals.  EXAMPLE: For example, rare mental disorders make it impossible to study large amounts of participants with that disorder because the behaviours or experiences are so unique that they could not have been studied in any other way.  EVALUATION: This is positive because it helps to improve our understanding of behaviours that would otherwise not be possible.

Weaknesses:

(1)  POINT:  A weakness of a case study is that it is difficult to generalise the results.  EXAMPLE:  For example, a case study of an individual person might not be representative of anyone else because experiences are so individual that another person may not react in the same way.  EVALUATION:  This is a problem as it’s difficult to generalise to the rest of the population (low popultation validity) as each case has unique characteristics.

(2)  POINT:  A weakness of a case study is that it collects retrospective data.  EXAMPLE:  For example, a researcher might rely on asking individuals about their past to help form the case study, which can be reconstructive.  EVALUATION: This is a problem as such evidence may have been recalled inaccurately and may therefore be unreliable.

  • Psychopathology
  • Social Psychology
  • Approaches To Human Behaviour
  • Biopsychology
  • Research Methods
  • Issues & Debates
  • Teacher Hub
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • [email protected]
  • www.psychologyhub.co.uk

captcha txt

We're not around right now. But you can send us an email and we'll get back to you, asap.

Start typing and press Enter to search

Cookie Policy - Terms and Conditions - Privacy Policy

2.2 Approaches to Research

Learning objectives.

By the end of this section, you will be able to:

  • Describe the different research methods used by psychologists
  • Discuss the strengths and weaknesses of case studies, naturalistic observation, surveys, and archival research
  • Compare longitudinal and cross-sectional approaches to research
  • Compare and contrast correlation and causation

There are many research methods available to psychologists in their efforts to understand, describe, and explain behavior and the cognitive and biological processes that underlie it. Some methods rely on observational techniques. Other approaches involve interactions between the researcher and the individuals who are being studied—ranging from a series of simple questions to extensive, in-depth interviews—to well-controlled experiments.

Each of these research methods has unique strengths and weaknesses, and each method may only be appropriate for certain types of research questions. For example, studies that rely primarily on observation produce incredible amounts of information, but the ability to apply this information to the larger population is somewhat limited because of small sample sizes. Survey research, on the other hand, allows researchers to easily collect data from relatively large samples. While this allows for results to be generalized to the larger population more easily, the information that can be collected on any given survey is somewhat limited and subject to problems associated with any type of self-reported data. Some researchers conduct archival research by using existing records. While this can be a fairly inexpensive way to collect data that can provide insight into a number of research questions, researchers using this approach have no control on how or what kind of data was collected. All of the methods described thus far are correlational in nature. This means that researchers can speak to important relationships that might exist between two or more variables of interest. However, correlational data cannot be used to make claims about cause-and-effect relationships.

Correlational research can find a relationship between two variables, but the only way a researcher can claim that the relationship between the variables is cause and effect is to perform an experiment. In experimental research, which will be discussed later in this chapter, there is a tremendous amount of control over variables of interest. While this is a powerful approach, experiments are often conducted in artificial settings. This calls into question the validity of experimental findings with regard to how they would apply in real-world settings. In addition, many of the questions that psychologists would like to answer cannot be pursued through experimental research because of ethical concerns.

Clinical or Case Studies

In 2011, the New York Times published a feature story on Krista and Tatiana Hogan, Canadian twin girls. These particular twins are unique because Krista and Tatiana are conjoined twins, connected at the head. There is evidence that the two girls are connected in a part of the brain called the thalamus, which is a major sensory relay center. Most incoming sensory information is sent through the thalamus before reaching higher regions of the cerebral cortex for processing.

Link to Learning

Watch this CBC video about Krista's and Tatiana's lives to learn more.

The implications of this potential connection mean that it might be possible for one twin to experience the sensations of the other twin. For instance, if Krista is watching a particularly funny television program, Tatiana might smile or laugh even if she is not watching the program. This particular possibility has piqued the interest of many neuroscientists who seek to understand how the brain uses sensory information.

These twins represent an enormous resource in the study of the brain, and since their condition is very rare, it is likely that as long as their family agrees, scientists will follow these girls very closely throughout their lives to gain as much information as possible (Dominus, 2011).

Over time, it has become clear that while Krista and Tatiana share some sensory experiences and motor control, they remain two distinct individuals, which provides invaluable insight for researchers interested in the mind and the brain (Egnor, 2017).

In observational research, scientists are conducting a clinical or case study when they focus on one person or just a few individuals. Indeed, some scientists spend their entire careers studying just 10–20 individuals. Why would they do this? Obviously, when they focus their attention on a very small number of people, they can gain a precious amount of insight into those cases. The richness of information that is collected in clinical or case studies is unmatched by any other single research method. This allows the researcher to have a very deep understanding of the individuals and the particular phenomenon being studied.

If clinical or case studies provide so much information, why are they not more frequent among researchers? As it turns out, the major benefit of this particular approach is also a weakness. As mentioned earlier, this approach is often used when studying individuals who are interesting to researchers because they have a rare characteristic. Therefore, the individuals who serve as the focus of case studies are not like most other people. If scientists ultimately want to explain all behavior, focusing attention on such a special group of people can make it difficult to generalize any observations to the larger population as a whole. Generalizing refers to the ability to apply the findings of a particular research project to larger segments of society. Again, case studies provide enormous amounts of information, but since the cases are so specific, the potential to apply what’s learned to the average person may be very limited.

Naturalistic Observation

If you want to understand how behavior occurs, one of the best ways to gain information is to simply observe the behavior in its natural context. However, people might change their behavior in unexpected ways if they know they are being observed. How do researchers obtain accurate information when people tend to hide their natural behavior? As an example, imagine that your professor asks everyone in your class to raise their hand if they always wash their hands after using the restroom. Chances are that almost everyone in the classroom will raise their hand, but do you think hand washing after every trip to the restroom is really that universal?

This is very similar to the phenomenon mentioned earlier in this chapter: many individuals do not feel comfortable answering a question honestly. But if we are committed to finding out the facts about hand washing, we have other options available to us.

Suppose we send a classmate into the restroom to actually watch whether everyone washes their hands after using the restroom. Will our observer blend into the restroom environment by wearing a white lab coat, sitting with a clipboard, and staring at the sinks? We want our researcher to be inconspicuous—perhaps standing at one of the sinks pretending to put in contact lenses while secretly recording the relevant information. This type of observational study is called naturalistic observation : observing behavior in its natural setting. To better understand peer exclusion, Suzanne Fanger collaborated with colleagues at the University of Texas to observe the behavior of preschool children on a playground. How did the observers remain inconspicuous over the duration of the study? They equipped a few of the children with wireless microphones (which the children quickly forgot about) and observed while taking notes from a distance. Also, the children in that particular preschool (a “laboratory preschool”) were accustomed to having observers on the playground (Fanger, Frankel, & Hazen, 2012).

It is critical that the observer be as unobtrusive and as inconspicuous as possible: when people know they are being watched, they are less likely to behave naturally. If you have any doubt about this, ask yourself how your driving behavior might differ in two situations: In the first situation, you are driving down a deserted highway during the middle of the day; in the second situation, you are being followed by a police car down the same deserted highway ( Figure 2.7 ).

It should be pointed out that naturalistic observation is not limited to research involving humans. Indeed, some of the best-known examples of naturalistic observation involve researchers going into the field to observe various kinds of animals in their own environments. As with human studies, the researchers maintain their distance and avoid interfering with the animal subjects so as not to influence their natural behaviors. Scientists have used this technique to study social hierarchies and interactions among animals ranging from ground squirrels to gorillas. The information provided by these studies is invaluable in understanding how those animals organize socially and communicate with one another. The anthropologist Jane Goodall , for example, spent nearly five decades observing the behavior of chimpanzees in Africa ( Figure 2.8 ). As an illustration of the types of concerns that a researcher might encounter in naturalistic observation, some scientists criticized Goodall for giving the chimps names instead of referring to them by numbers—using names was thought to undermine the emotional detachment required for the objectivity of the study (McKie, 2010).

The greatest benefit of naturalistic observation is the validity , or accuracy, of information collected unobtrusively in a natural setting. Having individuals behave as they normally would in a given situation means that we have a higher degree of ecological validity, or realism, than we might achieve with other research approaches. Therefore, our ability to generalize the findings of the research to real-world situations is enhanced. If done correctly, we need not worry about people or animals modifying their behavior simply because they are being observed. Sometimes, people may assume that reality programs give us a glimpse into authentic human behavior. However, the principle of inconspicuous observation is violated as reality stars are followed by camera crews and are interviewed on camera for personal confessionals. Given that environment, we must doubt how natural and realistic their behaviors are.

The major downside of naturalistic observation is that they are often difficult to set up and control. In our restroom study, what if you stood in the restroom all day prepared to record people’s hand washing behavior and no one came in? Or, what if you have been closely observing a troop of gorillas for weeks only to find that they migrated to a new place while you were sleeping in your tent? The benefit of realistic data comes at a cost. As a researcher you have no control of when (or if) you have behavior to observe. In addition, this type of observational research often requires significant investments of time, money, and a good dose of luck.

Sometimes studies involve structured observation. In these cases, people are observed while engaging in set, specific tasks. An excellent example of structured observation comes from Strange Situation by Mary Ainsworth (you will read more about this in the chapter on lifespan development). The Strange Situation is a procedure used to evaluate attachment styles that exist between an infant and caregiver. In this scenario, caregivers bring their infants into a room filled with toys. The Strange Situation involves a number of phases, including a stranger coming into the room, the caregiver leaving the room, and the caregiver’s return to the room. The infant’s behavior is closely monitored at each phase, but it is the behavior of the infant upon being reunited with the caregiver that is most telling in terms of characterizing the infant’s attachment style with the caregiver.

Another potential problem in observational research is observer bias . Generally, people who act as observers are closely involved in the research project and may unconsciously skew their observations to fit their research goals or expectations. To protect against this type of bias, researchers should have clear criteria established for the types of behaviors recorded and how those behaviors should be classified. In addition, researchers often compare observations of the same event by multiple observers, in order to test inter-rater reliability : a measure of reliability that assesses the consistency of observations by different observers.

Often, psychologists develop surveys as a means of gathering data. Surveys are lists of questions to be answered by research participants, and can be delivered as paper-and-pencil questionnaires, administered electronically, or conducted verbally ( Figure 2.9 ). Generally, the survey itself can be completed in a short time, and the ease of administering a survey makes it easy to collect data from a large number of people.

Surveys allow researchers to gather data from larger samples than may be afforded by other research methods . A sample is a subset of individuals selected from a population , which is the overall group of individuals that the researchers are interested in. Researchers study the sample and seek to generalize their findings to the population. Generally, researchers will begin this process by calculating various measures of central tendency from the data they have collected. These measures provide an overall summary of what a typical response looks like. There are three measures of central tendency: mode, median, and mean. The mode is the most frequently occurring response, the median lies at the middle of a given data set, and the mean is the arithmetic average of all data points. Means tend to be most useful in conducting additional analyses like those described below; however, means are very sensitive to the effects of outliers, and so one must be aware of those effects when making assessments of what measures of central tendency tell us about a data set in question.

There is both strength and weakness of the survey in comparison to case studies. By using surveys, we can collect information from a larger sample of people. A larger sample is better able to reflect the actual diversity of the population, thus allowing better generalizability. Therefore, if our sample is sufficiently large and diverse, we can assume that the data we collect from the survey can be generalized to the larger population with more certainty than the information collected through a case study. However, given the greater number of people involved, we are not able to collect the same depth of information on each person that would be collected in a case study.

Another potential weakness of surveys is something we touched on earlier in this chapter: People don't always give accurate responses. They may lie, misremember, or answer questions in a way that they think makes them look good. For example, people may report drinking less alcohol than is actually the case.

Any number of research questions can be answered through the use of surveys. One real-world example is the research conducted by Jenkins, Ruppel, Kizer, Yehl, and Griffin (2012) about the backlash against the US Arab-American community following the terrorist attacks of September 11, 2001. Jenkins and colleagues wanted to determine to what extent these negative attitudes toward Arab-Americans still existed nearly a decade after the attacks occurred. In one study, 140 research participants filled out a survey with 10 questions, including questions asking directly about the participant’s overt prejudicial attitudes toward people of various ethnicities. The survey also asked indirect questions about how likely the participant would be to interact with a person of a given ethnicity in a variety of settings (such as, “How likely do you think it is that you would introduce yourself to a person of Arab-American descent?”). The results of the research suggested that participants were unwilling to report prejudicial attitudes toward any ethnic group. However, there were significant differences between their pattern of responses to questions about social interaction with Arab-Americans compared to other ethnic groups: they indicated less willingness for social interaction with Arab-Americans compared to the other ethnic groups. This suggested that the participants harbored subtle forms of prejudice against Arab-Americans, despite their assertions that this was not the case (Jenkins et al., 2012).

Archival Research

Some researchers gain access to large amounts of data without interacting with a single research participant. Instead, they use existing records to answer various research questions. This type of research approach is known as archival research . Archival research relies on looking at past records or data sets to look for interesting patterns or relationships.

For example, a researcher might access the academic records of all individuals who enrolled in college within the past ten years and calculate how long it took them to complete their degrees, as well as course loads, grades, and extracurricular involvement. Archival research could provide important information about who is most likely to complete their education, and it could help identify important risk factors for struggling students ( Figure 2.10 ).

In comparing archival research to other research methods, there are several important distinctions. For one, the researcher employing archival research never directly interacts with research participants. Therefore, the investment of time and money to collect data is considerably less with archival research. Additionally, researchers have no control over what information was originally collected. Therefore, research questions have to be tailored so they can be answered within the structure of the existing data sets. There is also no guarantee of consistency between the records from one source to another, which might make comparing and contrasting different data sets problematic.

Longitudinal and Cross-Sectional Research

Sometimes we want to see how people change over time, as in studies of human development and lifespan. When we test the same group of individuals repeatedly over an extended period of time, we are conducting longitudinal research. Longitudinal research is a research design in which data-gathering is administered repeatedly over an extended period of time. For example, we may survey a group of individuals about their dietary habits at age 20, retest them a decade later at age 30, and then again at age 40.

Another approach is cross-sectional research. In cross-sectional research , a researcher compares multiple segments of the population at the same time. Using the dietary habits example above, the researcher might directly compare different groups of people by age. Instead of studying a group of people for 20 years to see how their dietary habits changed from decade to decade, the researcher would study a group of 20-year-old individuals and compare them to a group of 30-year-old individuals and a group of 40-year-old individuals. While cross-sectional research requires a shorter-term investment, it is also limited by differences that exist between the different generations (or cohorts) that have nothing to do with age per se, but rather reflect the social and cultural experiences of different generations of individuals that make them different from one another.

To illustrate this concept, consider the following survey findings. In recent years there has been significant growth in the popular support of same-sex marriage. Many studies on this topic break down survey participants into different age groups. In general, younger people are more supportive of same-sex marriage than are those who are older (Jones, 2013). Does this mean that as we age we become less open to the idea of same-sex marriage, or does this mean that older individuals have different perspectives because of the social climates in which they grew up? Longitudinal research is a powerful approach because the same individuals are involved in the research project over time, which means that the researchers need to be less concerned with differences among cohorts affecting the results of their study.

Often longitudinal studies are employed when researching various diseases in an effort to understand particular risk factors. Such studies often involve tens of thousands of individuals who are followed for several decades. Given the enormous number of people involved in these studies, researchers can feel confident that their findings can be generalized to the larger population. The Cancer Prevention Study-3 (CPS-3) is one of a series of longitudinal studies sponsored by the American Cancer Society aimed at determining predictive risk factors associated with cancer. When participants enter the study, they complete a survey about their lives and family histories, providing information on factors that might cause or prevent the development of cancer. Then every few years the participants receive additional surveys to complete. In the end, hundreds of thousands of participants will be tracked over 20 years to determine which of them develop cancer and which do not.

Clearly, this type of research is important and potentially very informative. For instance, earlier longitudinal studies sponsored by the American Cancer Society provided some of the first scientific demonstrations of the now well-established links between increased rates of cancer and smoking (American Cancer Society, n.d.) ( Figure 2.11 ).

As with any research strategy, longitudinal research is not without limitations. For one, these studies require an incredible time investment by the researcher and research participants. Given that some longitudinal studies take years, if not decades, to complete, the results will not be known for a considerable period of time. In addition to the time demands, these studies also require a substantial financial investment. Many researchers are unable to commit the resources necessary to see a longitudinal project through to the end.

Research participants must also be willing to continue their participation for an extended period of time, and this can be problematic. People move, get married and take new names, get ill, and eventually die. Even without significant life changes, some people may simply choose to discontinue their participation in the project. As a result, the attrition rates, or reduction in the number of research participants due to dropouts, in longitudinal studies are quite high and increase over the course of a project. For this reason, researchers using this approach typically recruit many participants fully expecting that a substantial number will drop out before the end. As the study progresses, they continually check whether the sample still represents the larger population, and make adjustments as necessary.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/2-2-approaches-to-research

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case Study? | Definition, Examples & Methods

What Is a Case Study? | Definition, Examples & Methods

Published on May 8, 2019 by Shona McCombes . Revised on November 20, 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyze the case, other interesting articles.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Prevent plagiarism. Run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

TipIf your research is more practical in nature and aims to simultaneously investigate an issue as you solve it, consider conducting action research instead.

Unlike quantitative or experimental research , a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

Example of an outlying case studyIn the 1960s the town of Roseto, Pennsylvania was discovered to have extremely low rates of heart disease compared to the US average. It became an important case study for understanding previously neglected causes of heart disease.

However, you can also choose a more common or representative case to exemplify a particular category, experience or phenomenon.

Example of a representative case studyIn the 1920s, two sociologists used Muncie, Indiana as a case study of a typical American city that supposedly exemplified the changing culture of the US at the time.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews , observations , and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data.

Example of a mixed methods case studyFor a case study of a wind farm development in a rural area, you could collect quantitative data on employment rates and business revenue, collect qualitative data on local people’s perceptions and experiences, and analyze local and national media coverage of the development.

The aim is to gain as thorough an understanding as possible of the case and its context.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

case study psychology strengths

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis , with separate sections or chapters for the methods , results and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyze its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Case Study? | Definition, Examples & Methods. Scribbr. Retrieved April 3, 2024, from https://www.scribbr.com/methodology/case-study/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, primary vs. secondary sources | difference & examples, what is a theoretical framework | guide to organizing, what is action research | definition & examples, what is your plagiarism score.

Henry Gustav Molaison: The Curious Case of Patient H.M. 

Erin Heaning

Clinical Safety Strategist at Bristol Myers Squibb

Psychology Graduate, Princeton University

Erin Heaning, a holder of a BA (Hons) in Psychology from Princeton University, has experienced as a research assistant at the Princeton Baby Lab.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

On This Page:

Henry Gustav Molaison, known as Patient H.M., is a landmark case study in psychology. After a surgery to alleviate severe epilepsy, which removed large portions of his hippocampus , he was left with anterograde amnesia , unable to form new explicit memories , thus offering crucial insights into the role of the hippocampus in memory formation.
  • Henry Gustav Molaison (often referred to as H.M.) is a famous case of anterograde and retrograde amnesia in psychology.
  • H. M. underwent brain surgery to remove his hippocampus and amygdala to control his seizures. As a result of his surgery, H.M.’s seizures decreased, but he could no longer form new memories or remember the prior 11 years of his life.
  • He lost his ability to form many types of new memories (anterograde amnesia), such as new facts or faces, and the surgery also caused retrograde amnesia as he was able to recall childhood events but lost the ability to recall experiences a few years before his surgery.
  • The case of H.M. and his life-long participation in studies gave researchers valuable insight into how memory functions and is organized in the brain. He is considered one of the most studied medical and psychological history cases.

3d rendered medically accurate illustration of the hippocampus

Who is H.M.?

Henry Gustav Molaison, or “H.M” as he is commonly referred to by psychology and neuroscience textbooks, lost his memory on an operating table in 1953.

For years before his neurosurgery, H.M. suffered from epileptic seizures believed to be caused by a bicycle accident that occurred in his childhood. The seizures started out as minor at age ten, but they developed in severity when H.M. was a teenager.

Continuing to worsen in severity throughout his young adulthood, H.M. was eventually too disabled to work. Throughout this period, treatments continued to turn out unsuccessful, and epilepsy proved a major handicap and strain on H.M.’s quality of life.

And so, at age 27, H.M. agreed to undergo a radical surgery that would involve removing a part of his brain called the hippocampus — the region believed to be the source of his epileptic seizures (Squire, 2009).

For epilepsy patients, brain resection surgery refers to removing small portions of brain tissue responsible for causing seizures. Although resection is still a surgical procedure used today to treat epilepsy, the use of lasers and detailed brain scans help ensure valuable brain regions are not impacted.

In 1953, H.M.’s neurosurgeon did not have these tools, nor was he or the rest of the scientific or medical community fully aware of the true function of the hippocampus and its specific role in memory. In one regard, the surgery was successful, as H.M. did, in fact, experience fewer seizures.

However, family and doctors soon noticed he also suffered from severe amnesia, which persisted well past when he should have recovered. In addition to struggling to remember the years leading up to his surgery, H.M. also had gaps in his memory of the 11 years prior.

Furthermore, he lacked the ability to form new memories — causing him to perpetually live an existence of moment-to-moment forgetfulness for decades to come.

In one famous quote, he famously and somberly described his state as “like waking from a dream…. every day is alone in itself” (Squire et al., 2009).

H.M. soon became a major case study of interest for psychologists and neuroscientists who studied his memory deficits and cognitive abilities to better understand the hippocampus and its function.

When H.M. died on December 2, 2008, at the age of 82, he left behind a lifelong legacy of scientific contribution.

Surgical Procedure

Neurosurgeon William Beecher Scoville performed H.M.’s surgery in Hartford, Connecticut, in August 1953 when H.M. was 27 years old.

During the procedure, Scoville removed parts of H.M.’s temporal lobe which refers to the portion of the brain that sits behind both ears and is associated with auditory and memory processing.

More specifically, the surgery involved what was called a “partial medial temporal lobe resection” (Scoville & Milner, 1957). In this resection, Scoville removed 8 cm of brain tissue from the hippocampus — a seahorse-shaped structure located deep in the temporal lobe .

Bilateral resection of the anterior temporal lobe in patient HM.

Bilateral resection of the anterior temporal lobe in patient HM.

Further research conducted after this removal showed Scoville also probably destroyed the brain structures known as the “uncus” (theorized to play a role in the sense of smell and forming new memories) and the “amygdala” (theorized to play a crucial role in controlling our emotional responses such as fear and sadness).

As previously mentioned, the removal surgery partially reduced H.M.’s seizures; however, he also lost the ability to form new memories.

At the time, Scoville’s experimental procedure had previously only been performed on patients with psychosis, so H.M. was the first epileptic patient and showed no sign of mental illness. In the original case study of H.M., which is discussed in further detail below, nine of Scoville’s patients from this experimental surgery were described.

However, because these patients had disorders such as schizophrenia, their symptoms were not removed after surgery. In this regard, H.M. was the only patient with “clean” amnesia along with no other apparent mental problems.

H.M’s Amnesia

H.M.’s apparent amnesia after waking from surgery presented in multiple forms. For starters, H.M. suffered from retrograde amnesia for the 11-year period prior to his surgery.

Retrograde describes amnesia, where you can’t recall memories that were formed before the event that caused the amnesia. Important to note, current research theorizes that H.M.’s retrograde amnesia was not actually caused by the loss of his hippocampus, but rather from a combination of antiepileptic drugs and frequent seizures prior to his surgery (Shrader 2012).

In contrast, H.M.’s inability to form new memories after his operation, known as anterograde amnesia, was the result of the loss of the hippocampus.

This meant that H.M. could not learn new words, facts, or faces after his surgery, and he would even forget who he was talking to the moment he walked away.

However, H.M. could perform tasks, and he could even perform those tasks easier after practice. This important finding represented a major scientific discovery when it comes to memory and the hippocampus. The memory that H.M. was missing in his life included the recall of facts, life events, and other experiences.

This type of long-term memory is referred to as “explicit” or “ declarative ” memories and they require conscious thinking.

In contrast, H.M.’s ability to improve in tasks after practice (even if he didn’t recall that practice) showed his “implicit” or “ procedural ” memory remained intact (Scoville & Milner, 1957). This type of long-term memory is unconscious, and examples include riding a bike, brushing your teeth, or typing on a keyboard.

Most importantly, after removing his hippocampus, H.M. lost his explicit memory but not his implicit memory — establishing that implicit memory must be controlled by some other area of the brain and not the hippocampus.

After the severity of the side effects of H.M.’s operation became clear, H.M. was referred to neurosurgeon Dr. Wilder Penfield and neuropsychologist Dr. Brenda Milner of Montreal Neurological Institute (MNI) for further testing.

As discussed, H.M. was not the only patient who underwent this experimental surgery, but he was the only non-psychotic patient with such a degree of memory impairment. As a result, he became a major study and interest for Milner and the rest of the scientific community.

Since Penfield and Milner had already been conducting memory experiments on other patients at the time, they quickly realized H.M.’s “dense amnesia, intact intelligence, and precise neurosurgical lesions made him a perfect experimental subject” (Shrader 2012).

Milner continued to conduct cognitive testing on H.M. for the next fifty years, primarily at the Massachusetts Institute of Technology (MIT). Her longitudinal case study of H.M.’s amnesia quickly became a sensation and is still one of the most widely-cited psychology studies.

In publishing her work, she protected Henry’s identity by first referring to him as the patient H.M. (Shrader 2012).

In the famous “star tracing task,” Milner tested if H.M.’s procedural memory was affected by the removal of the hippocampus during surgery.

In this task, H.M. had to trace an outline of a star, but he could only trace the star based on the mirrored reflection. H.M. then repeated this task once a day over a period of multiple days.

Over the course of these multiple days, Milner observed that H.M. performed the test faster and with fewer errors after continued practice. Although each time he performed the task, he had no memory of having participated in the task before, his performance improved immensely (Shrader 2012).

As this task showed, H.M. had lost his declarative/explicit memory, but his unconscious procedural/implicit memory remained intact. Given the damage to his hippocampus in surgery, researchers concluded from tasks such as these that the hippocampus must play a role in declarative but not procedural memory.

Therefore, procedural memory must be localized somewhere else in the brain and not in the hippocampus.

H.M’s Legacy

Milner’s and hundreds of other researchers’ work with H.M. established fundamental principles about how memory functions and is organized in the brain.

Without the contribution of H.M. in volunteering the study of his mind to science, our knowledge today regarding the separation of memory function in the brain would certainly not be as strong.

Until H.M.’s watershed surgery, it was not known that the hippocampus was essential for making memories and that if we lost this valuable part of our brain, we would be forced to live only in the moment-to-moment constraints of our short-term memory .

Once this was realized, the findings regarding H.M. were widely publicized so that this operation to remove the hippocampus would never be done again (Shrader 2012).

H.M.’s case study represents a historical time period for neuroscience in which most brain research and findings were the result of brain dissections, lesioning certain sections, and seeing how different experimental procedures impacted different patients.

Therefore, it is paramount we recognize the contribution of patients like H.M., who underwent these dangerous operations in the mid-twentieth century and then went on to allow researchers to study them for the rest of their lives.

Even after his death, H.M. donated his brain to science. Researchers then took his unique brain, froze it, and then in a 53-hour procedure, sliced it into 2,401 slices which were then individually photographed and digitized as a three-dimensional map.

Through this map, H.M.’s brain could be preserved for posterity (Wb et al., 2014). As neuroscience researcher Suzanne Corkin once said it best, “H.M. was a pleasant, engaging, docile man with a keen sense of humor, who knew he had a poor memory but accepted his fate.

There was a man behind the data. Henry often told me that he hoped that research into his condition would help others live better lives. He would have been proud to know how much his tragedy has benefitted science and medicine” (Corkin, 2014).

Corkin, S. (2014). Permanent present tense: The man with no memory and what he taught the world. Penguin Books.

Hardt, O., Einarsson, E. Ö., & Nader, K. (2010). A bridge over troubled water: Reconsolidation as a link between cognitive and neuroscientific memory research traditions. Annual Review of Psychology, 61, 141–167.

Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions . Journal of neurology, neurosurgery, and psychiatry, 20 (1), 11.

Shrader, J. (2012, January). HM, the man with no memory | Psychology Today. Retrieved from, https://www.psychologytoday.com/us/blog/trouble-in-mind/201201/hm-the-man-no-memory

Squire, L. R. (2009). The legacy of patient H. M. for neuroscience . Neuron, 61 , 6–9.

Print Friendly, PDF & Email

  • Abnormal Psychology
  • Assessment (IB)
  • Biological Psychology
  • Cognitive Psychology
  • Criminology
  • Developmental Psychology
  • Extended Essay
  • General Interest
  • Health Psychology
  • Human Relationships
  • IB Psychology
  • IB Psychology HL Extensions
  • Internal Assessment (IB)
  • Love and Marriage
  • Post-Traumatic Stress Disorder
  • Prejudice and Discrimination
  • Qualitative Research Methods
  • Research Methodology
  • Revision and Exam Preparation
  • Social and Cultural Psychology
  • Studies and Theories
  • Teaching Ideas

Key Study: HM’s case study (Milner and Scoville, 1957)

Travis Dixon January 29, 2019 Biological Psychology , Cognitive Psychology , Key Studies

case study psychology strengths

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to email a link to a friend (Opens in new window)

HM’s case study is one of the most famous and important case studies in psychology, especially in cognitive psychology. It was the source of groundbreaking new knowledge on the role of the hippocampus in memory. 

Background Info

“Localization of function in the brain” means that different parts of the brain have different functions. Researchers have discovered this from over 100 years of research into the ways the brain works. One such study was Milner’s case study on Henry Molaison.

Gray739-emphasizing-hippocampus

The memory problems that HM experienced after the removal of his hippocampus provided new knowledge on the role of the hippocampus in memory formation (image: wikicommons)

At the time of the first study by Milner, HM was 29 years old. He was a mechanic who had suffered from minor epileptic seizures from when he was ten years old and began suffering severe seizures as a teenager. These may have been a result of a bike accident when he was nine. His seizures were getting worse in severity, which resulted in HM being unable to work. Treatment for his epilepsy had been unsuccessful, so at the age of 27 HM (and his family) agreed to undergo a radical surgery that would remove a part of his brain called the hippocampus . Previous research suggested that this could help reduce his seizures, but the impact it had on his memory was unexpected. The Doctor performing the radical surgery believed it was justified because of the seriousness of his seizures and the failures of other methods to treat them.

Methods and Results

In one regard, the surgery was successful as it resulted in HM experiencing less seizures. However, immediately after the surgery, the hospital staff and HM’s family noticed that he was suffering from anterograde amnesia (an inability to form new memories after the time of damage to the brain):

Here are some examples of his memory loss described in the case study:

  • He could remember something if he concentrated on it, but if he broke his concentration it was lost.
  • After the surgery the family moved houses. They stayed on the same street, but a few blocks away. The family noticed that HM as incapable of remembering the new address, but could remember the old one perfectly well. He could also not find his way home alone.
  • He could not find objects around the house, even if they never changed locations and he had used them recently. His mother had to always show him where the lawnmower was in the garage.
  • He would do the same jigsaw puzzles or read the same magazines every day, without ever apparently getting bored and realising he had read them before. (HM loved to do crossword puzzles and thought they helped him to remember words).
  • He once ate lunch in front of Milner but 30 minutes later was unable to say what he had eaten, or remember even eating any lunch at all.
  • When interviewed almost two years after the surgery in 1955, HM gave the date as 1953 and said his age was 27. He talked constantly about events from his childhood and could not remember details of his surgery.

Later testing also showed that he had suffered some partial retrograde amnesia (an inability to recall memories from before the time of damage to the brain). For instance, he could not remember that one of his favourite uncles passed away three years prior to his surgery or any of his time spent in hospital for his surgery. He could, however, remember some unimportant events that occurred just before his admission to the hospital.

Brenda_Milner

Brenda Milner studied HM for almost 50 years – but he never remembered her.

Results continued…

His memories from events prior to 1950 (three years before his surgery), however, were fine. There was also no observable difference to his personality or to his intelligence. In fact, he scored 112 points on his IQ after the surgery, compared with 104 previously. The IQ test suggested that his ability in arithmetic had apparently improved. It seemed that the only behaviour that was affected by the removal of the hippocampus was his memory. HM was described as a kind and gentle person and this did not change after his surgery.

The Star Tracing Task

In a follow up study, Milner designed a task that would test whether or not HMs procedural memory had been affected by the surgery. He was to trace an outline of a star, but he could only see the mirrored reflection. He did this once a day over a period of a few days and Milner observed that he became faster and faster. Each time he performed the task he had no memory of ever having done it before, but his performance kept improving. This is further evidence for localization of function – the hippocampus must play a role in declarative (explicit) memory but not procedural (implicit) memory.

memory_types

Cognitive psychologists have categorized memories into different types. HM’s study suggests that the hippocampus is essential for explicit (conscious) and declarative memory, but not implicit (unconscious) procedural memory.

Was his memory 100% gone? Another follow-up study

Lee_Harvey_Oswald_1963

Interestingly, HM showed signs of being able to remember famous people who had only become famous after his surgery, like Lee Harvey Oswald (who assassinated JFK in 1963). (Image: wikicommons)

Another fascinating follow-up study was conducted by two researchers who wanted to see if HM had learned anything about celebrities that became famous after his surgery. At first they tested his knowledge of celebrities from before his surgery, and he knew these just as well as controls. They then showed him two names at a time, one a famous name (e.g. Liza Minelli, Lee Harvey Oswald) and the other was a name randomly taken from the phonebook. He was asked to choose the famous name and he was correct on a significant number of trials (i.e. the statistics tests suggest he wasn’t just guessing). Even more incredible was that he remembered some details about these people when asked why they were famous. For example, he could remember that Lee Harvey Oswald assassinated the president. One explanation given for the memory of these facts is that there was an emotional component. E.g. He liked these people, or the assassination was so violent, that he could remember a few details. 

HM became a hugely important case study for neuro and cognitive Psychologists. He was interviewed and tested by over 100 psychologists during the 53 years after his operation. Directly after his surgery, he lived at home with his parents as he was unable to live independently. He moved to a nursing home in 1980 and stayed there until his death in 2008. HM donated his brain to science and it was sliced into 2,401 thin slices that will be scanned and published electronically.

Critical Thinking Considerations

  • How does this case study demonstrate localization of function in the brain? (e.g.c reating new long-term memories; procedural memories; storing and retrieving long term memories; intelligence; personality) ( Application )
  • What are the ethical considerations involved in this study? ( Analysis )
  • What are the strengths and limitations of this case study? ( Evaluation )
  • Why would ongoing studies of HM be important? (Think about memory, neuroplasticity and neurogenesis) ( Analysis/Synthesis/Evaluation )
  • How can findings from this case study be used to support and/or challenge the Multi-store Model of Memory? ( Application / Synthesis/Evaluation )
Exam Tips This study can be used for the following topics: Localization – the role of the hippocampus in memory Techniques to study the brain – MRI has been used to find out the exact location and size of damage to HM’s brain Bio and cognitive approach research method s – case study Bio and cognitive approach ethical considerations – anonymity Emotion and cognition – the follow-up study on HM and memories of famous people could be used in an essay to support the idea that emotion affects memory Models of memory – the multi-store model : HM’s study provides evidence for the fact that our memories all aren’t formed and stored in one place but travel from store to store (because his transfer from STS to LTS was damaged – if it was all in one store this specific problem would not occur)

Milner, Brenda. Scoville, William Beecher. “Loss of Recent Memory after Bilateral Hippocampal Lesions”. The Journal of Neurology, Neurosurgery and Psychiatry. 1957; 20: 11 21. (Accessed from web.mit.edu )

The man who couldn’t remember”. nova science now. an interview with brenda corkin . 06.01.2009.       .

  Here’s a good video recreation documentary of HM’s case study…

Travis Dixon

Travis Dixon is an IB Psychology teacher, author, workshop leader, examiner and IA moderator.

Open Menu

Strengths and Weaknesses of Case Studies

There is no doubt that case studies are a valuable and important form of research for all of the industries and fields that use them. However, along with all their advantages, they also have some disadvantages. In this article we are going to look at both.

Advantages of Case Studies

Intensive Study

Case study method is responsible for intensive study of a unit. It is the investigation and exploration of an event thoroughly and deeply. You get a very detailed and in-depth study of a person or event. This is especially the case with subjects that cannot be physically or ethically recreated.

This is one of the biggest advantages of the Genie case. You cannot lock up a child for 13 years and deprive them of everything. That would be morally and ethically wrong in every single way. So when the opportunity presented itself, researchers could not look away. It was a once in a lifetime opportunity to learn about feral children.

Genie was a feral child. She was raised in completed isolation, with little human contact. Because of the abuse she withstood, she was unable to develop cognitively. From infancy she was strapped to a potty chair, and therefore never acquired the physicality needed for walking, running and jumping.

If Genie made a noise, her father beat her. Therefore, she learned to not make a noise. Once she was found, researchers studied her language skills, and attempted to find ways to get her to communicate. They were successful. While she never gained the ability to speak, she did develop other ways to communicate. However, the public soon lost interest in her case, and with that, the funds to conduct the study.

However, her case was extremely important to child development psychology and linguistic theory. Because of her, we know that mental stimulation is needed for proper development. We also now know that there is a "critical period" for the learning of language.

Developing New Research

Case studies are one of the best ways to stimulate new research. A case study can be completed, and if the findings are valuable, they can lead to new and advanced research in the field. There has been a great deal of research done that wouldn't have been possible without case studies.

An example of this is the sociological study Nickel and Dimed. Nickel and Dimed is a book and study done by Barbara Ehrenreich. She wanted to study poverty in America, and did so by living and working as a person living on minimum wage.

Through her experiment, she discovered that poverty was almost inescapable. As soon as she saved a little money, she was hit with a crisis. She might get sick, or her car might break down, all occurrences that can be destructive when a person doesn't have a safety net to fall back on.

It didn't matter where she lived or what she did. Working a minimum wage job gave her no chances for advancement or improvement whatsoever. And she did the experiment as a woman with no children to support.

This study opened a lot of eyes to the problem of the working poor in America. By living and working as the experiment, Ehrenreich was able to show first-hand data regarding the issues surrounding poverty. The book didn't end with any solutions, just suggestions for the reader and points for them to think about.

Using this case study information, new studies could be organized to learn better ways to help people who are fighting poverty, or better ways to help the working poor.

Contradicting Established Ideas or Theories

Oftentimes there are theories that may be questioned with case studies. For example, in the John/John case study, it was believed that gender and sexual identity were a construct of nurture, not nature.

John-John focused on a set of twin boys, both of whom were circumcised at the age of 6 months. One of the twin's circumcisions failed, causing irreparable damage to the penis. His parents were concerned about the sexual health of their son, so they contacted Dr. John Money for a solution.

Dr. Money believed that sexuality came from nurture, not nature, and that the injured baby, Bruce, could be raised as a girl. His penis was removed and he was sexually reassigned to become a girl. Bruce's name was changed to Brenda, and his parents decided to raise him as a girl.

In this case, Dr. Money was dishonest. He believed that gender could be changed, which has since been proven false. Brenda's parents were also dishonest, stating that the surgery was a success, when in fact that wasn't the case.

As Brenda grew up, she always acted masculine and was teased for it at school. She did not socialize as a girl, and did not identify as a female. When Brenda was 13 she learned the truth, and was incredibly relieved. She changed her name to David, and lived the rest of her life as a male.

This case proved that the general theory was wrong, and is still valuable, even though the study author was dishonest.

Giving New Insight

Case studies have the ability to give insight into phenomena that cannot be learned in any other way. An example of this is the case study about Sidney Bradford. Bradford was blind from the age of 10 months old, and regained his sight at the age of 52 from a corneal transplant.

This unique situation allowed researchers to better learn how perception and motion changes when suddenly given sight. They were able to better understand how colors and dimensions affect the human process. For what it is worth, Bradford continued to live and work with his eyes closed, as he found sight too stimulating.

Another famous study was the sociological study of Milgram.

Stanley Milgram did a study from 1960 to 1974 in which he studied the effects of social pressure. The study was set up as an independent laboratory. A random person would walk in, and agree to be a part of the study. He was told to act as a teacher, and ask questions to another volunteer, who was the learner.

The teacher would ask the learner questions, and whenever he answered incorrectly, the teacher was instructed to give the learner an electric shock. Each time the learner was wrong, the shock would be increased by 15 volts. What the teacher didn't know was that the learner was a part of the experiment, and that no shocks were being given. However, the learner did act as if they were being shocked.

If the teachers tried to quit, they were strongly pushed to continue. The goal of the experiment was to see whether or not any of the teachers would go up to the highest voltage. As it turned out, 65% of the teachers did.

This study opened eyes when it comes to social pressure. If someone tells you it is okay to hurt someone, at what point will the person back off and say "this is not ok!" And in this study, the results were the same, regardless of income, race, gender or ethnicity.

This study opened up the sociological world of understanding the divide between social pressure and morality.

Disadvantages of Case Studies

Inability to Replicate

As demonstrated with the Genie case study, many studies cannot be replicated, and therefore, cannot be corroborated. Because the studies cannot be replicated, it means the data and results are only valid for that one person. Now, one could infer that that results of the Genie study would be the same with other feral children, without additional studies we can never be 100% certain.

Also, Genie was a white, American female. We do not know whether someone with a different gender, race or ethnicity would have a different result.

Key Term! Hawthorne Effect

The effect in which people change their behavior when they are aware they are being observed.

Researcher Bias

When conducting a case study, it is very possible for the author to form a bias. This bias can be for the subject; the form of data collection, or the way the data is interpreted. This is very common, since it is normal for humans to be subjective. It is well known that Sigmund Freud, the father of psychology, was often biased in his case histories and interpretations.

The researcher can become close to a study participant, or may learn to identify with the subject. When this happens the researcher loses their perspective as an outsider.

No Classification

Any classification is not possible due to studying a small unit. This generalization of results is limited, since the study is only focusing on one small group. However, this isn't always a problem, especially if generalization is not one of the study's goals.

Time Intensive

Case studies can be very time consuming. The data collection process can be very intensive and long, and this is something new researchers are not familiar with. It takes a long period of time to develop a case study, and develop a detailed analysis.

Many studies also require the authors to immerse themselves in the case. For example, in the Genie case, the lead researchers spent an abnormal amount of time with Genie, since so few people knew how to handle her. David Rigler, one of the lead researchers, actually had Genie live with him and his family for years. Because of this attachment, many questioned the veracity of the study data.

Possibility of Errors

Case study method may have errors of memory or judgment. Since reconstructing case history is based on memory, this can lead to errors. Also, how one person perceived the past could be different for another person, and this can and does lead to errors.

When considering various aspects of their lives, people tend to focus on issues that they find most important. This allows them to form a prejudice and can make them unaware of other possible options.

Ethical Issues

With small studies, there is always the question of ethics. At what point does a study become unethical? The Genie case was riddled with accusations of being unethical, and people still debate about it today.

Was it ethical to study Genie as deeply as she was studied?

Did Genie deserve to live out her life unbothered by researchers and academics trying to use her case to potentially further their careers?

At what point does the pursuit of scientific knowledge outweigh the right to a life free from research?

Also, because the researchers became so invested in the study, people questioned whether a researcher would report unethical behavior if they witnessed it.

Advantages and Disadvantages in Real-Life Studies

Two of these case studies are the Tylenol Scandal and the Genie language study.

Let's look at the advantages and disadvantages of these two studies.

Genie – Advantages

Uniqueness of study – Being able to study a feral child is a rare occurrence.

Genie – Disadvantages

Ethics - The lead researcher David Rigler provided a home for Genie, and was paid for being a foster parent. This is often seen as unethical, since Rigler had a financial interest in Genie and her case.

Tylenol – Advantages

Uniqueness of study – What happened to Tylenol was very unique and rare. While companies face crisis all the time, a public health crisis of this magnitude is very unique.

Tylenol – Disadvantages

Online Class : Marketing 101

  • Course Catalog
  • Group Discounts
  • Gift Certificates
  • For Libraries
  • CEU Verification
  • Medical Terminology
  • Accounting Course
  • Writing Basics
  • QuickBooks Training
  • Proofreading Class
  • Sensitivity Training
  • Excel Certificate
  • Teach Online
  • Terms of Service
  • Privacy Policy

Follow us on FaceBook

helpful professor logo

10 Case Study Advantages and Disadvantages

case study advantages and disadvantages, explained below

A case study in academic research is a detailed and in-depth examination of a specific instance or event, generally conducted through a qualitative approach to data.

The most common case study definition that I come across is is Robert K. Yin’s (2003, p. 13) quote provided below:

“An empirical inquiry that investigates a contemporary phenomenon within its real-life context, especially when the boundaries between phenomenon and context are not clearly evident.”

Researchers conduct case studies for a number of reasons, such as to explore complex phenomena within their real-life context, to look at a particularly interesting instance of a situation, or to dig deeper into something of interest identified in a wider-scale project.

While case studies render extremely interesting data, they have many limitations and are not suitable for all studies. One key limitation is that a case study’s findings are not usually generalizable to broader populations because one instance cannot be used to infer trends across populations.

Case Study Advantages and Disadvantages

1. in-depth analysis of complex phenomena.

Case study design allows researchers to delve deeply into intricate issues and situations.

By focusing on a specific instance or event, researchers can uncover nuanced details and layers of understanding that might be missed with other research methods, especially large-scale survey studies.

As Lee and Saunders (2017) argue,

“It allows that particular event to be studies in detail so that its unique qualities may be identified.”

This depth of analysis can provide rich insights into the underlying factors and dynamics of the studied phenomenon.

2. Holistic Understanding

Building on the above point, case studies can help us to understand a topic holistically and from multiple angles.

This means the researcher isn’t restricted to just examining a topic by using a pre-determined set of questions, as with questionnaires. Instead, researchers can use qualitative methods to delve into the many different angles, perspectives, and contextual factors related to the case study.

We can turn to Lee and Saunders (2017) again, who notes that case study researchers “develop a deep, holistic understanding of a particular phenomenon” with the intent of deeply understanding the phenomenon.

3. Examination of rare and Unusual Phenomena

We need to use case study methods when we stumble upon “rare and unusual” (Lee & Saunders, 2017) phenomena that would tend to be seen as mere outliers in population studies.

Take, for example, a child genius. A population study of all children of that child’s age would merely see this child as an outlier in the dataset, and this child may even be removed in order to predict overall trends.

So, to truly come to an understanding of this child and get insights into the environmental conditions that led to this child’s remarkable cognitive development, we need to do an in-depth study of this child specifically – so, we’d use a case study.

4. Helps Reveal the Experiences of Marginalzied Groups

Just as rare and unsual cases can be overlooked in population studies, so too can the experiences, beliefs, and perspectives of marginalized groups.

As Lee and Saunders (2017) argue, “case studies are also extremely useful in helping the expression of the voices of people whose interests are often ignored.”

Take, for example, the experiences of minority populations as they navigate healthcare systems. This was for many years a “hidden” phenomenon, not examined by researchers. It took case study designs to truly reveal this phenomenon, which helped to raise practitioners’ awareness of the importance of cultural sensitivity in medicine.

5. Ideal in Situations where Researchers cannot Control the Variables

Experimental designs – where a study takes place in a lab or controlled environment – are excellent for determining cause and effect . But not all studies can take place in controlled environments (Tetnowski, 2015).

When we’re out in the field doing observational studies or similar fieldwork, we don’t have the freedom to isolate dependent and independent variables. We need to use alternate methods.

Case studies are ideal in such situations.

A case study design will allow researchers to deeply immerse themselves in a setting (potentially combining it with methods such as ethnography or researcher observation) in order to see how phenomena take place in real-life settings.

6. Supports the generation of new theories or hypotheses

While large-scale quantitative studies such as cross-sectional designs and population surveys are excellent at testing theories and hypotheses on a large scale, they need a hypothesis to start off with!

This is where case studies – in the form of grounded research – come in. Often, a case study doesn’t start with a hypothesis. Instead, it ends with a hypothesis based upon the findings within a singular setting.

The deep analysis allows for hypotheses to emerge, which can then be taken to larger-scale studies in order to conduct further, more generalizable, testing of the hypothesis or theory.

7. Reveals the Unexpected

When a largescale quantitative research project has a clear hypothesis that it will test, it often becomes very rigid and has tunnel-vision on just exploring the hypothesis.

Of course, a structured scientific examination of the effects of specific interventions targeted at specific variables is extermely valuable.

But narrowly-focused studies often fail to shine a spotlight on unexpected and emergent data. Here, case studies come in very useful. Oftentimes, researchers set their eyes on a phenomenon and, when examining it closely with case studies, identify data and come to conclusions that are unprecedented, unforeseen, and outright surprising.

As Lars Meier (2009, p. 975) marvels, “where else can we become a part of foreign social worlds and have the chance to become aware of the unexpected?”

Disadvantages

1. not usually generalizable.

Case studies are not generalizable because they tend not to look at a broad enough corpus of data to be able to infer that there is a trend across a population.

As Yang (2022) argues, “by definition, case studies can make no claims to be typical.”

Case studies focus on one specific instance of a phenomenon. They explore the context, nuances, and situational factors that have come to bear on the case study. This is really useful for bringing to light important, new, and surprising information, as I’ve already covered.

But , it’s not often useful for generating data that has validity beyond the specific case study being examined.

2. Subjectivity in interpretation

Case studies usually (but not always) use qualitative data which helps to get deep into a topic and explain it in human terms, finding insights unattainable by quantitative data.

But qualitative data in case studies relies heavily on researcher interpretation. While researchers can be trained and work hard to focus on minimizing subjectivity (through methods like triangulation), it often emerges – some might argue it’s innevitable in qualitative studies.

So, a criticism of case studies could be that they’re more prone to subjectivity – and researchers need to take strides to address this in their studies.

3. Difficulty in replicating results

Case study research is often non-replicable because the study takes place in complex real-world settings where variables are not controlled.

So, when returning to a setting to re-do or attempt to replicate a study, we often find that the variables have changed to such an extent that replication is difficult. Furthermore, new researchers (with new subjective eyes) may catch things that the other readers overlooked.

Replication is even harder when researchers attempt to replicate a case study design in a new setting or with different participants.

Comprehension Quiz for Students

Question 1: What benefit do case studies offer when exploring the experiences of marginalized groups?

a) They provide generalizable data. b) They help express the voices of often-ignored individuals. c) They control all variables for the study. d) They always start with a clear hypothesis.

Question 2: Why might case studies be considered ideal for situations where researchers cannot control all variables?

a) They provide a structured scientific examination. b) They allow for generalizability across populations. c) They focus on one specific instance of a phenomenon. d) They allow for deep immersion in real-life settings.

Question 3: What is a primary disadvantage of case studies in terms of data applicability?

a) They always focus on the unexpected. b) They are not usually generalizable. c) They support the generation of new theories. d) They provide a holistic understanding.

Question 4: Why might case studies be considered more prone to subjectivity?

a) They always use quantitative data. b) They heavily rely on researcher interpretation, especially with qualitative data. c) They are always replicable. d) They look at a broad corpus of data.

Question 5: In what situations are experimental designs, such as those conducted in labs, most valuable?

a) When there’s a need to study rare and unusual phenomena. b) When a holistic understanding is required. c) When determining cause-and-effect relationships. d) When the study focuses on marginalized groups.

Question 6: Why is replication challenging in case study research?

a) Because they always use qualitative data. b) Because they tend to focus on a broad corpus of data. c) Due to the changing variables in complex real-world settings. d) Because they always start with a hypothesis.

Lee, B., & Saunders, M. N. K. (2017). Conducting Case Study Research for Business and Management Students. SAGE Publications.

Meir, L. (2009). Feasting on the Benefits of Case Study Research. In Mills, A. J., Wiebe, E., & Durepos, G. (Eds.). Encyclopedia of Case Study Research (Vol. 2). London: SAGE Publications.

Tetnowski, J. (2015). Qualitative case study research design.  Perspectives on fluency and fluency disorders ,  25 (1), 39-45. ( Source )

Yang, S. L. (2022). The War on Corruption in China: Local Reform and Innovation . Taylor & Francis.

Yin, R. (2003). Case Study research. Thousand Oaks, CA: Sage.

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 5 Top Tips for Succeeding at University
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 50 Durable Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 100 Consumer Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 30 Globalization Pros and Cons

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

  • Discounts and promotions
  • Delivery and payment

Cart is empty!

Case study definition

case study psychology strengths

Case study, a term which some of you may know from the "Case Study of Vanitas" anime and manga, is a thorough examination of a particular subject, such as a person, group, location, occasion, establishment, phenomena, etc. They are most frequently utilized in research of business, medicine, education and social behaviour. There are a different types of case studies that researchers might use:

• Collective case studies

• Descriptive case studies

• Explanatory case studies

• Exploratory case studies

• Instrumental case studies

• Intrinsic case studies

Case studies are usually much more sophisticated and professional than regular essays and courseworks, as they require a lot of verified data, are research-oriented and not necessarily designed to be read by the general public.

How to write a case study?

It very much depends on the topic of your case study, as a medical case study and a coffee business case study have completely different sources, outlines, target demographics, etc. But just for this example, let's outline a coffee roaster case study. Firstly, it's likely going to be a problem-solving case study, like most in the business and economics field are. Here are some tips for these types of case studies:

• Your case scenario should be precisely defined in terms of your unique assessment criteria.

• Determine the primary issues by analyzing the scenario. Think about how they connect to the main ideas and theories in your piece.

• Find and investigate any theories or methods that might be relevant to your case.

• Keep your audience in mind. Exactly who are your stakeholder(s)? If writing a case study on coffee roasters, it's probably gonna be suppliers, landlords, investors, customers, etc.

• Indicate the best solution(s) and how they should be implemented. Make sure your suggestions are grounded in pertinent theories and useful resources, as well as being realistic, practical, and attainable.

• Carefully proofread your case study. Keep in mind these four principles when editing: clarity, honesty, reality and relevance.

Are there any online services that could write a case study for me?

Luckily, there are!

We completely understand and have been ourselves in a position, where we couldn't wrap our head around how to write an effective and useful case study, but don't fear - our service is here.

We are a group that specializes in writing all kinds of case studies and other projects for academic customers and business clients who require assistance with its creation. We require our writers to have a degree in your topic and carefully interview them before they can join our team, as we try to ensure quality above all. We cover a great range of topics, offer perfect quality work, always deliver on time and aim to leave our customers completely satisfied with what they ordered.

The ordering process is fully online, and it goes as follows:

• Select the topic and the deadline of your case study.

• Provide us with any details, requirements, statements that should be emphasized or particular parts of the writing process you struggle with.

• Leave the email address, where your completed order will be sent to.

• Select your payment type, sit back and relax!

With lots of experience on the market, professionally degreed writers, online 24/7 customer support and incredibly low prices, you won't find a service offering a better deal than ours.

ORIGINAL RESEARCH article

The strength of conspiracy beliefs versus scientific information: the case of covid 19 preventive behaviours.

Daniel Pinazo-Calatayud

  • 1 University of Jaume I, Castelló de La Plana, Spain
  • 2 Miguel Hernández University of Elche, Elche, Spain

Controlling the spread of COVID-19 requires individuals to adopt preventive behaviours, but conspiracy beliefs about its origin are spreading. The aim of this paper is to better comprehend the strength of conspiracy beliefs versus objective COVID-19 information to predict people’s adherence to protective behaviours (getting vaccinated, being tracked through APPs, and keeping social distance from infected people). Study 1 shows that COVID-19 implicit theories detected in the Pre-study were activated as independent factors that constitute people’s interpretations of the virus origin. These beliefs were related to a lesser intention to engage in preventive behaviours and a higher level of mistrust in institutional information, although some beliefs generate positive expectations about COVID-19 consequences. In Study 2, conducted with a different sample, official COVID-19 information was included as an independent variable, but this new variable did not further explain results. Lastly, Study 3 consisting of both previous samples confirmed that conspiracy beliefs had a direct effect on a lesser willingness to engage in preventive actions, a higher mistrust, and positive expectations about COVID-19 consequences. We conclude that objective COVID-19 information did not buffer the effect of conspiracy beliefs; they interfere with actions to prevent it by taking institutions as scapegoats or complicit with secret powers.

Introduction

Every time we interpret an event, we predict someone’s behaviour and make the decision to act in a specific way. This is because we adopt a certain way of “seeing” reality. We are guided by an implicit theory. According to the Implicit Theories Model ( Rodrigo et al., 1993 ), people develop implicit theories (ITs) about the social world through a socio-constructive process. These theories can function as either knowledge (declaratively) or a belief (in an interpretive and prescriptive way). So, despite people possibly knowing a wide variety of explanations about the origin of COVID-19, they only believe some of them, and thus, they interpret reality from there and act accordingly. This dual functionality requires a flexible and dynamic structural model, and knowledge or beliefs can be synthesised depending on demand ( Hintzman, 1986 ). Moreover, depending on the individual motivation, a specific synthesis of beliefs is activated. However, if motivation changes, another different synthesis of beliefs can be activated, which explains intraindividual variability. In addition, the limits of ITs are blurry, since people activate several theories simultaneously in the same context ( Rodrigo et al., 1993 ). The aim of the Pre-study was to explore which ITs people know about the origin of COVID-19 (COVID-19 ITs). To do so, a process was developed that included two phases.

Conspiracy beliefs

Empirical evidence suggests that the aversive feelings that people experience in crises (i.e., fear, uncertainty, not feeling in control) stimulate a need to control and make sense of the situation, which increases the likelihood of perceiving conspiracies in such social situations ( van Prooijen and Douglas, 2017 ). It is not surprising that conspiracy theories flourished shortly after the first COVID-19 news and still spread ( Van Bavel et al., 2020 ). The disease is not easily explained, it affects people’s lives globally, and uncertainty prevails ( Imhoff and Lamberty, 2020 ). Hence conspiracy beliefs might be potentially palliative in giving individuals back their sense of control ( Imhoff and Lamberty, 2020 ).

Conspiracy beliefs are a group of false ideas in which the ultimate cause of certain events or situations is judged as being a plot devised by many actors working together with a clear goal in mind, which is unlawful and secret ( Swami et al., 2014 ) and with a negative intent ( European Commission, 2020 ). Some conspiracy beliefs are about the origins of the SARS-CoV-2 virus; for example, it is a hoax or an exaggeration of governments, it is a human-manufactured virus ( Imhoff and Lamberty, 2020 ), a bioweapon created by China to destroy the West ( Freeman et al., 2020 ), or electromagnetic waves transmitted by 5G technology ( Jolley and Paterson, 2020 ). Even Jews are the target of conspiracy theories (i.e., Jews control the government, the media, or banks for malicious purposes) ( European Commission, 2020 ). Other theories focus on prevention and cure and state; for instance, conventional medical treatment should not be trusted and people should use alternative remedies to ward off the virus ( Van Bavel et al., 2020 ).

Conspiracy beliefs and their effects

Conspiracy beliefs can have harmful consequences and might motivate problematic behaviour in the current crisis. They may fuel discrimination, justify hate crimes, and spread mistrust in public institutions, which could lead to political apathy or radicalisation, and even mistrust in scientific and medical information, with very serious consequences ( European Commission, 2020 ). When people are faced with decisions in their lives that involve uncertain or complex knowledge, they tend to rely on institutions to make them ( Jost and Hunyady, 2005 ; Kay et al., 2008 ; Shepherd and Kay, 2012 ).

However, conspiracy beliefs may break this tendency to trust in institutional information. Empirical evidence reveals that the people who endorse a conspiracy worldview are not especially likely to trust expert recommendations that aim to lower infection rates ( Imhoff and Lamberty, 2020 ). Conspiracy beliefs connect mistrusting institutions and experts, such as adhering less to all government guidelines, being less willing to undergo diagnostic or antibody tests, or be vaccinated, and are also associated with climate change conspiracy beliefs ( Freeman et al., 2020 ). Holding more COVID-19 conspiracy beliefs is related to adhering less to containment-related behaviours both directly and indirectly by trusting the government, the health system, and their experts less ( Karić and Međedović, 2021 ). Similarly, COVID-19 conspiracy beliefs that either minimise its importance or blame it on actors are presumed to have a malicious intent and are inversely related to both reports of taking preventive actions and intentions to be vaccinated ( Romer and Jamieson, 2020 ). Belief in the efficacy of malicious intervention by the health care system is often coupled with the perception ( Eicher and Bangerter, 2015 ; Taylor and Asmundson, 2020 ).

Imhoff and Lamberty (2020) explored the idea that different forms of conspiracy beliefs have distinct behavioural implications and found that the distorted beliefs describing the pandemic as a hoax were more closely linked with reduced containment-related behaviour (e.g., hygiene, physical distancing), while conspiracy beliefs in sinister forces purposefully creating the virus were related to more self-centred prepping behaviour (e.g., alternative remedies, hoarding). Along these lines, Bolsen et al. (2020) found that those individuals who believed the virus originated naturally from zoonotic transmission (i.e., from bats to humans) were more supportive of additional funding for biomedical research to identify harmful coronaviruses. However, exposure to conspiracy rhetoric (i.e., SARS-CoV-2 originated in a Chinese laboratory) in isolation, or even competing with scientific information about its natural origin (i.e., a debate between scientists and others about the origin of the virus being shown to participants), resulted in a so-called conspiracy effect. This reduces individuals’ intentions to urgently practice necessary public health behaviours, such as wearing face masks, frequently washing hands, and maintaining a 6-foot social distance. Even the belief in a 5G conspiracy is associated with violent responses to the presumed connection between 5G mobile technology and COVID-19. This relation is explained by state anger, where the effect between anger and violence is stronger for those with heightened paranoia ( Jolley and Paterson, 2020 ).

The present research

Due to COVID-19’s high contagion, which seems even higher in the new variants of the mutated strain, controlling the spread of this virus requires people adopting preventive behaviours globally. Understanding the factors that predict individuals’ willingness to engage in such preventive actions is essential for controlling infection ( Romer and Jamieson, 2020 ). The argument of the difficulty to understand complex information, in this case the origin of COVID-19, suggests that people tend to rely on institutions to make decisions, which implies that they demand actions ( Jost and Hunyady, 2005 ; Kay et al., 2008 ; Shepherd and Kay, 2012 ).

However, previous research has demonstrated that a significant minority of the population holds clear false beliefs of COVID-19 conspiracies ( Freeman et al., 2020 ), which are related to mistrust in scientific, expert, and medical information and recommendations (e.g., European Commission, 2020 ; Freeman et al., 2020 ; Imhoff and Lamberty, 2020 ; Karić and Međedović, 2021 ). These conspiracy beliefs are also associated with being less willing to be vaccinated (e.g., Freeman et al., 2020 ; Romer and Jamieson, 2020 ) or performing fewer containment-related behaviours, such as those related to hygiene or social distancing ( Imhoff and Lamberty, 2020 ). These studies suggest that beliefs operate as knowledge; that is, people do not need to rely on institutions to perform their actions because, even if they do not understand the available information, they are convinced that they understand it and have drawn their own conclusions and know how to act.

In addition to the conspiracy beliefs described in previous studies, further knowledge is required about which ones dominate and how they affect preventive behaviours, including an important protective one; that is, physical distancing from infected people. This is essential because conspiracy beliefs may minimise the perception of risk contagion. Another factor that might affect willingness to engage in protective behaviours is beliefs in the future, i.e., expectations. We argue that when people believe that COVID-19 is due to a plot by one or many actors working together in secret and with the negative intent to somehow control people, only the pandemic’s harmful consequences can be expected and, hence, reinforces their unwillingness to perform protective actions. However as far as we know, its association with preventive behaviours has not yet been tested. Expectations of society’s future have only been studied as a consequence of perceived political polarisation and the perception of a chaotic government response ( Crimston and Silvanathan, 2020 ). Here we attempt to bridge these gaps.

The aim of this research is to extend previous studies by testing which factors, including the endorsement of distinct COVID-19 conspiracy beliefs, are predictive of willingness to engage in three preventive behaviours: getting vaccinated, being tracked through apps, and physical distancing from infected people. To do so, we carried out a pre-study and three subsequent studies, which did not involve medical experimentation and were approved by the Research Ethics Committee of the university to which the main researcher belongs and where the research was conducted. Participation was voluntary. The participants’ consent was obtained when they clicked on the link to start the online survey after being informed about the research purpose. This consent was necessary to complete the survey.

Method and results

The method and results of this study were differentiated into two phases, which responded to distinct conceptual purposes.

Phase 1. Exploratory analysis

This phase had a twofold aim. Firstly, to obtain the different alternative opinions on the origin of COVID-19 using a historical review technique. The compilation of the theories was carried out on Internet channels known to focus on conspiracy theories of different tenors (e.g., Forocoches, Pandora’s box, MindaliaTV, and some others identified in a random search by the research group). All of these channels had discussion forums. Twitter, Facebook, and Instagram were the only social networks used as well as some YouTube accounts. They were chosen for their implicit reputation in terms of their promoting of ideas that could be considered conspiracy theories. An additional criterion was to select channels in the language of the country where the research was conducted and with a main presence in that country. About 74 statements or items (see Supplementary Table S1 for details) were collected in April 2020. The second aim was to classify the different statements according to their similarity and coherence. To this end, a focus group was formed in which five expert academics (three women and two men aged 45–61 years) were asked to classify different items. A final list of 30 items was classified into five cultural categories, with six items per category. The 30 items were used in Phase 2 to develop data collection instrument items (see Supplementary Table S1 for details). Forty-four ambiguous and redundant items were removed (see Supplementary Table S1 for details).

Phase 2. Analysis of COVID-19 its as knowledge

The aim of Phase 2 was to determine the structure of COVID-19 ITs as knowledge. We hypothesised that people collected ideas about the origin of COVID-19 (COVID-19 ITs), which they organise prototypically as mental representations. Five questionnaires (one questionnaire per theory) were devised with the 30 items selected in Phase 1. They were similar but with a different cover. On each cover, two individuals had a conversation and defended one of the five theories (for more details, see Supplementary Table S2 ). A sample of 110 participants (54 men and 56 women aged between 19 and 65 years) agreed to voluntarily collaborate in the study over the Internet. Each participant answered one questionnaire (see an example in Supplementary Table S3 ) and was asked to respond as the leading characters of the story, after clarifying that these individuals’ opinions were required and not their own, on a 5-point Likert scale ranging from 1 ( Totally disagree ) to 5 ( Totally agree ). The result was compared to the structure obtained from the expert group. The items and structure that matched in both cases were maintained.

In order to understand the relevance of each statement in its theory of belonging, the Typicity Index ( Rosch, 1975 ) was used. It provides the degree of representativeness of elements belonging to a mental representation. The findings were obtained from individuals’ average scores, which showed to what extent each statement was typical of each theory. Typical items were those whose index was 4 or higher (see Supplementary Table S4 for details). According to this criterion, 10 items were removed and the remaining 20 were distributed in four theories. In addition, an exploratory factor analysis (EFA) with principal components extraction was carried out. The Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy and Bartlett’s test of sphericity gave good results: KMO = 0.85, ( χ 2  = 1377.934; df = 190; p  < 0.001). The factorial solution showed four factors (see Supplementary Table S4 for details).

The aim of the Pre-study was to detect which COVID-19 origin theories people knew and whether they were organised as mental representations, following previous research that refers to knowledge of the world being organised as ITs ( Hintzman, 1986 ; Rodrigo et al., 1993 ). As we expected, ideas about COVID-19 origin theories were prototypically organised as mental representations (COVID-19 ITs). Twenty items were organised into four mental representations that people activated as declarative knowledge synthesis when asked about their COVID-19 origin knowledge. Those items composed the COVID-19 ITs questionnaire that we used in subsequent studies.

In Study 1, we expected these theories to function as conspiracy beliefs linked with mistrust in institutional information, negative expectations of the pandemic’s consequences, and being less willing to engage in preventive behaviours. The aim of this study was to: (1) analyse the relationships among those four theories, activated as conspiracy beliefs, and the intention to engage in three preventive behaviours (getting vaccinated, being tracked through apps, and physical distancing from infected people); (2) compare the hypothesis of direct relations (beliefs as factors that directly affect preventive behaviours and also mistrust in institutional information and expectations of the pandemic’s consequences) to the hypothesis of difficulty in understanding information (i.e., this will imply a direct effect of conspiracy beliefs on preventive behaviours, as well as the mediation of mistrust and expectations of this relation).

We examined whether the four mental representations were activated as conspiracy beliefs also grouped into independent factors. We also analysed whether conspiracy beliefs were linked with being less willing to engage in protective behaviours by testing two models: M1, which proposed a direct relation; M2, which proposed a partial mediation of expectations and mistrust. Accordingly, we posed three hypotheses:

H1 : Knowledge theories about the origin of COVID-19 would be activated as independent factors of conspiracy beliefs. H2 : Conspiracy beliefs would be related to less intention to engage in preventive behaviours, worse expectations of COVID-19 consequences, and more mistrust in institutional information (M1: direct relation). H3 : Conspiracy beliefs would be related to being less willing to engage in preventive behaviours, having fewer positive expectations of the pandemic’s consequences, and more mistrust. In turn, mistrust would be related to fewer preventive behavioural intentions, while more positive expectations would be related to being more willing to engage in preventive behaviours (M2: partial mediation) (see Figure 1 ). Figure 1 Figure 1 . Proposed direct relation model (M1) and proposed partial mediation model (M2), Study 1. N  = 265.

The sample contained 265 participants (89 male, 176 female). Their mean age was 45.39 years (SD = 12.86), within the 18–78 years range. Of the whole sample, 67.2% had at least a university degree while the remaining 32.8% did not. As far as we know, there is no way to estimate sample size effects in structural equation models.

The participants completed an online survey to assess the relations between conspiracy beliefs and willingness to engage in protective behaviours “for COVID-19”, must apply in the Methods section of Study 2. This survey was distributed to people on social media platforms (e.g., Facebook, WhatsApp, YouTube, e-mail, etc.).

Conspiracy belief theories about the origin of COVID-19 (COVID-19 ITs)

To assess the conspiracy belief theories about the origin of COVID-19, we used the COVID-19 ITs questionnaire developed in the Pre-study (see Supplementary Table S5 for details). The wording of items was modified to make them self-reflective. This allowed us to change the Pre-study items that deal with knowledge (e.g., “COVID-19 has been created by laboratories to sell drugs”) to items that assess beliefs (e.g., “I believe coronavirus has been created by laboratories to sell medicines”) (see Supplementary Table S6 for details). An examination of the Kaiser–Meyer–Olkin measure of sampling adequacy suggested that the sample was factorable (KMO = 0.899). An EFA with principal components extraction was carried out for this sample. The four factors obtained by varimax rotation, by choosing those components with eigenvalues above 1, were similar to those in the Pre-study and explained 63.61% of the variance. The first factor, Alien CT , was composed of five items (eigenvalue = 7.71). The item with the highest factor load ( r 2  = 0.90) was: “I believe COVID-19 vaccine is programmed by aliens to subdue us.” The second factor, Economy CT , included four items (eigenvalue = 2.06). The item with the highest factor load ( r 2  = 0.82) was: “I believe coronavirus has been created by laboratories to sell drugs.” The third factor, Earth CT , comprised six items (eigenvalue = 1.77). The item with the highest factor load ( r 2  = 0.78) was: “I believe coronavirus has been caused by nature itself to humanity.” Lastly, the fourth factor, Freedom restriction T , was composed of five items (eigenvalue = 1.19). The item with the highest factor load ( r 2  = 0.78) was: “I believe COVID-19’s tracking apps have been created to control people.”

Mistrusting institutional information (Mistrust)

To assess the degree of mistrust in the information provided by institutions, mass media, etc., to control the pandemic, we used a 4-item questionnaire devised for this study (e.g., “I feel manipulated”) (see Supplementary Table S6 for details). The participants answered on a 5-point Likert scale ranging from 1 ( Totally disagree ) to 5 ( Totally agree ). Higher scores were indicative of more mistrust.

Expectations of the pandemic’s consequences (Expectations)

To evaluate people’s expectations of the SARS-CoV-2 pandemic’s consequences, we used a 7-item questionnaire designed for this study. Four of the items described expectations of positive pandemic consequences (e.g., “Scientific thinking will be strengthened”) (see Supplementary Table S6 for details). The remaining three items expressed negative consequences (e.g., “Our civilisation as we know it will collapse”) (see Supplementary Table S6 for details). These last items were reversed so that higher scores would be indicative of more positive expectations and vice versa. The participants responded on a 5-point Likert scale ranging from 1 ( Totally disagree ) to 5 ( Totally agree ).

Intention to install a COVID-19 tracking apps (Apps)

To assess people’s willingness to engage in installing a tracking app, we used a self-devised questionnaire with five items (e.g., “I will use a tracking app to find out if I am near someone infected”) (see Supplementary Table S6 for details). The participants replied on a 5-point Likert scale ranging from 1 ( Totally disagree ) to 5 ( Totally agree ). Higher scores were indicative of more willingness to accept a COVID-19 tracking app.

Intention to get vaccinated (Vaccine)

People’s behavioural intention to get vaccinated was evaluated by using a self-devised questionnaire with two items: “I will get vaccinated as soon as there is a vaccine available” and “I am not going to get vaccinated” (reverse) (see Supplementary Table S6 for details). The participants answered on a 5-point Likert scale ranging from 1 ( Totally disagree ) to 5 ( Totally agree ). Higher scores were indicative of being more willing to get vaccinated.

Physical distancing from infected people (Distancing)

To assess the extent to which people are willing to be physically distanced from infected people, we adapted the “Fear and avoidance” subscale from the Community Attitudes towards Mental Illness Scale (CAMI-S; Taylor and Dear, 1981 ; Högberg et al., 2008 ). For the purpose of this study, we changed the topic of serious mental illness to physical distancing from people infected with COVID-19 as a protective measure and not due to stigmatisation. We argued that the people with conspiracy beliefs would not accept the existence or danger of COVID-19 and would be likely to reject this physical distancing because they would not perceive being at risk from the infected population when constituting recommended protective behaviour. The 4-item questionnaire was: “It is best to avoid anyone who has tested positive for COVID-19” (see Supplementary Table S6 for details). The participants answered on a 5-point Likert scale ranging from 1 ( Totally disagree ) to 5 ( Totally agree ). Higher scores were indicative of them being more willing to physically distance from infected people.

Table 1 displays the descriptive analyses and correlations of this study. Data reveal our participants’ low adhesion level to conspiracy beliefs about the origin of COVID-19.

www.frontiersin.org

Table 1 . Descriptive analysis and correlations of the variables in Study 1 ( N  = 265).

To test the hypotheses, two plausible models (see Figure 1 ) were compared by following the maximum likelihood estimation method of structural equation modelling (SEM), as implemented by the AMOS 26 computer program ( Arbuckle, 2019 ). The first model proposes a direct relation of conspiracy beliefs to preventive behavioural intentions, as well as mistrust and expectations. M1 fitted the data well ( χ 2  = 4.475; df = 7; p  = 0.724; RMSEA = 0.000; NFI = 0.995; CFI = 1.000). The second model proposes a partial mediation of mistrust and expectations of the relation between conspiracy beliefs and behavioural intentions. M2 also fitted the data well ( χ 2  = 0.521; df = 1; p  = 0.470; RMSEA = 0.000; NFI = −999; CFI = 1.000). Although both models fitted the data well, the comparison between them was favourable for the first one (RFI ME1  = 0.972 vs. RFI ME2  = 0.978). A parsimonious and comparative index was calculated, which also revealed that M1 was better than M2 (AIC M1  = 80.475 vs. AIC M2  = 88.521). The final model (M1) is depicted in Figure 2 .

www.frontiersin.org

Figure 2 . Final estimated model (M1), Study 1. N  = 265. Only the significant standardised path coefficients are provided; * p  < 0.05 and *** p  < 0.001.

In Study 1, we explored whether COVID-19 ITs would be activated as conspiracy beliefs and how they would affect the population’s mistrust, expectations, and willingness to be involved in behaviours to prevent infection. Firstly, as expected in H1, the results revealed that the COVID-19 ITs about its origin were activated as independent factors to constitute people’s interpretations of the SARS-COV-2 origin. In addition, the findings revealed that M1 fitted the data better than M2, and it also explained the relations between the variables with fewer estimators. Therefore, H3 was not supported. H2, which predicted a direct effect of COVID-19 ITs on behavioural intentions and mistrust, was confirmed, but not for expectations. Therefore, H2 was partially confirmed. To better clarify these relations, Study 2 aimed to replicate these results and compare them to a model that involved institutional information to explain commitment to preventive behaviours, as well as expectations and mistrust.

Study 2 incorporated the variable official COVID-19 information. We expected that, according to the degree to which people have official information about the virus, its severity, and possible consequences, they would perceive the future to be under control (more positive expectations) and would be more predisposed to perform protective behaviours. However, they would likely mistrust institutional information and conclude that the whole matrix of official power and powers behind it would likely provide a partial or biased vision of the pandemic. In parallel, other individuals could develop conspiracy beliefs that could result in a false sensation of being informed. In fact, previous research reveals that believers in conspiracy theories are news consumers and feel informed, but they are nourished by sources not legitimised by official power ( Stempel et al., 2007 ; Klein et al., 2019 ). This perception of being informed makes people less dependent on the government and, consequently, they trust institutions and their actions less. They might hold a more pessimistic vision of the future (generating more negative expectations of the pandemic’s consequences). Study 2 aimed to replicate the Study 1 results with a different sample and to compare M1 to another model that included an additional independent variable: official COVID-19 information (M3). We argued that if official information was included in the model, this variable would have a significant direct effect and M3 would better fit the data than M1 whenever information was not included.

In this study, we tested the effect of official COVID-19 information on mistrust, expectations, and willingness to engage in protective behaviour for COVID-19 contention. To do so, we tested two models: M1, that proposed a direct relation, and M3, which included official information (see Figure 3 ). Accordingly, we posed an additional hypothesis:

H4 : Official COVID-19 information would be related to more intention to engage in preventive behaviours, mistrusting institutional information more, and more positive expectations of the pandemic’s consequences (M3: direct relation including official COVID-19 information).

www.frontiersin.org

Figure 3 . Proposed direct relation model (M1) and proposed direct relation model including official COVID-19 information (M3), Study 2. N  = 142.

This study included 148 individuals, but six of them did not answer the questions about official COVID-19 information so they were removed from the study. The final sample included 142 participants (37 male, 105 female). Their mean age was 43.50 years (SD = 11.33), which fell within the 18–82 years range. Of our sample, 71.8% had at least a university degree while the remaining 28.2% did not.

Two months after the Study 1 data collection, a different sample of participants completed the online survey, which included the scale about official COVID-19 information. Once again, the survey was distributed through social media platforms (e.g., Facebook, WhatsApp, YouTube, e-mail, etc.).

We employed the same survey that we distributed in Study 1, except for the official COVID-19 information variable. We conducted EFA for this sample of the COVID-19 ITs.

Official COVID-19 information

A questionnaire that assessed the official information that people have about this virus was developed by the authors according to common clinical and community COVID-19 management guidelines of the Spanish Ministry of Health. This questionnaire contained 20 items, of which the formulation of nine was false (see Supplementary Table S6 for details). These items were answered on a 5-point Likert scale ranging from 1 “Completely disagree” to 5 “Completely agree.” The right answer rates of the 20 questions in the COVID-19 information questionnaire were 31–97.2%. The mean COVID-19 information score was 79.4% (SD = 14.3; range: 10–100%) in this information test.

COVID-19 ITs

These are the conspiracy belief theories about the origin of COVID-19. This sample was also factorable (KMO = 0.822). The EFA with principal components (varimax rotation) for this sample replicated the same four factors and explained 60.23% of the variance: Alien CT (eigenvalue = 6.93), Economy CT (eigenvalue = 2.25), Earth CT (eigenvalue = 1.74), and lastly Freedom restriction T (eigenvalue = 1.3). The Cronbach alphas of all the variables appear in Table 2 .

www.frontiersin.org

Table 2 . Descriptive analysis and correlations of the variables in Study 2 ( N  = 142).

In Study 2, the descriptive analyses (see Table 2 ) also revealed the participants’ slight adhesion to conspiracy beliefs of the origin of COVID-19 and moderate correlations between some variables.

To test H4, M1 and M3 (see Figure 3 ) were compared by following the maximum likelihood estimation method of structural equation modelling (SEM), as implemented by the AMOS 26 computer program ( Arbuckle, 2019 ). M1 fitted the data well ( χ 2  = 7.446; df = 7; p  = 0.384; RMSEA = 0.021; NFI = 0.981; CFI = 0.999). M3, which included official COVID-19 information, also fitted the data well ( χ 2  = 7.110; df = 7; p  = 0.418; RMSEA = 0.011; NFI = −0.983; CFI = 1.000). Despite both models fitting the data, the comparison of both favoured M1 (RFI ME1  = 0.903 vs. RFI ME3  = 0.889). Moreover, the parsimonious and comparative index was also calculated and, once again, revealed that M1 was better than M3 (AIC ME1  = 83.446 vs. AIC ME3  = 103.110). The final estimated model (M1) is displayed in Figure 4 .

www.frontiersin.org

Figure 4 . Final estimated model (M1), Study 2. N  = 142. Only the significant standardised path coefficients are provided; ** p  < 0.01 and *** p  < 0.001.

Study 2 tested whether official COVID-19 information reduced or eliminated the negative effect of conspiracy beliefs on willingness to engage in preventive behaviour for COVID-19. We also aimed to further understand how mistrust and expectations of the pandemic’s consequences would be affected by this new independent variable. In M3, we noted that official COVID-19 information had no path coefficient to indicate a significant effect on either mistrust and expectations, or willingness to engage in preventive behaviours. So, the participation of this variable in the model was spurious and, therefore, H4 was not supported. Whenever the variable official COVID-19 information was not included, M1 displayed better relative fit indices and was more parsimonious.

Study 2 evidenced that the different conspiracy beliefs had distinct direct relations with the dependent variables. The aim of Study 3 was to better clarify the results by confirming M1 with an aggregate sample (the participants jointly from Study 1 and Study 2).

The sample comprised 407 participants (126 male, 281 female). Their mean age was 44.73 years (SD = 12.37), which fell within the 18–82 years range. Of our sample, 68.8% had at least a college degree while the remaining 31.2% did not.

Procedure and variables

The procedure and the variables in Study 3 were the same as those employed in Study 1 and Study 2. This sample was also factorable (KMO = 0.912). The EFA with principal components (varimax rotation) for this sample replicated the same four factors and explained 60.23% of the variance: Alien CT (eigenvalue = 7.54), Economy CT (eigenvalue = 2.07), Earth CT (eigenvalue = 1.71), and lastly Freedom restriction T (eigenvalue = 1.10). The Cronbach alphas of all the variables appear in Table 3 .

www.frontiersin.org

Table 3 . Descriptive analysis and correlations of the variables in Study 3 ( N  = 407).

The descriptive results of Study 3 are displayed in Table 3 . As previously mentioned, the participants obtained low scores for conspiracy beliefs about the origin of COVID-19 but correlated negatively with preventive behavioural intentions.

We tested M1 (see Figure 1 ) using the entire sample that included the participants from Study 1 and Study 2. As we can see in Figure 5 , the findings revealed that this model fitted the data well ( χ 2  = 4.771; df = 7; p  = 0.688; RMSEA = 0.000; NFI = −0.996; RFI = 0.980; CFI = 1.000).

www.frontiersin.org

Figure 5 . Final estimated model (M1), Study 3. N  = 407. The significant standardised path coefficients are provided; ** p  < 0.01 and *** p  < 0.001.

Study 3 aimed to confirm M1 by integrating the two previous studies. The results supported M1 because conspiracy beliefs generally had a direct effect on willingness to engage in preventive behaviours, mistrust, and COVID-19 expectations.

General discussion

The purpose of this paper was to further understand the strength of conspiracy beliefs versus objective COVID-19 information to predict people’s adherence to behaviours to prevent SARS-CoV-2 from spreading. To do so, we tested and compared three adjustment models. In Study 1, we compared H1, which proposed that conspiracy beliefs would have a direct effect on mistrusting institutional information, expectations of the pandemic’s consequences, and preventive behavioural intentions (M1) with H2, which predicted a mediation effect of mistrust and expectations of the relation between conspiracy beliefs and intention to engage in preventive actions (M2). In Study 2, we also compared H1 to an additional hypothesis (H3), which included official COVID-19 information as an independent variable, to see whether it would buffer the effect of conspiracy beliefs on behavioural intentions (M3). Lastly, Study 3, which included both the previous samples, confirmed that conspiracy beliefs had a direct effect on willingness to engage in preventive actions with neither the indirect intervention of mistrust nor expectations of COVID-19 consequences and, more interestingly, without the participation of official COVID-19 information.

Our findings indicated important advances compared to previous research. It adds a relevant finding about the distinctive and noteworthy relations of conspiracy beliefs in individual freedom restrictions. Therefore, despite some messages stressing the benefits of following COVID-19 health instructions increasing willingness to engage in these actions ( Jordan et al., 2020 ), conspiracy beliefs seem to interfere with these messages by inhibiting possible engagement with prevention actions. Our results support recent studies about the negative influence of conspiracy beliefs on attitudes and behaviours in relation to COVID-19 contention (e.g., Bolsen et al., 2020 ; Freeman et al., 2020 ; Imhoff and Lamberty, 2020 ; Romer and Jamieson, 2020 ; Karić and Međedović, 2021 ). On the one hand, our findings support and complement Shepherd and Kay’s (2012) research about how people trust institutions when a topic is unfamiliar or unknowledgeable. Our study did not reveal that people were more likely to listen and trust the government and status quo and their actions when faced with an unfamiliar issue like the origin of COVID-19; instead, conspiracy beliefs give the impression of understanding unfamiliar information. Therefore, this perpetuates ignorance in a way that implies more mistrust rather than more trust in relation to institutions. Another differential aspect of our study was the origin of the used beliefs. Based on the Implicit Theories Model ( Rodrigo et al., 1993 ), here the beliefs that people state are empirically developed using a socio-constructive process. Lastly, and as far as we know, our study is the first to provide joint evidence that beliefs condition the intention to prevent risk and, regardless of the expected consequences, trusting institutions or available official information.

According to Imhoff and Lamberty (2020) , the different forms of conspiracy beliefs have distinct behavioural implications. The conspiracy belief in restrictions of individual freedom is that which most interferes with pandemic control management. Believing in a hidden confabulation to restrict individual freedom would decrease the perception of virus severity. This perception is noted insofar as these individuals are unwilling to maintain physical distance from people with COVID-19 because they assume that contact contagion is not a risky option. From this viewpoint, it is easier to understand that this belief has a negative effect on both government trust in pandemic management and some prevention measures. In particular, this belief negatively affects the preventive actions that limit individuals (i.e., a COVID-19 tracking app perceived as a means to control and disrespect privacy and keeping physical distance from people are judged as limitations of social interactions). However, the positive relation between believing in the individual freedom restriction and the intention of getting vaccinated are seen as protective measures, like other seasonal vaccines for widespread use, which are of free choice. This belief in a plot to restrict individual freedom confers certain optimism to people and the feeling that they control their lives. This feeling of control would the individuals who hold this belief have more positive expectations of the pandemic’s consequences. Gupta et al. (2021) indicate the effect of culture on accepting technological prevention measures. These effects might be stronger in countries with a higher incidence of individualistic culture.

The conspiracy beliefs about restricting freedom contrast with those that Mother Earth is developing an energy change that will affect human consciousness. The people who assume these beliefs are equally optimistic about the future, but unlike believers in a conspiracy to restrict freedoms, believers in the energy control of the Earth rely on institutional management and would, therefore, accept the control of tracking apps. Beliefs in global economic control negatively affect institutional trust but not risk prevention demands. However, beliefs in alien control imply less intention to get vaccinated. In short, beliefs that attribute the origin of the virus to the control of dark forces, regardless of it being economic or alien, would be the most likely to inhibit proactive behaviours to COVID-19 contention.

These beliefs make such powers accountable for the origin of the virus by attributing the intention to manipulate people to them. This attribution may explain the fact that individuals who hold these beliefs do not consider prevention behaviours and even refuse any of them (e.g., do not get vaccinated if the virus is of alien origin). Identifying a culprit would explain mistrusting the government and prevention behaviours ( Shariff et al., 2014 ; Levin et al., 2016 ). Moreover, believing that an economic power is responsible would make the endogroup/exogroup relation salient. When guilt is attributed to the exogroup, social emotion is anger and the trend of offensive action can be seen more ( Yzerbyt et al., 2009 ). In this case, the tendency to perform offensive action involves ignoring prevention measures and not helping to make them more powerful.

The conspiracy beliefs we have herein worked on do not strictly correspond to the content used in the literature ( Sunstein and Vermeule, 2009 ; Lewandowsky et al., 2013 ) because at least two of these beliefs (Alien CT and Earth CT) do not refer to human power. However, these beliefs share the irrationality of attributing the origin to hidden powers which manipulate human being’s reasoning and emotion. Implicit beliefs tend to perceive a world in which COVID-19 is an instrument to divert attention from the control that these powers seek to exercise. Beliefs are modulable, and the theories that emerge from them can be subject to change and expansion. It would be necessary to replicate the present study’s findings, considering the current social context and currently emerging conspiracy theories. A more robust pre-study that would allow for a broader range of conspiracy theories to be compiled would be useful in the future. In addition, longitudinal studies could also be carried out, selecting participants based on their adherence to certain beliefs and following their development over time.

In conclusion, the conspiracy beliefs studied herein seem to act as a frame that provides an interpretive narrative of reality that serves, on the one hand, to deal with the SARS-CoV-2 threat but, on the other hand, to also interfere with actions to prevent it by perceiving institutions as scapegoats or accomplices in hidden powers. These beliefs compete with rational or scientific information as alternative narratives. They play an interpretative and prescriptive role that explains mistrust in the institutional version and the inhibition of the scientific information effect ( van der Linden et al., 2017 ; Bolsen and Druckman, 2018 ). In short, the present findings contribute to theoretical knowledge about how, why, and for whom corrections effectively update misconceptions of controversial topics ( Trevors and Duffy, 2020 ). The study also shows that not all conspiracy or irrational beliefs have negative effects, or the same effects, on COVID-19 risk prevention demands.

Limitations of the study

The limitations of this study are fundamentally related to the sample and the time space for collecting data. Sample collection was carried out at the beginning of the pandemic during the so-called first wave. At that time, conspiracy theories were less developed, which is reflected in participants’ slight adhesion to those beliefs. For this reason, it would be appropriate to work with balanced samples between believers and non-believers, deniers and non-deniers.

Given that this was a global pandemic situation, something that had not been experienced by society for over a century, this research can show the initial reactions and the mechanisms underlying the reactions. Although the data are relatively outdated, we believe that the mechanism of attributing false beliefs and mistrust of information from reliable institutional sources is still in place. The development of false beliefs justified by a conspiracy theory can be repeated when similar social situations arise. Future research should conduct cross-cultural studies to increase the cultural diversity of the sample.

On the other hand, this research would be completed with a study conducted during the third or fourth wave by analysing whether pandemic exhaustion and impotence in this situation have entrenched, maintained, or modified beliefs and their attributions by contemplating the role of context (cultural variables and intergroup salience).

Nevertheless, the fact that the sample was collected at the beginning of the pandemic allowed us to assess how even slight adherence to irrational beliefs favours mistrust and lack of commitment to actions. This suggests that the influence of these beliefs on people’s cognition is constant once they appear. The sample should also be enlarged to perform an intercultural analysis to know whether the idiosyncrasies of different countries and cultures affect the activation of one IT or other ITs, condition how government pandemic management is perceived, and adherence to preventive behaviours.

In short, a bigger sample size and the inclusion of more variables would help us to further understand how our beliefs in COVID-19 influence our subsequent judgements and behaviours.

The time period in which the preliminary study and the study took place corresponds to the first wave of SARS-CoV-2 infection in 2020. Given that this was a global pandemic situation, something that had not been experienced by society for over a century, this research can show the initial reactions and the mechanisms underlying the reactions. Although the data are relatively outdated, we believe that the mechanism of attributing false beliefs and mistrust of information from reliable institutional sources is still in place. The development of false beliefs justified by a conspiracy theory can be repeated when similar social situations arise.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the Research Ethics and Integrity Committee of Vicerrectorate of Research Jaume I University of Castellón [CD/45/2019 Generalitat Valenciana]. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study.

Author contributions

DP-C: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing. SA-N: Data curation, Investigation, Methodology, Writing – review & editing. LA: Data curation, Formal analysis, Investigation, Methodology, Writing – review & editing. RP: Formal analysis, Methodology, Writing – original draft. AB: Formal analysis, Methodology, Writing – original draft. CV-R: Formal analysis, Investigation, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing.

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work has been funded by the project: UJI-B2022-10 and the PREDOC/2020/10 grant.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpsyg.2024.1325600/full#supplementary-material

Ali Jadoo, S. A. (2020). Was the world ready to face a crisis like COVID-19? J. Ideas Health 3, 123–124. doi: 10.47108/jidhealth.Vol3.Iss1.45

Crossref Full Text | Google Scholar

Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., and Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452. doi: 10.1038/s41591-020-0820-9

PubMed Abstract | Crossref Full Text | Google Scholar

Arbuckle, J. L. (2019). Amos 26.0 user’s guide . Chicago: IBM SPSS.

Google Scholar

Bolsen, T., and Druckman, J. N. (2018). Do partisanship and politicization undermine the impact of a scientific consensus message about climate change? Group Process. Intergroup Relat. 21, 389–402. doi: 10.1177/1368430217737855

Bolsen, T., Palm, R., and Kingsland, J. T. (2020). Framing the origins of COVID-19. Sci. Commun. 42, 562–585. doi: 10.1177/1075547020953603

Crimston, C., and Silvanathan, H. P. (2020). “Polarisation” in Together apart: the psychology of COVID-19 . eds. J. Jetten, S. D. Reicher, A. A. Haslam, and T. Cruwys (London, United Kingdom: SAGE Publications), 107–112.

Eicher, V., and Bangerter, A. (2015). “Social representations of infectious diseases” in Societal psychology: a handbook of social representations . eds. G. Sammut, E. Andreouli, and G. Gaskell (Cambridge: Cambridge University Press), 385–396.

European Commission (2020). Identifying conspiracy theories. Available at: https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response/fighting-disinformation/identifying-conspiracy-theories_en

Freeman, D., Waite, F., Rosebrock, L., Petit, A., Causier, C., East, A., et al. (2020). Coronavirus conspiracy beliefs, mistrust, and compliance with government guidelines in England. Psychol. Med. 52, 251–263. doi: 10.1017/S0033291720001890

Gupta, M., Shoja, A., and Mikalef, P. (2021). Toward the understanding of national culture in the success of non-pharmaceutical technological interventions in mitigating COVID-19 pandemic. Ann. Oper. Res. 319, 1433–1450. doi: 10.1007/s10479-021-03962-z

Heymann, D. L., and Shindo, N. (2020). COVID-19: what is next for public health? Lancet 395, 542–545. doi: 10.1016/S0140-6736(20)30374-3

Hintzman, D. L. (1986). “Schema abstraction” in a multiple-trace memory model. Psychol. Rev. 93, 411–428. doi: 10.1037/0033-295X.93.4.411

Högberg, T., Magnusson, A., Ewertzon, M., and Lützén, K. (2008). Attitudes towards mental illness in Sweden: adaptation and development of the community attitudes towards mental illness questionnaire. Int. J. Ment. Health Nurs. 17, 302–310. doi: 10.1111/j.1447-0349.2008.00552.x

Imhoff, R., and Lamberty, P. (2020). A bioweapon or a hoax? The link between distinct conspiracy beliefs about the coronavirus disease (COVID-19) outbreak and pandemic behavior. Soc. Psychol. Personal. Sci. 11, 1110–1118. doi: 10.1177/1948550620934692

Jolley, D., and Paterson, J. L. (2020). Pylons ablaze: examining the role of 5G COVID-19 conspiracy beliefs and support for violence. Br. J. Soc. Psychol. 59, 628–640. doi: 10.1111/bjso.12394

Jordan, J., Yoeli, E., and Rand, D. G. (2020). Don’t get it or don’t spread it: comparing self-interested versus prosocial motivations for COVID-19 prevention behaviors. Sci. Rep. 11:20222. doi: 10.1038/s41598-021-97617-5

Jost, J. T., and Hunyady, O. (2005). Antecedents and consequences of system justifying ideologies. Curr. Dir. Psychol. Sci. 14, 260–265. doi: 10.1111/j.0963-7214.2005.00377.x

Karić, T., and Međedović, J. (2021). COVID-19 conspiracy beliefs and containment-related behaviour: the role of political trust. Personal. Individ. Differ. 175:110697. doi: 10.1016/j.paid.2021.110697

Kay, A. C., Gaucher, D., Napier, J. L., Callan, M. J., and Laurin, K. (2008). God and the government: testing a compensatory control mechanism for the support of external systems. J. Pers. Soc. Psychol. 95, 18–35. doi: 10.1037/0022-3514.95.1.18

Klein, C., Clutton, P., and Dunn, A. G. (2019). Pathways to conspiracy: the social and linguistic precursors of involvement in Reddit’s conspiracy theory forum. PLoS One 14:e0225098. doi: 10.1371/journal.pone.0225098

Levin, I., Sinclair, J. A., and Alvarez, R. M. (2016). Participation in the wake of adversity: blame attribution and policy-oriented evaluations. Polit. Behav. 38, 203–228. doi: 10.1007/s11109-015-9316-6

Lewandowsky, S., Oberauer, K., and Gignac, G. E. (2013). NASA faked the moon landing—therefore, (climate) science is a hoax: an anatomy of the motivated rejection of science. Psychol. Sci. 24, 622–633. doi: 10.1177/0956797612457686

Lin, C. Y., Imani, V., Majd, N. R., Ghasemi, Z., Griffiths, M. D., Hamilton, K., et al. (2020). Using an integrated social cognition model to predict COVID-19 preventive behaviours. Br. J. Health Psychol. 25, 981–1005. doi: 10.1111/bjhp.12465

Rodrigo, M. J., Rodríguez, A., and Marrero, J. (1993). Las teorías implícitas Una aproximación al conocimiento cotidiano . Madrid: Visor.

Romer, D., and Jamieson, K. H. (2020). Conspiracy theories as barriers to controlling the spread of COVID-19 in the US. Soc. Sci. Med. 263:113356. doi: 10.1016/j.socscimed.2020.113356

Rosch, E. (1975). Cognitive representations of semantic categories. J. Exp. Psychol. Gen. 104, 192–233. doi: 10.1037/0096-3445.104.3.192

Saladino, V., Algeri, D., and Auriemma, V. (2020). The psychological and social impact of COVID-19: new perspectives of well-being. Front. Psychol. 11:577684. doi: 10.3389/fpsyg.2020.577684

Shariff, A. F., Greene, J. D., Karremans, J. C., Luguri, J. B., Clark, C. J., Schooler, J. W., et al. (2014). Free will and punishment: a mechanistic view of human nature reduces retribution. Psychol. Sci. 25, 1563–1570. doi: 10.1177/0956797614534693

Shepherd, S., and Kay, A. C. (2012). On the perpetuation of ignorance: system dependence, system justification, and the motivated avoidance of sociopolitical information. J. Pers. Soc. Psychol. 102, 264–280. doi: 10.1037/a0026272

Stempel, C., Hargrove, T., and Stempel, G. H. (2007). Media use, social structure, and belief in 9/11 conspiracy theories. Journal. Mass Commun. Q. 84, 353–372. doi: 10.1177/107769900708400210

Sunstein, C. R., and Vermeule, A. (2009). Conspiracy theories: causes and cures. J. Polit. Philos. 17, 202–227. doi: 10.1111/j.1467-9760.2008.00325.x

Swami, V., Voracek, M., Stieger, S., Tran, U. S., and Furnham, A. (2014). Analytic thinking reduces belief in conspiracy theories. Cognition 133, 572–585. doi: 10.1016/j.cognition.2014.08.006

Taylor, S., and Asmundson, G. J. (2020). Life in a post-pandemic world: what to expect of anxiety-related conditions and their treatment. J. Anxiety Disord. 72:102231. doi: 10.1016/j.janxdis.2020.102196

Taylor, S. M., and Dear, M. J. (1981). Scaling community attitudes toward the mentally ill. Schizophr. Bull. 7, 225–240. doi: 10.1093/schbul/7.2.225

Trevors, G., and Duffy, M. C. (2020). Correcting COVID-19 misconceptions requires caution. Educ. Res. 49, 538–542. doi: 10.3102/0013189X20953825

Van Bavel, J. J., Baicker, K., Boggio, P. S., Capraro, V., Cichocka, A., Cikara, M., et al. (2020). Using social and behavioural science to support COVID-19 pandemic response. Nat. Hum. Behav. 4, 460–471. doi: 10.1038/s41562-020-0884-z

van der Linden, S., Leiserowitz, A., Rosenthal, S., and Maibach, E. (2017). Inoculating the public against misinformation about climate change. Glob. Chall. 1:1600008. doi: 10.1002/gch2.201600008

van Prooijen, J. W., and Douglas, K. M. (2017). Conspiracy theories as part of history: the role of societal crisis situations. Mem. Stud. 10, 323–333. doi: 10.1177/1750698017701615

World Health Organization. (2021). COVAX. Working for global equitable access to COVID-19 vaccines. Available at: https://www.who.int/initiatives/act-accelerator/covax

Yzerbyt, V. Y., Muller, D., and Judd, C. M. (2009). “How do they see us? The vicissitudes of metaperception” in Intergroup misunderstandings: Impact of divergent realities . eds. S. Demoulin, J. P. Leyens, and J. Dovidio (London: Psychology Press), 63–83.

Keywords: COVID-19, implicit theories, conspiracy beliefs, objective information, preventive behaviours

Citation: Pinazo-Calatayud D, Agut-Nieto S, Arahuete L, Peris R, Barros A and Vázquez-Rodríguez C (2024) The strength of conspiracy beliefs versus scientific information: the case of COVID 19 preventive behaviours. Front. Psychol . 15:1325600. doi: 10.3389/fpsyg.2024.1325600

Received: 21 October 2023; Accepted: 02 February 2024; Published: 04 April 2024.

Reviewed by:

Copyright © 2024 Pinazo-Calatayud, Agut-Nieto, Arahuete, Peris, Barros and Vázquez-Rodríguez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Daniel Pinazo-Calatayud, [email protected] ; Carolina Vázquez-Rodríguez, [email protected]

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

IMAGES

  1. Case Study: Definition, Examples, Types, and How to Write

    case study psychology strengths

  2. strengths and weaknesses of the case study

    case study psychology strengths

  3. Case Study: Definition, Examples, Types, And How To Write

    case study psychology strengths

  4. case study and its strengths and weaknesses

    case study psychology strengths

  5. Research Methods Defining, strengths, weaknesses, key terms and theories

    case study psychology strengths

  6. How to Write a Good Case Study in Psychology (A Step-by-Step Guide)

    case study psychology strengths

VIDEO

  1. Case Studies def

  2. Psychology Student Experience At Amity University Mumbai

  3. Using Case Studies

  4. Psychology case study on depression

  5. Case Study and Interview Method/Purpose, Types,Strengths and Weaknesses of Case Study and interview

  6. #study_music #neet_motivation Psychology practical file b.ed 3 semester

COMMENTS

  1. Case Study: Definition, Examples, Types, and How to Write

    A case study is an in-depth study of one person, group, or event. In a case study, nearly every aspect of the subject's life and history is analyzed to seek patterns and causes of behavior. Case studies can be used in many different fields, including psychology, medicine, education, anthropology, political science, and social work.

  2. Case Study Research Method in Psychology

    Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews). The case study research method originated in clinical medicine (the case history, i.e., the patient's personal history). In psychology, case studies are ...

  3. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  4. Case Studies

    Share : Case studies are very detailed investigations of an individual or small group of people, usually regarding an unusual phenomenon or biographical event of interest to a research field. Due to a small sample, the case study can conduct an in-depth analysis of the individual/group. Evaluation of case studies: STRENGTHS.

  5. Research Methods In Psychology

    Olivia Guy-Evans, MSc. Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

  6. Case study methods.

    Case study research continues to be poorly understood. In psychology, as in sociology, anthropology, political science, and epidemiology, the strengths and weaknesses of case study research—much less how to practice it well—still need clarification.

  7. Single case studies are a powerful tool for developing ...

    The majority of methods in psychology rely on averaging group data to draw conclusions. In this Perspective, Nickels et al. argue that single case methodology is a valuable tool for developing and ...

  8. Case Study

    The definitions of case study evolved over a period of time. Case study is defined as "a systematic inquiry into an event or a set of related events which aims to describe and explain the phenomenon of interest" (Bromley, 1990).Stoecker defined a case study as an "intensive research in which interpretations are given based on observable concrete interconnections between actual properties ...

  9. Case Studies

    (1) POINT: A strength of a case study is that it produces rich, detailed data. EXAMPLE: For example, a case study of an individual's life is incredibly detailed and may highlight a number of important experiences that could have combined to cause them to become mentally ill. EVALUATION: This is positive because information that may be overlooked using other methods is likely to be identified.

  10. How To Write a Psychology Case Study in 8 Steps (Plus Tips)

    Here are four tips to consider while writing a psychology case study: Remember to use the rules of APA formatting. Use fictitious names instead of referring to the patient as a client. Refer to previous case studies to understand how to format and stylize your study. Proofread and revise your report before submitting it.

  11. The 3 Descriptive Research Methods of Psychology

    Types of descriptive research. Observational method. Case studies. Surveys. Recap. Descriptive research methods are used to define the who, what, and where of human behavior and other ...

  12. Case Study: Definition, Types, Examples and Benefits

    Here are a few: 1. Illustrative case study: Researchers use observations on every angle of a specific case, generally resulting in a thorough and deep data analysis. 2. Exploratory case study: Primarily used to identify research questions and qualitative methods to explore in subsequent studies, this type of case study is frequently in use in ...

  13. The clinical case report: a review of its merits and limitations

    Observations published can generate ideas and be a trigger for further studies. For instance, a case series consisting of several similar cases in a short period can make up the case-group for a case-control study . Clinicians could do the observation and publish the case series while the case-control study could be left to the academics.

  14. 2.2 Approaches to Research

    Discuss the strengths and weaknesses of case studies, naturalistic observation, surveys, and archival research ... case studies provide enormous amounts of information, but since the cases are so specific, the potential to apply what's learned to the average person may be very limited. ... Psychology 2e Publication date: Apr 22, 2020 Location ...

  15. What Is a Case Study?

    Revised on November 20, 2023. A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are ...

  16. A case study of 'The Good School:' Examples of the use of Peterson's

    This applied case study centers on two aspects of Peterson's research as introduced into a large K-12 school in Australia: (i) creating enabling institutions and (ii) applications of character strengths. ... Positive psychology and character strengths: Application to strengths-based school counseling. Professional School Counseling, 12, 85 ...

  17. Case Studies AO1 AO2 AO3

    A case study is an in-depth study of a single person or a small group that all share a single characteristic (like a family). Case studies focus on abnormal cases: people with deviant behaviour, mental disorders or unusual gifts. Case studies are usually longitudinal studies - they take place over a period of time, typically months.

  18. Patient H.M. Case Study In Psychology: Henry Gustav Molaison

    Henry Gustav Molaison, known as Patient H.M., is a landmark case study in psychology. After a surgery to alleviate severe epilepsy, which removed large portions of his hippocampus, he was left with anterograde amnesia, unable to form new explicit memories, thus offering crucial insights into the role of the hippocampus in memory formation.

  19. The use of strengths-based approaches, Personal Construct Psychology

    This intervention case study is written by an Educational and Child Psychologist in the Republic of Ireland, ... The use of strengths-based approaches, Personal Construct Psychology (PCP) techniques and psychoeducation about autism with an adolescent in a post-primary school context in the Republic of Ireland: A practitioner report ...

  20. Key Study: HM's case study (Milner and Scoville, 1957)

    HM's case study is one of the most famous and important case studies in psychology, especially in cognitive psychology. It was the source of groundbreaking new knowledge on the role of the hippocampus in memory. Background Info "Localization of function in the brain" means that different parts of the brain have different functions ...

  21. The Strengths and Weaknesses of Case Studies

    Advantages of Case Studies. Intensive Study. Case study method is responsible for intensive study of a unit. It is the investigation and exploration of an event thoroughly and deeply. You get a very detailed and in-depth study of a person or event. This is especially the case with subjects that cannot be physically or ethically recreated.

  22. 10 Case Study Advantages and Disadvantages (2024)

    Advantages. 1. In-depth analysis of complex phenomena. Case study design allows researchers to delve deeply into intricate issues and situations. By focusing on a specific instance or event, researchers can uncover nuanced details and layers of understanding that might be missed with other research methods, especially large-scale survey studies.

  23. Best Case Study Writing Service

    The ordering process is fully online, and it goes as follows: • Select the topic and the deadline of your case study. • Provide us with any details, requirements, statements that should be emphasized or particular parts of the writing process you struggle with. • Leave the email address, where your completed order will be sent to.

  24. Frontiers

    Study 2 evidenced that the different conspiracy beliefs had distinct direct relations with the dependent variables. The aim of Study 3 was to better clarify the results by confirming M1 with an aggregate sample (the participants jointly from Study 1 and Study 2). Method Sample. The sample comprised 407 participants (126 male, 281 female).